
 

Handbook of 

Scientific Signal Processing 
  

September 2024 edition 

 

An illustrated handbook with free software and spreadsheet templates to download. 

 

 

A retirement project by 

Tom O'Haver 

Professor Emeritus 

Department of Chemistry and Biochemistry 

 

 

orcid.org/0000-0001-9045-1603 

 

 
 

 

 

 

 

 

  

 

http://www.chem.umd.edu/
https://www.umd.edu/


Page | 2  

 

Online access to the latest versions 
Book in PDF format: 

https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing.pdf 

 
 

Web address: http://bit.ly/1NLOlLR 

 
 

Interactive Matlab Tools: http://bit.ly/1r7oN7b 

 
 

Software download links: http://tinyurl.com/cey8rwh 

 
 

Animated examples: https://terpconnect.umd.edu/~toh/spectrum/ToolsZoo.html 

 

If you are reading this book on an Internet-connected computer or tablet, you can tap, click or 

Ctrl-Click on any of the page numbers in the text to jump directly to that page. If you download 

the Microsoft Word 365 version, the GIF animations will run automatically. In most free PDF 

viewers, however, you must click on the GIF links to view the animations. You can also click on 

the https addresses, on the names of downloadable software or on graphics to view, enlarge, or 

download those items. 

https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing.pdf
http://bit.ly/1NLOlLR
http://bit.ly/1r7oN7b
http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/ToolsZoo.html
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx


Page | 3  

Have a question or suggestion? E-mail me at toh@umd.edu 

 

Acknowledgements.  Thanks to my graduate students, many of whom worked with the techniques de-

scribed within, to M. Farooq Wahab for his many contributions and for many fruitful discussions, to 

Baldassarre Cesarano for his close reading and typographical correction of this text, to Dr. Raphael 

Attié of NASA/Goddard Space Flight Center for corrections, to Diederick of The University of Hong 

Kong for code contributions, to Yuri Kalambet of Ampersand, Ltd. for many suggestions, corrections, 

and ideas, and to the many email correspondents who have made suggestions, asked questions, caught 

errors, sent examples of their data, and who have shown me new areas of application that have broad-

ened the scope of this work. 
 

Table of Contents 

Introduction .......................................................................................................................................................... 10 

Signal arithmetic .................................................................................................................................................. 13 

Signal arithmetic in Spreadsheets..................................................................................................................... 15 

Signal arithmetic and plotting in Matlab .......................................................................................................... 16 

Importing data into Matlab/Octave and Python. ............................................................................................... 18 

Matlab Versions. .............................................................................................................................................. 20 

Math in Python ................................................................................................................................................. 20 

Spreadsheet or Matlab/Python? ........................................................................................................................ 21 

Signals and noise .................................................................................................................................................. 23 

Detection limit ................................................................................................................................................. 26 

Frequency distribution of random noise ........................................................................................................... 29 

Dependence on signal amplitude ...................................................................................................................... 30 

The probability distribution of random noise ................................................................................................... 31 

Representing random noise in Spreadsheets..................................................................................................... 33 

Random functions in Matlab and Python ......................................................................................................... 34 

The difference between scripts and functions................................................................................................... 35 

Live scripts ....................................................................................................................................... 36 

User-defined functions related to signals and noise. ........................................................................................ 38 

The role of simulation and modeling................................................................................................................ 40 

Smoothing ............................................................................................................................................................ 41 

Smoothing algorithms ...................................................................................................................................... 41 

Noise reduction ................................................................................................................................................ 43 

Effect of the frequency distribution of noise .................................................................................................... 43 

End effects and the lost points problem ............................................................................................................ 44 

Examples of smoothing .................................................................................................................................... 44 

The problem with smoothing ........................................................................................................................... 45 

Optimization of smoothing .............................................................................................................................. 47 

mailto:toh@umd.edu
https://terpconnect.umd.edu/~toh/OHaverCV.html#advising
https://theanalyticalscientist.com/power-list/2018/muhammad-farooq-wahab


Page | 4  

When should you smooth a signal? .................................................................................................................. 48 

When should you NOT smooth a signal? ......................................................................................................... 49 

Dealing with spikes and outliers. ..................................................................................................................... 49 

Ensemble Averaging ........................................................................................................................................ 51 

Condensing oversampled signals ..................................................................................................................... 51 

Smoothing in spreadsheets ............................................................................................................................... 52 

Smoothing in Matlab and Octave ..................................................................................................................... 54 

Segmented smoothing ........................................................................................................................ 54 

Other smoothing functions. ................................................................................................................ 55 

Other noise-reduction functions. ......................................................................................................... 56 

Smoothing performance comparison ................................................................................................................ 58 

Differentiation ...................................................................................................................................................... 61 

Basic Properties of Derivative Signals ............................................................................................................. 62 

Applications of Differentiation ........................................................................................................................ 64 

Peak detection .................................................................................................................................................. 66 

Derivative Spectroscopy .................................................................................................................................. 67 

Trace Analysis .................................................................................................................................................. 68 

Differentiation in Spreadsheets ........................................................................................................................ 73 

Differentiation in Matlab and Python ............................................................................................................... 73 

Peak Sharpening ................................................................................................................................................... 77 

Even derivative sharpening .............................................................................................................................. 77 

Constant-area first-derivative symmetrization (“de-tailing”) ........................................................................... 80 

The Power Law Method ................................................................................................................................... 82 

Peak Sharpening for Excel and Calc Spreadsheets................................................................................ 84 

Peak Sharpening for Matlab and Octave .......................................................................................................... 85 

Harmonic analysis and the Fourier Transform. ..................................................................................................... 91 

Software details .............................................................................................................................................. 100 

Matlab and Octave ......................................................................................................................................... 100 

Time-segmented Fourier power spectrum. ......................................................................................... 101 

Observing Frequency Spectra with iSignal .................................................................................................... 103 

Frequency visualization. ................................................................................................................... 103 

Signal enhancement ......................................................................................................................... 104 

Showing that the Fourier spectrum of a Gaussian is also a Gaussian .................................................... 105 

Fourier Convolution ........................................................................................................................................... 106 

Simple whole-number convolution vectors .................................................................................................... 107 

Software details for convolution .................................................................................................................... 108 

Multiple sequential convolution ..................................................................................................................... 109 

Fourier Deconvolution ....................................................................................................................................... 111 



Page | 5  

Computer software for deconvolution ................................................................................................ 114 

Matlab and Octave ............................................................................................................................ 114 

Noise reduction in deconvoluted signals ............................................................................................. 118 

Excess noise reduction by denominator addition ................................................................................. 119 

Deconvolution for peak area measurements ....................................................................................... 121 

Multiple sequential deconvolution .................................................................................................... 121 

Segmented deconvolution ................................................................................................................ 122 

Interactive deconvolution with iSignal .............................................................................................. 123 

Fourier Filter ...................................................................................................................................................... 125 

Computer software for Fourier Filtering ........................................................................................................ 126 

Wavelets and wavelet denoising ......................................................................................................................... 130 

Visualization and analysis .............................................................................................................................. 131 

Wavelet denoising .......................................................................................................................................... 133 

Integration and peak area measurement .............................................................................................................. 137 

Dealing with overlapping peaks ..................................................................................................................... 139 

Peak area measurement in spreadsheets. ........................................................................................................ 141 

Using sharpening for overlapping peak area measurements. ................................................................ 141 

Peak area measurement using Matlab and Octave .......................................................................................... 143 

Automatic multiple peak detection ................................................................................................................. 145 

Area measurement by iterative curve fitting .................................................................................................. 149 

Correction for background/baseline................................................................................................... 150 

Asymmetrical peaks and peak broadening: perpendicular drop vs curve fitting .................................... 152 

Curve fitting A: Linear Least-squares ................................................................................................................. 158 

Examples of polynomial fits .......................................................................................................................... 158 

Reliability of curve fitting results ................................................................................................................... 163 

Algebraic Propagation of errors ........................................................................................................ 163 

Monte Carlo simulation .................................................................................................................... 165 

The Bootstrap method ...................................................................................................................... 166 

Comparison of error prediction methods. ........................................................................................... 167 

Effect of the number of data points on least-squares fit precision ........................................................ 167 

Transforming non-linear relationships ............................................................................................... 168 

Simple fitting of Gaussian and Lorentzian peaks by data transformation .............................................. 170 

Math and software details for linear least squares .......................................................................................... 173 

Spreadsheets for linear least squares.................................................................................................. 174 

Application to analytical calibration and measurement ....................................................................... 176 

Matlab and Octave ........................................................................................................................... 177 

Fitting Single Gaussian and Lorentzian peaks .................................................................................... 182 



Page | 6  

Curve fitting B: Multicomponent Spectroscopy ................................................................................................. 184 

Classical Least-squares (CLS) multivariate calibration .................................................................................. 184 

Inverse Least-squares (ILS) calibration .......................................................................................................... 186 

Computer software for multiwavelength spectroscopy .................................................................................. 187 

Spreadsheets.................................................................................................................................... 187 

Matlab and Octave ........................................................................................................................... 190 

Classical Least Squares in Python ..................................................................................................... 194 

Curve fitting C: Non-linear Iterative Curve Fitting ............................................................................................ 195 

Spreadsheets and stand-alone programs ......................................................................................................... 197 

Matlab and Octave ......................................................................................................................................... 199 

Fitting peaks ................................................................................................................................................... 200 

Simplified general-purpose peak-fitting function ............................................................................... 201 

Variable shape types......................................................................................................................... 202 

Peak Fitting Functions for Matlab and Octave ............................................................................................... 203 

Accuracy and precision of peak parameters ................................................................................................... 206 

a. Model errors. ............................................................................................................................... 206 

b. Background correction ................................................................................................................. 214 

c. Random noise in the signal. .......................................................................................................... 217 

d. Iterative fitting errors ................................................................................................................... 220 

Fitting signals that are subject to exponential broadening. ............................................................................. 224 

The Effect of Smoothing before least-squares analysis .................................................................................. 228 

Peak Finding and Measurement ......................................................................................................................... 229 

Simple peak detection .................................................................................................................................... 230 

Gaussian peak measurement ............................................................................................................. 232 

Optimization of peak finding ......................................................................................................................... 234 

How does ‘findpeaksG’ differ from ‘max’ in Matlab or ‘findpeaks’ in the Signal Processing Toolkit? .......... 235 

Accuracy of the measurements of peaks ........................................................................................................ 236 

Peak finding combined with iterative curve fitting. ............................................................................ 237 

Comparison of peak finding functions ........................................................................................................... 240 

Peak start and end .......................................................................................................................................... 243 

Using the peak table ....................................................................................................................................... 246 

Demo scripts .................................................................................................................................................. 247 

Peak Identification ......................................................................................................................................... 247 

iPeak: Interactive Peak Detector .................................................................................................................... 250 

iPeak keyboard Controls (version 8.1):.............................................................................................. 263 

iPeak Demo functions ...................................................................................................................... 264 

Spreadsheet Peak Finder Templates ............................................................................................................... 268 



Page | 7  

Hyperlinear Quantitative Absorption Spectrophotometry ................................................................................... 271 

Background .................................................................................................................................................... 273 

Spreadsheet implementation .......................................................................................................................... 277 

Matlab/Octave implementation: The fitM.m function .................................................................................... 278 

Demo function for Octave or Matlab ................................................................................................. 280 

TFitDemo.m: Interactive demo for the Tfit method ............................................................................ 281 

Statistics of methods compared (TFitStats.m, for Matlab or Octave) ................................................... 282 

Comparison of analytical curves (TFitCalDemo.m, for Matlab or Octave) ........................................... 283 

Application to a three-component mixture ......................................................................................... 284 

Tutorials, Case Studies, and Simulations. ........................................................................................................... 287 

Can smoothed noise may be mistaken for an actual signal? ........................................................................... 287 

Signal or Noise? ............................................................................................................................................. 287 

Buried treasure ............................................................................................................................................... 291 

The Battle Rounds: a comparison of methods ................................................................................................ 294 

Ensemble averaging patterns in a continuous signal ...................................................................................... 297 

Harmonic Analysis of the Doppler Effect ...................................................................................................... 299 

Measuring spikes ........................................................................................................................................... 300 

Fourier deconvolution vs curve fitting (they are not the same) ...................................................................... 302 

Digitization noise - can adding noise really help? .......................................................................................... 304 

How low can you go? Performance with very low signal-to-noise ratios. ...................................................... 306 

Signal processing in the search for extraterrestrial intelligence ...................................................................... 308 

Why measure peak area rather than peak height? ........................................................................................... 310 

Using macros to extend the capability of spreadsheets .................................................................................. 311 

Random walks and baseline correction .......................................................................................................... 314 

Modulation and synchronous detection. ......................................................................................................... 316 

Measuring a buried peak ................................................................................................................................ 319 

Signal and Noise in the Stock Market ............................................................................................................ 322 

Measuring signal-to-noise ratio in complex signals ....................................................................................... 326 

Dealing with wide-ranging signals: segmented processing ............................................................................ 329 

Measurement Calibration ............................................................................................................................... 332 

Numerical precision of computer software .................................................................................................... 335 

Miniaturized signal processing: The Raspberry Pi ......................................................................................... 339 

Batch processing ............................................................................................................................................ 340 

Real-time signal processing ........................................................................................................................... 342 

Peak sharpening ............................................................................................................................................. 346 

Dealing with variable data arrays in spreadsheets .......................................................................................... 348 

Illuminating the invisible: Computer simulation of instruments .................................................................... 350 

Who uses this book, its web site, documents, and software? .......................................................................... 353 



Page | 8  

The Law of Large Numbers ........................................................................................................................... 356 

Spectroscopy and chromatography combined: time-resolved Classical Least-squares ................................... 358 

The mystery peak challenge ........................................................................................................................... 361 

Developing Matlab Live Scripts and Apps ..................................................................................................... 363 

Using real-signal modeling to determine measurement accuracy ................................................................... 369 

Signal processing software details ...................................................................................................................... 371 

Interactive smoothing, differentiation, and signal analysis (iSignal) .............................................................. 371 

Keyboard-operated interactive Fourier filter .................................................................................................. 386 

Matlab/Octave Peak Fitters ............................................................................................................................ 391 

Matlab/Octave command-line function: peakfit.m ......................................................................................... 392 

Examples ........................................................................................................................................ 396 

How do you find the correct input arguments for peakfit? ................................................................... 408 

Working with the fitting results matrix "FitResults"............................................................................ 408 

Demonstration script for peakfit.m .................................................................................................... 408 

Fitting peaks in multi-column data .................................................................................................... 409 

Dealing with complex signals with lots of peaks ................................................................................ 410 

Automatically finding and Fitting Peaks ............................................................................................ 410 

The Interactive Peak Fitter (ipf.m) ................................................................................................................. 412 

ipf keyboard controls (Version 13.4): Obtained by pressing the K key ................................................. 414 

Practical examples with real experimental data: ................................................................................. 416 

Operating instructions for ipf.m (version 13.4). .................................................................................. 419 

Demoipf.m ...................................................................................................................................... 426 

Execution time of peak fitting and other signal processing tasks ................................................................... 427 

Iterative Curve Fitting Hints and Tips ............................................................................................................ 428 

Extracting the equations for the best-fit models ............................................................................................. 430 

How to add a new peak shape to peakfit.m, ipf.m, iPeak, or iSignal .............................................................. 432 

Which to use? peakfit, ipf, findpeaks…, iPeak, or iSignal? ............................................................................ 433 

Python: a free, open-source language alternative ............................................................................................... 435 

Sliding average signal smoothing................................................................................................................... 437 

Fourier transform and (de)convolution .......................................................................................................... 439 

Classical Least Squares .................................................................................................................................. 439 

Peak Detection ............................................................................................................................................... 440 

Iterative least-squares fitting .......................................................................................................................... 441 

Artificial Intelligence and Signal Processing ...................................................................................................... 443 

AI as a programmer’s assistant? ..................................................................................................................... 443 

Worksheets for Analytical Calibration Curves .................................................................................................... 447 

Background ..................................................................................................................................... 447 



Page | 9  

Fill-in-the-blanks worksheets for several different calibration methods ................................................ 447 

Comparison of calibration methods ................................................................................................... 451 

Instructions for using the calibration templates .................................................................................. 452 

Frequently Asked Questions (taken from emails and search engine queries) ......................................... 454 

Catalog of signal processing functions, scripts, and spreadsheet templates ........................................................ 461 

Peak shape functions (for Matlab and Octave) ................................................................................... 461 

Signal Arithmetic ............................................................................................................................. 463 

Signals and Noise ............................................................................................................................ 464 

Smoothing ....................................................................................................................................... 467 

Differentiation and peak sharpening .................................................................................................. 468 

Harmonic Analysis .......................................................................................................................... 470 

Fourier convolution and deconvolution ............................................................................................. 471 

Fourier Filter ................................................................................................................................... 472 

Wavelets and wavelet denoising ........................................................................................................ 473 

Peak area measurement .................................................................................................................... 474 

Linear Least-squares ........................................................................................................................ 475 

Peak Finding and Measurement ........................................................................................................ 477 

Multicomponent Spectroscopy.......................................................................................................... 483 

Non-linear iterative curve fitting and peak fitting ............................................................................... 484 

Keystroke-operated interactive functions ........................................................................................... 488 

Hyperlinear Quantitative Absorption Spectrophotometry .................................................................... 488 

MAT files (for Matlab and Octave) and Text files (.txt) ...................................................................... 489 

Spreadsheets (for Excel or OpenOffice Calc) ..................................................................................... 489 

Afterword ........................................................................................................................................................... 493 

How this book came to be. ............................................................................................................................. 493 

Who needs this software?............................................................................................................................... 493 

Organization ................................................................................................................................................... 494 

Methodology .................................................................................................................................................. 494 

Influence of the Internet ................................................................................................................................. 495 

Writing ........................................................................................................................................................... 495 

Software platform selection criteria ............................................................................................................... 496 

Outcomes ....................................................................................................................................................... 497 

Impact ............................................................................................................................................................ 497 

The Future ...................................................................................................................................................... 498 

References .......................................................................................................................................................... 498 

Publications that cite the use of my book, programs and/or documentation ....................................................... 502 

 



Page | 10  

Introduction 
he interfacing of measurement instrumentation to small computers for the purpose of online data 

acquisition has now become standard practice in the modern science laboratory. Scientists use 

computers for data acquisition, data processing, and storage, using digital computer-based 

numerical methods. Techniques covered in this book can transform signals into more useful forms, 

detect and measure peaks, reduce noise, improve the resolution of overlapping peaks, compensate for 

instrumental artifacts, test hypotheses, optimize measurement strategies, diagnose measurement 

difficulties, and visualize and decompose complex signals into their component parts. These techniques 

can often make difficult measurements easier by extracting more information from the available data. 

Many of these techniques employ laborious mathematical procedures that were not even practical 

before the advent of computerized instrumentation. It is important for you to appreciate the abilities, as 

well as the limitations, of these techniques. In recent decades, computer storage and digital processing 

has become far less costly and literally millions of times more capable, reducing the cost of raw data 

and making complex computer-based signal processing techniques both more practical and necessary. 

Approximations and shortcuts that were once necessitated by mathematical convenience are no longer 

needed (e.g. pages 138, 195, 271). And it is not just the growth of computers: there are now new 

materials, new instruments, new fabrication techniques, new automation capabilities. We have lasers, 

fiber optics, superconductors, super-magnets, holograms, quantum technology, nanotechnology, and 

now even the beginnings of artificial intelligence (page 443). Sensors are smaller, cheaper, and faster 

than ever before; we can measure over a wider range of speeds, temperatures, pressures, and locations. 

People are carrying smartphones and fitness trackers everywhere they go, recording their heart rate, etc., 

creating new kinds of data sets that we never had before. As Erik Brynjolfsson and Andrew McAfee 

wrote in The Second Machine Age (W. W. Norton, 2014): "... as data gets cheaper, the bottleneck 

increasingly is the ability to interpret and use data". Kate Keahey, a Senior Scientist at Argonne 

National Laboratory, writes that "Software is a vital part of the research landscape, and most 

researchers will benefit from understanding its possibilities, limitations and the requirements for 

building it".  

This book covers only basic topics related to one-dimensional signals, not two-dimensional data such 

as images. It uses a pragmatic approach and is limited to mathematics only up to the most elementary 

aspects of calculus, statistics, and matrix math. I use logical arguments, analogies, graphics, and 

animation to explain ideas, rather than lots of formal mathematics. Data processing without math? Not 

really! Math is essential, just as it is for the technology of cell phones, GPS, digital photography, the 

Web, computer games, and modern cars. But you can get started using these tools without 

understanding all the underlying math and software details. Seeing it work makes it more likely that 

you will want to understand how it works. Nevertheless, in the end, it is not enough just to know how 

to operate the software, any more than knowing how to use a word processor or a MIDI sequencer 

makes you a good author or musician. I get you started with things that work; it is up to you to decide 

if a deep dive into advanced topics becomes necessary for your purposes.  

Why do I title this document "signal processing" rather than "data processing"? By "signal" I mean the 

x,y numerical time-series data recorded by scientific instruments, where x may be time or another 

quantity like energy or wavelength, as in the various forms of spectroscopy. This is sometimes called 

T 

https://www.elsevier.com/connect/gravitational-waves-discovery-shows-why-software-should-be-every-scientists-business
https://www.anl.gov/
https://www.anl.gov/


Page | 11  

“squiggly line” data. I don’t deal so much with categorical data. In other words, I am oriented to data 

that you would plot in a spreadsheet using the scatter chart type rather than bar or pie charts.  

Some of the examples come from my own areas of research in analytical chemistry, but there are many 

examples of use in a wide range of application areas. Over 750 journal papers, theses, and patents have 

cited my book and software, covering fields from academia, industry, environmental, medical, 

engineering, earth science, space, military, financial, agriculture, communications, and even music and 

speech science. Hundreds of readers have sent suggestions and experimental data from their own work 

that have helped shape my writing and software development. Much effort has gone into making this 

document concise and understandable; it has been very positively received by many readers. 

At the present time, this work does not cover image processing, pattern recognition, or factor analysis. 

For these topics and for a more rigorous treatment of the underlying mathematics of the topics I do 

cover, refer to the extensive literature on signal processing and on statistics and chemometrics. 

Throughout this work, a wide range of applications and connections are described, some potentially 

intriguing, such as stock market investing (page 322), human cognitive biases (page 356), the failure of 

a NASA spacecraft (page 72), cosmic rays from outer space (page 49), adding one kind of noise to 

reduce another (page 304), studying beach erosion by wind-blown sand (page 300), coding with 

artificial intelligence (page 443), expanding the classical limits of measurement in spectroscopy (page 

271), the intelligibility of digitized speech (page 99 and 381), low-cost miniature computers (page 339), 

and an easy way to create interactive GUI apps (page 36). The citations list (page 502 in the PDF) is 

evidence of a truly mind-boggling range of applications. 

This site makes considerable use of Matlab, a high-performance commercial and proprietary numerical 

computing environment and "fourth generation" programming language that is widely used in research 

(14, 17, 19, 20), Octave, a free Matlab alternative that runs almost all of the programs and examples in 

this tutorial, and Python, a powerful but free and open-source language. There is a good reason why 

Matlab and Python have become so popular in science and engineering; they are powerful, fast, and 

relatively easy to learn. A very important aspect of both languages is the concept of functions, which 

are self-contained modules of code that accomplish a specific task. Functions usually "take in" data, 

process it, and "return" a result. (A trivial example is a=sqrt(b), which takes the value of b, computes its 

square root, and assigns it to the variable a). Once a function is written, it can be used over and over 

again. Functions can be "called" from the inside of other functions. Matlab and Python come with built-

in functions for doing data processing tasks like matrix math, filtering, Fourier transforms, convolution 

and deconvolution, multi-linear regression, and optimization. You can write your own custom functions 

to use in your future programming projects, and you can download form their collection of thousands 

of useful user-contributed functions. Matlab has available a large number of add-ons called toolboxes 

created by experts in various fields for performing specialized mathematical tasks, including parallel 

computing, symbolic math and interfacing to Mathematica and to libraries written in C, C++, Java, 

Fortran, and Python; and it's extensible to model-based design for dynamic and embedded systems. A 

companion piece called Simulink is a graphical programming environment for modeling, simulating 

and analyzing multidomain dynamical systems. 

Most of the techniques covered in this work can also be performed in common spreadsheets such as 

Microsoft Excel or OpenOffice/LibreOffice Calc (11, 22, 23), which can be downloaded without cost 

https://terpconnect.umd.edu/~toh/spectrum/papers.pdf
https://terpconnect.umd.edu/~toh/spectrum/index.html#comments
http://en.wikipedia.org/wiki/MATLAB
file:///C:/Users/tomoh/Dropbox/SPECTRUM/SignalArithmetic.html%23Octave
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Model-based_design
https://en.wikipedia.org/wiki/Embedded_system
https://www.mathworks.com/products/simulink.html


Page | 12  

from their web sites, https://sourceforge.net/projects/octave/ and https://www.libreoffice.org/. 

You can download all of my Matlab/Octave or Python scripts and functions, and the spreadsheet 

templates, from http://tinyurl.com/cey8rwh at no cost; they have received extraordinarily positive 

feedback from users. (If you try to run one of my scripts or functions and it gives you a "missing 

function" error, look for the missing item from http://tinyurl.com/cey8rwh, download it into your 

Matlab/Octave search path. Type “help path” for more information about the search path). 

If you do not know Matlab, read page 16 and following for a quick start-up. Matlab is specifically 

suited to numerical methods, matrix manipulations, plotting of functions and data, creation of 

algorithms and user interfaces, rapid prototyping, and deployment to portable devices such as tablets - 

essentially the needs of numerical computing by scientists and engineers. Matlab is loosely and 

dynamically typed, is less well-structured in a formal sense than other languages, and it tends to be 

more favored by scientists and engineers and less well-liked by computer scientists and professional 

programmers. Python is different in a many details, is a little harder to install, and requires the 

installation of several add-on “packages”, but it has the great advantage of being free. Note: you can 

use an artificial intelligence chatbot to convert Matlab to Python or vice versa (page 443). 

There are several versions of Matlab, including stand-alone low-cost student and home versions, fully 

functional versions that run in a web browser (see graphic below), and apps that run on iPads and 

iPhones. See https://www.mathworks.com/pricing-licensing.html for prices and restrictions in their use.  

 

Figure 1. Matlab Online running my interactive peak fitter, ipf.m (page 412) in a Windows PC browser 

There are alternatives to Matlab, in particular, Octave, which is essentially a Matlab clone, but there is 

also Scilab, FreeMat, Julia, and Sage, which are mostly or somewhat compatible with the MATLAB 

language. For a discussion of other possibilities, see http://www.dspguru.com/dsp/links/matlab-clones.  

https://sourceforge.net/projects/octave/
https://www.libreoffice.org/
http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html#comments
https://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html#comments
http://tinyurl.com/cey8rwh
https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://www.amazon.com/Scientific-Computing-Scientists-Engineers-Textbook-ebook/dp/B0138NP7GM
https://www.computerhope.com/jargon/l/looslang.htm
https://www.computerhope.com/jargon/l/looslang.htm
https://realpython.com/matlab-vs-python/#syntax-differences-between-matlab-and-python
https://packaging.python.org/tutorials/installing-packages/
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://www.mathworks.com/pricing-licensing.html
http://www.dspguru.com/dsp/links/matlab-clones


Page | 13  

If you are reading this book online, on an Internet-connected computer, you can click on any of the http 

Web addresses or on the names of downloadable software or animations to view or download that item. 

For a complete list of all my software, see page 461 or http://tinyurl.com/cey8rwh. 

Signal arithmetic 
The most basic signal processing operations are those that involve simple signal arithmetic: point-by-

point addition, subtraction, multiplication, or division of two signals or of one signal and a constant. 

Despite their mathematical simplicity, these operations can be very useful. For example, in the left part 

of the figure below (Window 1) the top curve is the optical absorption spectrum of an extract of a 

sample of oil shale, a kind of rock that is a source of petroleum. 

 

 

A simple point-by-point subtraction of two signals allows the background (bottom curve on the left) to 

be subtracted from a complex sample (top curve on the left), resulting in a clearer picture of what is 

really in the sample (right). (X-axis = wavelength in nm; Y-axis = absorbance). 

This optical spectrum exhibits two absorption bands, at 515 nm and 550 nm. These peaks are due to a 

class of molecular fossils of chlorophyll called porphyrins, which are used as “geomarkers” in oil 

exploration. These bands are superimposed on a background absorption caused by the extracting 

solvents and by non-porphyrin compounds in the shale. The bottom curve is the spectrum of an extract 

of a non-porphyrin-bearing shale, showing only the background absorption. To obtain the spectrum of 

the shale extract without the background, the background (bottom curve) is simply subtracted from the 

sample spectrum (top curve). The difference is shown in the right in Window 2 (note the change in the 

Y-axis scale). In this case, the removal of the background is not perfect, because the background 

spectrum is measured on a separate shale sample. However, it works well enough that you can see the 

two bands more clearly and it is easier to measure precisely their absorbances and wavelengths. 

(Thanks to the late Prof. David Freeman of the Univ. of Maryland for the spectra of oil shale extracts). 

In this example and the one below, I am assuming that the two signals in Window 1 have the same x-

axis values - in other words, that both spectra have been digitized at the same set of wavelengths. 

Subtracting or dividing two spectra would not be valid if two spectra were digitized over different 

wavelength ranges or with different intervals between adjacent points. The x-axis values must match up 

point for point. In practice, this is very often the case with data sets acquired within one experiment on 

http://tinyurl.com/cey8rwh


Page | 14  

one instrument, but you must be careful if you change the instrument’s settings or if you combine data 

from two experiments or two instruments. It is possible to use the mathematical technique of 

interpolation to change the sampling rate (x-axis interval) or to equalize unequally spaced x-axis 

intervals of signals; the results are usually only approximate but often close enough in practice. Excel 

can perform the calculations using the forecast function. Matlab and Octave have built-in functions for 

interpolation, including interp1.m, see example1 (graphic) and example2 (graphic).                                                                                                                                                                                               

Sometimes one needs to know whether two signals have the same shape, for example in comparing the 

signal of an unknown to a stored reference signal. Most likely the amplitudes of the two signals will be 

different. Therefore, a direct overlay or subtraction of the two signals will not be useful. One possibility 

is to compute the point-by-point ratio of the two signals; if they have the same shape, the ratio will be a 

constant. For example, examine this figure: 

 

Do the two signals on the left have the same shape? They certainly do not look the same, but that may 

simply be because one is much weaker than the other one. The ratio of the two signals, shown in the 

right part (Window 2), is relatively constant from 300 to 440 nm, with a value of 10 +/- 0.2. This means 

that the shape of these two signals is very nearly identical over this x-axis range. 

The left part (Window 1) shows two superimposed signals, one of which is much weaker than the other. 

But do they have the same shape? It is hard to tell. It’s much clearer if you look at the ratio of the two 

signals, shown in the right part (Window 2), which is relatively constant from x=300 to 440, with a 

value of 10 +/- 0.2. This means that the shape of these two signals is the same, within about +/-2 %, 

over this x-axis range, and that the top curve is about 10 times more intense than the bottom one. 

Above x=440 the ratio is not even approximately constant; this is caused by noise, which is the subject 

of the next section (page 23). 

When you divide two vectors point by point, even a single zero in the denominator vector will stop the 

program with a division by zero error. A vanishingly small but finite number in the denominator will 

not stop the program but will generate a huge number in the result. Both problems can usually be 

avoided by adding a small non-zero constant to the denominator or by applying a small amount of 

smoothing (page 39) of the denominator or by using the Matlab/Octave function rmz.m (remove zeros) 

which replaces zeros with the nearest non-zero numbers. The related function rmnan.m removes NaNs 

(“Not a Number”) and Infs (“Infinite”) from vectors, replacing with neighboring real finite numbers.  

On-line calculations and plotting. Wolfram Alpha is a free Web site and a smartphone app that is an 

http://en.wikipedia.org/wiki/Interpolation
https://exceloffthegrid.com/interpolate-values-using-the-forecast-function/
https://www.mathworks.com/help/matlab/ref/interp1.html
https://terpconnect.umd.edu/~toh/spectrum/CompareInterp1andSpline.m
https://terpconnect.umd.edu/~toh/spectrum/CompareInterp1andSpline.png
https://terpconnect.umd.edu/~toh/spectrum/CompareInterpolationMethods2.m
https://terpconnect.umd.edu/~toh/spectrum/CompareInterpolationMethods2.png
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/rmz.m
https://terpconnect.umd.edu/~toh/spectrum/rmnan.m
http://www.wolframalpha.com/
http://products.wolframalpha.com/mobile/


Page | 15  

extremely useful computational tool and information source, including capabilities for symbolic 

mathematics, plotting, vector and matrix manipulations, statistics and data analysis, and many other 

topics. Statpages.org can perform a huge range of statistical calculations and tests. There are several 

Web sites that specialize in plotting data, including Plotly and Grapher. All of these require a reliable 

Internet connection, and they can be useful when you are working on a mobile device or computer that 

does not have the required software installed. In the PDF version of this book, you can Ctrl-Click on 

these links to open them in your browser. 

Signal arithmetic in Spreadsheets 
Popular spreadsheets, such as Excel or Open Office Calc, are aimed mainly at business and financial 

applications, but still have built-in functions for many common math operations, named variables, x,y 

plotting, text formatting, matrix math, etc. Cells can contain numerical values, text, mathematical 

expressions, or references to other cells. You can represent a spectrum as a row or column of cells. You 

can represent a set of spectra as a rectangular 

block of cells. You can assign your own 

names to individual cells or to ranges of cells, 

and then refer to them in mathematical 

expression by name. You can copy mathe-

matical expressions across a range of cells, 

with the cell references changing or not as 

desired. You can make plots of various types 

(including the all-important x-y or scatter 

graph) by menu selection. For a nice video 

demonstration, see this YouTube video: 

http://www.youtube.com/watch?v=nTlkkbQWpVk. Both Excel and Calc offer a “form design” 

capability with a full set of user interface objects such as buttons, menus, sliders, and text boxes; you 

can use these to create attractive graphical user interfaces for end-user applications, such as ones I have 

created for teaching analytical chemistry courses on http://terpconnect.umd.edu/~toh/models/. The 

latest versions of both Excel (Excel 2013) and OpenOffice Calc (3.4.1) can open and save either 

spreadsheet file formats (.xls and .ods, respectively). Simple spreadsheets in either format are 

compatible with the other program. However, there are small differences in the way that certain 

operations are interpreted, and for that reason I supply most of my spreadsheets in .xls (for Excel) and 

in .ods (for Calc) formats. Google "Differences between the Open-Document Spreadsheet (.ods) format 

and the Excel (.xlsx) format". Basically, Calc can do almost everything Excel can do, but Calc is free to 

download and is more Windows-standard in terms of look-and-feel. Excel is more "Microsoft-y" and is 

often faster than Calc. If you have access to Excel, I recommend using that. 
 

If you are working on a tablet or smartphone, you could use the Excel mobile app, Numbers for iPad, 

or several other mobile spreadsheets. These apps can do basic tasks but do not have the fancier 

capabilities of the regular computer versions. By saving their data in the "cloud" (e.g., iCloud or 

SkyDrive), these apps automatically sync changes in both directions between mobile devices and 

desktop or laptop computers, making them useful for field data entry. When in doubt, ask an AI (page 

443). 

https://www.wolframalpha.com/examples/mathematics/plotting-and-graphics/
http://www.wolframalpha.com/input/?i=matrix
http://www.wolframalpha.com/input/?i=statistics
http://www.wolframalpha.com/examples/
http://www.wolframalpha.com/examples/
http://statpages.org/index.html
https://plotly.com/matlab/
http://itools.subhashbose.com/grapher/
http://www.microsoftstore.com/store/msstore/pd/Excel-Home-and-Student-2010/productID.216446900/vip.true
http://www.microsoftstore.com/store/msstore/pd/Excel-Home-and-Student-2010/productID.216446900/vip.true
http://en.wikipedia.org/wiki/OpenOffice.org_Calc
http://www.youtube.com/watch?v=nTlkkbQWpVk
http://terpconnect.umd.edu/~toh/models/
http://office.microsoft.com/en-us/excel-help/differences-between-the-opendocument-spreadsheet-ods-format-and-the-excel-xlsx-format-HA010355787.aspx
http://office.microsoft.com/en-us/excel-help/differences-between-the-opendocument-spreadsheet-ods-format-and-the-excel-xlsx-format-HA010355787.aspx
http://www.macworld.com/article/2139403/excel-for-ipad-review-the-best-spreadsheet-app-for-the-ipad.html
http://www.apple.com/ios/numbers/?cid=wwa-us-kwg-features-com
http://www.searchenginejournal.com/5-awesome-spreadsheet-apps-for-the-iphone/


Page | 16  

Signal arithmetic and plotting in Matlab 
In Matlab (and in its GNU clone Octave) or in Python, arithmetic is much like any other language: e.g. 

(a+b)/c. In Matlab and in Python (page 20), a single variable can represent either a single "scalar" value, 

a vector of values (such as a spectrum or a chromatogram), a matrix (a rectangular array of values, such 

as a set of spectra), or a set of multiple matrices. All the standard math operations and functions adjust 

to match. This greatly facilitates mathematical operations on signal waveforms. The subtraction of two 

signals a and b, as on page 13, can be performed simply by writing a-b. Likewise, the ratio of two 

signals in Matlab, as on page 14, is "(a./b)". So, "./" means divide point-by-point and ".*" means 

multiply point-by-point. The * by itself means matrix multiplication, which you can use to perform 

repeated multiplications without using loops. For example, if x is a vector. 

  A=[1:100]'*x;  

creates a matrix A in which each column is x multiplied by the numbers 1, 2,...100. It is equivalent to 

writing a "for” loop like this, but more compact to write and faster to execute:  

for n=1:100; 

  A(:,n)=n.*x; 

end 

Plotting data. If you have signal amplitudes in the variable y, you can plot it just by typing "plot(y)". 

And if you also have a vector t of the same length containing the times at which each value of y was 

obtained, you can plot y vs t by typing "plot(t,y)". Two signals y and z can be plotted on the same 

time axis for comparison by typing "plot(t,y,t,z)". (Matlab automatically assigns different colors 

to each line.You can control the color and line style yourself by adding additional symbols; for example,  

"plot(x,y,'r.',x,z,'b-')" will plot y vs x with red dots and z vs x with a blue line. You can 

divide up one figure window into multiple smaller plots by placing subplot(m,n,p) before the plot 

command to plot in the pth section of an m-by-n grid of plots. (If you are reading this online, you can 

click here for an example of a 2x2 subplot. You can also select, copy, and paste, or select, drag and drop, 

any of the single-line or multi-line code examples into the Matlab or Octave editor or directly into the 

command line and press Enter to 

execute it immediately). In Matlab, 

type "help plot" for more plotting 

options. In Python, “import 

matplotlib.pyplot as plt” 

enables Matlab-like plotting. 

For publication-quality graphs, 

click on a Figure window, then 

click File > Export setup, choose 

the size, resolution, color, fonts, 

etc., then click Export and select 

the file format (e.g., TIF, eps, etc.). 

You can also use PlotPub , a 

downloadable library that is free, easy to use, allows great flexibility in choosing graph details, and 

https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/QuadFitToGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/QuadFitToGaussian.png
https://matplotlib.org/2.0.2/users/pyplot_tutorial.html
http://masumhabib.com/blog/plotpub-publication-quality-graph-v2-0-released/
https://terpconnect.umd.edu/~toh/spectrum/InbuiltPlotVersusPlotPub.txt


Page | 17  

creates great-looking graphs within Matlab that can be exported in EPS, PDF, PNG and TIFF with 

adjustable resolution. Here is an example (script, graphic). 

The function max(y) returns the maximum value of y and min(y) returns the minimum. Individual 

elements in a vector are referred to by index number; for example, t(10) is the 10th element in vector t, 

and t(10:20) is the vector of values of t from the 10th to the 20th entries. You can find the index 

number of the entry closest to a given value in a vector by using my val2ind.m function. For example, 

t(val2ind(y,max(y))) returns the time of the maximum y, and t(val2ind(t,550): 

val2ind(t,560)) is the vector of values of t between 550 and 560 (assuming t contains values 

within that range). The units of the time data in the t vector could be anything - microseconds, 

milliseconds, hours, any time units.  

A Matlab variable can also be a matrix, a set of vectors of the same length combined into a rectangular 

array. For example, intensity readings of 10 different optical spectra, each taken at the same set of 100 

wavelengths, could be combined into the 10x100 matrix S. S(3,:) would be the third of those spectra 

and S(5,40) would be the intensity at the 40th wavelength of the 5th spectrum. The Matlab scripts 

plotting.m (left) and plotting2.m (right) show how to plot multiple signals using matrices and subplots.  

See TimeTrial.txt for details. It will help if you pre-allocate memory space for the A matrix by adding 

the statement A=zeros(100,100) before the loop. Even then, the matrix notation is faster than the loop.  

    

In Matlab/Octave, "/" is not the same as "\". Typing "b\a" will compute the "matrix left divide", in 

effect the weighted average ratio of the amplitudes of the two vectors (a type of least-squares best-fit 

solution). The point here is that Matlab does not require you to deal with vectors and matrices as 

collections of numbers; it knows when you are dealing with matrices, or when the result of a 

calculation will be a matrix, and it adjusts calculations accordingly. See 

https://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html.  

Probably the most common errors you'll make in Matlab/Octave are punctuation errors, such as mixing 

up periods, commas, colons, and semicolons, or parentheses, square brackets, and curly brackets; type 

"help punct" at the Matlab prompt and read the help file until you fall asleep. Little things can mean a 

lot in Matlab. Another common error is getting the rows and columns of vectors and matrices mixed up. 

(Full disclosure: I still make all these kinds of mistakes all the time). Click for text file that gives 

https://terpconnect.umd.edu/~toh/spectrum/LastPeakTwoGaussiansPlotpub.png
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGauss.m
https://terpconnect.umd.edu/~toh/spectrum/PLotPub.png
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/plotting.m
https://terpconnect.umd.edu/~toh/spectrum/plotting2.m
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.txt
http://www.mathworks.com/help/matlab/ref/arithmeticoperators.html
https://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html
https://terpconnect.umd.edu/~toh/spectrum/help_punct.txt
https://terpconnect.umd.edu/~toh/spectrum/RowsAndColumns.txt


Page | 18  

examples of common vector and matrix operations and errors in Matlab and Octave. If you are new to 

this, I recommend that you read this file and play around with the examples there. Writing Matlab is a 

trial-and-error process, with the emphasis on error. Start simply, get it to work, then add to it in steps. 

There are many code examples in this text that you can Copy and Paste and modify into the Matlab/ 

Octave command line, which is a great way to learn. In the PDF version of this book, you can select, 

copy, and paste, or select, drag and drop, any of the single-line or multi-line code examples into the 

Matlab or Octave editor or directly into the command line and press Enter to execute it immediately). 

This is especially convenient if you run Matlab and read my web site or book on the same computer; 

position the windows so that Matlab shares the screen with this website (e.g. Matlab on the left and 

web browser on the right as shown below). Or, even better, some desktop computers have two monitor 

outputs, so you can use two monitors simultaneously to expand the desktop horizontally.  

Hint: If you try to run one of my scripts or functions and it gives you a "missing function" error, look 

for the missing item from http://tinyurl.com/cey8rwh, download it into the search path, and try again. 

One thing that you will notice about Matlab is that the very first time you execute a script or function, 

and only the first time, there is a small delay before execution, while Matlab compiles the code into 

machine language. However, that only happens the first time; after that, the execution starts instantly. 

(For the fastest execution, the separately available “Matlab Compiler” lets you share programs as 

stand-alone applications, separate from the Matlab environment. “Matlab Compiler SDK” lets you 

build C/C++ shared libraries, Microsoft .NET assemblies, Java classes, and Python packages from 

Matlab programs). You can even do some real-time plotting in Matlab/Octave; see page 342. 

Importing data into Matlab/Octave and Python.  

You can import your own data into Matlab or Octave by using the “Import data” button in the Home 

tab or the xlsread or importdata functions on the command line or in a script. Data can be imported 

https://terpconnect.umd.edu/~toh/spectrum/RowsAndColumns.txt
https://terpconnect.umd.edu/~toh/spectrum/CopyPasteintoMatlab.png
http://tinyurl.com/cey8rwh
https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
http://www.mathworks.com/products/matlab-compiler-sdk/index.html
http://www.mathworks.com/products/matlab-compiler-sdk/index.html
http://www.mathworks.com/help/matlab/import_export/recommended-methods-for-importing-data.html
https://terpconnect.umd.edu/~toh/spectrum/xlsread.txt
https://terpconnect.umd.edu/~toh/spectrum/importdata.txt


Page | 19  

from plain text files (.txt), CSV files (comma separated values), from several image and sound formats, 

or from spreadsheets. For example, the following lines will read the first two columns of the csv file 

“Sample_5.0ppm.csv” in the current folder and assign them to the vectors x5 and y5, i.e. the 

independent and dependent variables, respectively: 
 

mydata=xlsread('Sample_5.0ppm.csv'); 

x5=mydata(:,1); 

y5=mydata(:,2); 

The script "xlsreadDemo.m" provides a simple example of reading a multi-column spreadsheet “xlsx” 

file. For more complex spreadsheets, Matlab has a very useful Import Wizard (click File > Import 

Data) that gives you a preview into the data file, parses the data file looking for columns and rows of 

numeric data and their labels, and gives you a chance to select and re-label variables and to choose to 

import them as vectors, matrices, or tables. You can even click on the little arrow next to “Import 

selection” and Matlab will write you a script that will perform those operations, which you can modify 

for other file types and formats. 

 

JCAMP-DX is a standard file form for exchange of infrared spectra and related chemical and physical 

information between spectrometer data systems of different manufacture. Matlab’s jcampread function 

can import such data. For an example, see ReadJcampExample.m. It is also possible to import 

approximate data from graphical line plots or printed graphs by using the built-in "ginput" function that 

obtains numerical data from the coordinates of mouse clicks, or by using more automated applications 

such as “Data Thief” or Figure Digitizer in the Matlab File Exchange. Obviously, the results will not be 

as accurate as having access to the original data in a numerical data file. Matlab R2013a or newer can 

even read the sensors on your iPhone or Android phone via Wi-Fi. To read the analog output signals of 

older analog instruments, you need an analog-to-digital converter, an Arduino microcontroller board, or 

a USB voltmeter. Mathworks has separate data acquisition toolbox for Matlab. Note: The addition, 

https://terpconnect.umd.edu/~toh/spectrum/xlsreadDemo.m
https://terpconnect.umd.edu/~toh/spectrum/xlsreadDemo.m
http://www.jcamp-dx.org/
https://terpconnect.umd.edu/~toh/spectrum/ReadJcampExample.m
https://datathief.org/
http://www.mathworks.com/matlabcentral/fileexchange/11077-figure-digitizer
http://blogs.mathworks.com/pick/2013/08/09/reading-from-sensors-on-your-mobile-phone/
https://www.google.com/#q=analog-to-digital+converter,
https://www.google.com/#q=Arduino+microcontroller+board
https://www.google.com/#q=USB+voltmeter
https://www.mathworks.com/products/data-acquisition.html


Page | 20  

subtraction, multiplication, or division of two digital signals requires that they have the same number of 

data points. If necessary, you can remove some points from the longer signal or add some points to the 

shorter one (usually zeros, which is called “zero filling”). 

Python can import data in text, CSV, JSON, Matlab, and several other formats, using the Variable 

Explorer panel in the Spyder desktop, or through the separately downloadable Pandas Data Analysis 

package.  
 

Matlab Versions.  
The standard commercial version of Matlab is expensive (over $2000) but there are student and home 

versions that cost much less 

(as little as $49 for a basic 

student version) and that have 

all the capabilities to perform 

any of the methods detailed in 

this book at comparable 

execution speeds. There is also 

Matlab Online, which runs in 

a common web browser (see 

the graphic on 12). You do not 

even need a regular computer: 

there is a free Matlab Mobile 

app that runs a Matlab 

interface on Internet-

connected iPhones and iPads 

(illustrated on the right). This 

requires only a basic student 

license and uses all the 

standard functions, plus any of 

my functions or scripts (or any 

of your own) that you have 

previously up-loaded to your 

account on the Matlab cloud. 

All these versions have 

computational speeds that are 

mostly within a factor of 2 of 

each other, as shown by 

TimeTrial.txt.  

Math in Python 

In Python, after importing numpy as np, the basic math functions are very similar to those in Matlab: 

len(d), np.sum(d), np.mean(d), np.std(d), np.sqrt(d), max(d), min(d). 

Exponentiation in notated as ** rather than ^ as in Matlab. See page 434 for other examples. 

https://www.tutorialspoint.com/importing-data-in-python
https://pandas.pydata.org/
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://www.mathworks.com/cloud.html
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.txt
https://www.w3schools.com/python/module_math.asp


Page | 21  

 

GNU Octave  

Octave is a free alternative to Matlab that is "mostly compatible". DspGURU says that Octave is “...a 

mature high-quality Matlab clone. It has the highest degree of Matlab compatibility of all the clones.” 

Everything I said above about Matlab also works in Octave. In fact, the most recent versions of almost 

all my Matlab functions, scripts, demos, and examples in this document will work in the latest version 

of Octave without change. The keystroke-operated interactive functions iPeak (page 248), iSignal (page 

371), ipf.m (page 411) and ifilter.m, require separate versions for Octave, which use different keys for 

pan and zoom. If you plan to use Octave, make sure you get the current version. There is an FAQ that 

may help in porting Matlab programs to Octave. See “Differences Between Octave & Matlab”. There 

are Windows, Mac, and Unix versions of Octave. The Windows version can be downloaded from 

Octave Forge. There is lots of help online: Google "GNU Octave" or see the YouTube videos for help. 

For signal processing applications specifically, Google "signal processing octave".  
 

Octave Version 6.4.0 now available for download. The documentation is online; see 

https://www.octave.org. Almost all my scripts and functions run on Octave. However, it is still 

computationally about 5 times slower on average than the latest Matlab version, depending on the task 

(specific comparisons for several different signal processing tasks are in TimeTrial.txt). Bottom line: 

Matlab is better, but if you cannot afford Matlab, Octave provides most of the functionality for 0% of 

the cost. Note: the older Octave 3.6 can even run on a Raspberry Pi, a low-cost miniature computer 

described on page 339. 

Spreadsheet or Matlab/Python?  
For signal processing, computer languages like Matlab/Octave or Python are faster and more powerful 

than using a spreadsheet, but it is safe to say that spreadsheets are more commonly installed on science 

workers' computers than Matlab, Octave or Python. For one thing, spreadsheets are easier to get started 

with, and they offer flexible presentation and user interface design. Spreadsheets are better for manual 

http://en.wikipedia.org/wiki/GNU_Octave
https://cvw.cac.cornell.edu/matlab/octave
http://en.wikipedia.org/wiki/GNU_Octave#MATLAB_compatibility
http://www.dspguru.com/dsp/links/matlab-clones
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave
https://www.google.com/search?q=Key+Differences+Between+Octave+%26+Matlab&oq=Key+Differences+Between+Octave+%26+Matlab&aqs=chrome..69i57j33i10i22i29i30.1334j0j4&sourceid=chrome&ie=UTF-8
http://sourceforge.net/projects/octave/files/Octave%20Windows%20binaries/Octave%203.6.1%20for%20Windows%20MinGW%20installer/
https://www.google.com/search?q=GNU+Octave&aq=f&oq=GNU+Octave&sugexp=chrome,mod=0&sourceid=chrome&ie=UTF-8
http://www.youtube.com/results?search_query=GNU+octave&oq=GNU+octave&gs_l=youtube.3..0l2j0i5.18053.19469.0.20453.4.4.0.0.0.0.52.167.4.4.0...0.0...1ac.1.UrtIQXZNZoQ
https://www.google.com/search?q=signal+processing+octave&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:unofficial&client=seamonkey-a
https://www.gnu.org/software/octave/news/release/2021/10/30/octave-6.4.0-released.html
http://www.gnu.org/software/octave/download.html
http://wiki.octave.org/Octave_for_Windows
https://www.octave.org/
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.txt


Page | 22  

data entry; you can easily deploy them on portable devices such as smartphones and tablets (e.g. using 

Google Sheets, iCloud Numbers or the Excel app). Spreadsheets are concrete and more low-level, 

showing every single value explicitly in a cell. In contrast, Matlab/Octave and Python are more high- 

level and abstract, because a single variable can be a number, a vector, or a matrix, and each 

punctuation or function can do so much. This is very powerful, but it is harder to master at first. In 

Matlab and Octave is functions and script files (“m-files”) are just plain text files with an “.m” 

extension (or “.py” in the case of Python), so those files can be opened and inspected using any text 

editor, even on devices that do not have those programs installed, which facilitates the translation of its 

scripts and functions into other languages. In addition, user-defined functions can call other built-in or 

user-defined functions, which in turn can call other functions, and so on, allowing you to build up very 

complex high-level functions in layers. Fortunately, Matlab and Python can easily analyze Excel “.xls” 

and “.xlsx” files and import the rows and columns into vector/matrix variables.  
 

Using the analogy of electronic circuits, spreadsheets are like discrete component electronics, where 

every resistor, capacitor, inductor, and transistor is a discrete, macroscopic entity that you can see and 

manipulate directly. A function-based programming language like Matlab/Octave is more like micro-

electronics, where the functions (the "m-files" that begin with "function...") are the "chips", which 

condense complex operations into one package with documented inputs and outputs (the function's 

input and output arguments) that you can connect to other functions, but which hide the internal details 

(unless you care to look at the code, which you always can do). For example, the "555 timer" is an 8-

pin timer, pulse generator and oscillator chip introduced back in 1972, which is still in use today and 

has become the most popular integrated circuit ever manufactured. Almost all electronics is now done 

with chips, because it is easier to understand the relatively small number of inputs and outputs of a 

chip than to deal with the greater number of internal components. Much of Matlab/Octave is written in 

Matlab/Octave itself, using more basic functions to build more complex ones. You can write new 

functions of your own that essentially extend the language in whatever direction you need (page 35). 

The bottom line is that spreadsheets are easier at first, but for more complex tasks, the Matlab/ Octave/ 

Python approach is computationally faster, can handle much larger data sets, and can do more with less 

effort. This is demonstrated by the comparison of both platforms for multicomponent spectroscopy, 

covered on page 184 (RegressionDemo.xls versus the Matlab/Octave CLS.m). Even more dramatic are 

the different approaches to finding and measuring peaks in signals, which is covered in the section 

beginning on page 229 (i.e. a 250Kbyte spreadsheet versus a 7Kbyte Matlab script that does the same 

thing but is 50 times faster). If you have large quantities of data and you need to run it through a multi-

step customized process automatically, hands-off, and as quickly as possible, then Matlab is a great 

way to go. It is much easier to write a script in Matlab that will automate the hands-off processing of 

volumes of data stored in separate data files on your computer, as shown by the example on page 340.  

Spreadsheets, Matlab/Octave, and Python programs have a huge advantage over commercial end-user 

programs and compiled freeware programs; you can inspect and modify them to customize the routines 

for specific needs. Simple changes are easy to make with little or no knowledge of programming. For 

example, you could easily change the labels, titles, colors, or line style of the graphs in Matlab or 

Octave programs for your own purposes: use Find... to search for "title(", "label(" or "plot(". My 

Matlab code contains comments that indicate places where you can make specific changes: search for 

https://www.apple.com/mac/numbers/
https://www.apple.com/mac/numbers/
https://itunes.apple.com/us/app/microsoft-excel-for-ipad/id586683407?mt=8
https://en.wikipedia.org/wiki/555_timer_IC
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html#spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/CLS.m
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xls
https://terpconnect.umd.edu/~toh/spectrum/findpeaks.m


Page | 23  

the word “change”. I invite you to modify my scripts and functions as you wish. The software license 

embedded in the comments of my Matlab/Octave code is very liberal.  
 

Signals and noise 
Experimental measurements are never perfect, even with sophisticated modern instruments. Two main 

types of measurement errors are recognized: (a) systematic error, in which every measurement is 

consistently less than or greater than the correct value by a certain percentage or amount, and (b) 

random error, in which there are unpredictable variations in the measured signal from moment to 

moment or from measurement to measurement. This latter type of error is often called noise, by 

analogy to acoustic noise. There are many sources of noise in physical measurements, such as building 

vibrations, air currents, electric power fluctuations, stray radiation from nearby electrical equipment, 

static electricity, interference from radio and TV transmissions, turbulence in the flow of gases or 

liquids, random thermal motion of molecules, background radiation from natural radioactive elements, 

the basic quantum nature of matter and energy itself, digitization noise (the rounding of numbers to a 

fixed number of digits), and “cosmic rays” from outer space (seriously). Then, of course, there is the 

ever-present "human error", which can be a major factor anytime humans are involved in operating, 

adjusting, recording, calibrating, or controlling instruments and in preparing samples for measurement. 

If random error is present, then a set of repeat measurements, “d”, will yield results that are not all the 

same but rather vary or scatter around some average value, which is the sum of the values divided by 

the number of data values in “d”: sum(d)./length(d)or simply mean(d)in Matlab/Octave notation. 

The most common way to measure the amount of variation or dispersion of a set of data values is to 

compute the standard deviation, “std”, which is the square root of the sum of the squares of the 

deviations from the average divided by one less than the number of data points: sqrt(sum((d-

mean(d)).^2)./ (length(d)-1)), in Matlab/Octave notation. These are most easily calculated 

by the built-in functions mean(d) and std(d), where d is the data vector. A basic fact of random 

variables is that when they combine, you must calculate the results statistically. For example, when two 

random variables are added, the standard deviation of the sum is the “quadratic sum” (the square root 

of the sum of the squares) of the standard deviations of the individual variables. In Matlab, the function 

“randn(1,n)” returns n random numbers with a standard deviation of 1. Therefore: 

lim
𝑛→∞

(𝑠𝑡𝑑(𝑟𝑎𝑛𝑑𝑛 (1, 𝑛))) = 1 

lim
𝑛→∞

(𝑠𝑡𝑑(𝑟𝑎𝑛𝑑𝑛(1, 𝑛) + 𝑟𝑎𝑛𝑑𝑛(1, 𝑛))) = 𝑠𝑞𝑟𝑡(2) 

This is demonstrated by the series of Matlab/Octave commands at this link. Try it. 

The term ‘signal’ has two meanings. In the more general sense, it can mean the entire data recording, 

including the noise and other artifacts, as in the “raw signal” before processing is applied. But it can 

also mean only the desirable or important part of the data, the true underlying signal that you seek to 

measure, as in the expression “signal-to-noise ratio”. A fundamental problem in signal measurement is 

distinguishing the true underlying signal from the noise. For example, suppose you want to measure the 

average of the signal over a certain time or the height of a peak or the area under a peak that occurs in 

the data. In the absorption spectrum in the right-hand half of the figure on page 13, the “important” 

https://terpconnect.umd.edu/~toh/spectrum/license.txt
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Digitization
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Standard_deviation
https://terpconnect.umd.edu/~toh/spectrum/RandomNoisesAddQuadratically.txt


Page | 24  

parts of the data are probably the absorption peaks located at 520 and 550 nm. The height or the 

position of either of those peaks might be considered the signal, depending on the application. In this 

example, the height of the largest peak is about 0.08 absorbance units. But how to measure the noise? 

In the exceptional case that you have a physical system and a measuring instrument which are both 

completely stable (except for the random noise), an easy way to isolate and measure the noise is to 

record two signals m1 and m2 of the same physical system. If you subtract those two recordings, the 

signal part will cancel out. Then the standard deviation of the noise in the original signals is given by 

sqrt((std(m1-m2)2)/2), where “sqrt” is the square root and “std” is the standard deviation. (The 

derivation of this expression is based on the rules for mathematical error propagation and is worked out 

in https://terpconnect.umd.edu/~toh/spectrum/Derivation.txt). The Matlab/Octave script 

“SubtractTwoMeasurements.m” demonstrates this process quantitatively and graphically (below). 

But suppose that the measurements are not 

that reproducible or that you had only one 

recording of that spectrum and no other 

data. In that case, you could try to estimate 

the noise in that single recording, based on 

the assumption that the visible short-term 

fluctuations in the signal - the little random 

wiggles superimposed on the smooth 

signal - are noise and not part of the true 

underlying signal. That depends on some 

knowledge of the origin of the signal and 

the possible forms it might take. The 

examples in the previous section (page 13) 

are the absorption spectra of liquid 

solutions over the wavelength range of 450 

nm to 700 nm. These solutions ordinarily 

exhibit broad smooth peaks with a width of the order of 10 to 100 nm, so those little wiggles must be 

noise. In this case, those fluctuations have a standard deviation of about 0.001. Often the best way to 

measure the noise is to locate a region of the signal on the baseline where the signal is flat and to 

compute the standard deviation in that region. This is easy to do with a computer if the signal is 

digitized. The important thing is that you must know enough about the measurement and the data it 

generates to recognize the kind of signals that is likely to generate, so you have some hope of knowing 

which is the signal and which is the noise. 

It is important to appreciate that the standard deviations calculated from a small set of measurements 

can be much higher or much lower than the actual standard deviate on of a larger number of 

measurements. For example, the Matlab/Octave function randn(1,n), where n is an integer, returns n 

random numbers that have on average a mean of zero and a standard deviation of 1.00 if n is large. (In 

Python, the random function is np.random.rand(n)). But if n is small, the standard deviations will 

be different each time you evaluate that function; for example, if n=5, the standard deviation 

std(randn(1,5)) might vary randomly from 0.5 to 2 or even more. This is the Law of Large 

https://terpconnect.umd.edu/~toh/spectrum/Derivation.txt
https://terpconnect.umd.edu/~toh/spectrum/Derivation.txt
https://terpconnect.umd.edu/~toh/spectrum/SubtractTwoMeasurements.m
https://en.wikipedia.org/wiki/Law_of_large_numbers


Page | 25  

Numbers (page 356); it is the unavoidable nature of small sets of random numbers that their standard 

deviation is only a very rough approximation to the real underlying “population” standard deviation. 

A quick but approximate way to estimate the amplitude of noise visually is the peak-to-peak range, 

which is the difference between the highest and the lowest values in a region where the signal is flat. 

The peak-to-peak range of n=100 normally-distributed random numbers is about 5 times the standard 

deviation, as can be proved by running this line of Matlab/Octave code several times: n=100; 

rn=randn(1,n);(max(rn)-min(rn))/std(rn). For example, the data on the right half of the 

figure page 28 has a peak in the center with a height of about 1.3. The peak-to-peak noise on the 

baseline is also about 1.0, so the standard deviation of the noise is about 1/5th of that, or 0.2. However, 

that ratio varies with the logarithm of n and is closer to 3 when n = 10 and to 9 when n = 100000. In 

contrast, the standard deviation becomes closer and closer to the true value as n increases. It is better to 

compute the standard deviation if possible.  

In addition to the standard deviation, it is also possible (but not usual) to measure the mean absolute 

deviation ("mad"). The standard deviation is larger than the mean absolute deviation because the 

standard deviation weights the large 

deviation more heavily. For a normally-

distributed random variable, the mean 

absolute deviation is on average 80% of 

the standard deviation: mad=0.8*std. 

The quality of a signal is often expressed 

quantitatively as the signal-to-noise ratio 

(S/N ratio or SNR), which is the ratio of 

the true underlying signal amplitude 

(e.g., the average amplitude or the peak 

height) to the standard deviation of the 

noise. Thus, the S/N ratio of the 

spectrum in the figure on page 13 is 

about 0.08/0.001 = 80, and the signal on 

page 28 has an S/N ratio of 1.0/0.2 = 5. 

So, we would say that the quality of the 

first one is better because it has a greater 

S/N ratio. Measuring the S/N ratio is 

much easier if the noise can be measured separately, in the absence of a signal. Depending on the type 

of experiment, it may be possible to acquire readings of the noise alone, for example on a segment of 

the baseline before or after the occurrence of the signal. However, if the magnitude of the noise 

depends on the level of the signal, then the experimenter must try to produce a constant signal level to 

allow measurement of the noise on the signal. In some cases, you can use “iterative curve fitting” (page 

195) to model the signal accurately by means of a smooth mathematical function (such as a polynomial 

or the weighted sum of a number of simple peak shape functions). The noise can then be isolated by 

subtracting the model from the un-smoothed experimental signal. For example, the graph above shows 

a real-data experimental signal (dark blue dots) that never goes all the way to the baseline (which 

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html


Page | 26  

would have allowed a easy noise measurement). But the signal can be approximated by fitting a model 

(red line) consisting in this case of 5 overlapping Gaussian peak functions (page 197). The difference 

between the raw data and the model, shown at the bottom (light blue), is a good measure of the random 

noise in the data. (In some cases, it may be possible to determine the standard deviation of repeated 

measurements of the thing that you want to measure, such as peak heights or areas, for example, rather 

than trying to estimate the noise from a single recording of the data).  

Detection limit 

The "detection limit" is defined as the smallest signal that you can reliably detect in the presence of 

noise. In quantitative chemical analysis, it is usually defined as the concentration that produces the 

smallest detectable signal (Reference 92). A signal that is below the detection limit cannot be reliably 

detected; that is, if the measurement is repeated, the signal will often be "lost in the noise" and reported 

as zero. A signal above the detection limit will be reliably detected and will seldom or never be 

reported as zero. The most common 

value of signal-to-noise ratio for 

reliable detection is 3. This is 

illustrated in the figure on the left 

(created by the Matlab/ Octave script 

SNRdemo.m). This figure shows a 

noisy signal in the form of a 

rectangular pulse. We define the 

"signal" as the average signal 

magnitude during the pulse, 

indicated by the red line, which is 

about 3. We define the "noise" as the 

standard deviation of the random 

noise on the baseline before and 

after the pulse, which is about 1.0, 

roughly 1/5 of the peak-to-peak 

baseline noise (black lines). 

Therefore, the signal-to-noise ratio 

(SNR) in this case is about 3, which is a common definition of SNR at the detection limit. This means 

that signals lower than this should be reported as "undetectable".  
 

But there is a problem. The signal here is clearly detectable by eye; in fact, it should be possible to 

visually detect lower signals than this. How can this be? The answer is "averaging". When you look at 

this signal, you are unconsciously estimating the average of the data points on the signal pulse and on 

the baseline, and your detection ability is enhanced by this visual averaging. Without that averaging, 

looking only at individual data points in the signal, only about half those individual points would meet 

the SNR=3 criterion. You can see in the graphic above that several points on the signal peak are lower 

than some of the higher data points on the baseline. But this is not a problem in practice, because any 

properly written software will include averaging that duplicates the visual averaging that we all do. 
 

https://terpconnect.umd.edu/~toh/spectrum/SNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/SNRdemo.m


Page | 27  

In the script SNRdemo.m, the number of points averaged is controlled by the variable "AveragePoints" 

in line 7. If you set that to 5, the result (shown below on the left) shows that all the signal points (each 

of which is now the average of 5 raw 

data points) are above the highest 

baseline points. This graphic more 

closely represents how we judge a signal 

like that in the previous graphic, which 

has a clear separation of signal and 

baseline. The SNR of the peak has 

improved from 3.1 to 7.7 and the 

detection limit will be correspondingly 

reduced. As a rule of thumb, for the most 

common type of random noise, the noise 

decreases by roughly the square root of 

the number of points averaged (in this 

case, sqrt(5)=2.2). Higher values will 

further improve the SNR and reduce the 

relative standard deviation of the average 

signal, but the response time – which is 

the time it takes for the signal to reach the average value - will become slower and slower as the 

number of points averaged increases. This is shown by another graphic, with 100 points averaged. With 

a much lower signal equal to 1.0, the raw signal is not reliably detectable visually, but with a 100 point 

average, the signal precision is good; digital averaging beats visual averaging in this case. Similar 

behavior would be observed if the signal were a rounded peak rather than a rectangle. 
 

In SNRdemo.m, the noise is constant and independent of the signal amplitude, which is commonly the 

case. In the variant SNRdemoHetero.m, the noise in the signal is directly proportional to the signal 

level or to its square root, and as a result the detection limit depends on the constant baseline noise 

(graphic). See page 30. In the variant SNRdemoArea.m, it is the peak area that is measured rather than 

the peak height, which results in the SNR being improved by the square root of the width of the peak 

(graphic). 
 

An example of a practical application of a signal like that illustrated in the figures above would be to 

turn on a warning light or buzzer if the signal ever exceeds a threshold value of 1.5. This would not 

work if you used the raw unaveraged signal on the previous page; there is no threshold value that 

would never be exceeded by the baseline but always exceeded by the signal. Only the averaged signal 

would reliably turn on the alarm above the threshold of 1.5 and never activate it below 1.5. 
 

You will also hear the term “Limit of determination”, which is the lowest signal or concentration that 

achieves a minimum acceptable precision, defined as the relative standard deviation of the signal 

amplitude. The limit of determination is defined at a much higher signal-to-noise ratio, say 10 or 20, 

depending on the requirements of your applications. Averaging such as done here is the simplest form 

https://terpconnect.umd.edu/~toh/spectrum/SNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/RectSNR100pnts.png
https://terpconnect.umd.edu/~toh/spectrum/RectSNR1.png
https://terpconnect.umd.edu/~toh/spectrum/RectSNR1avg100.png
https://terpconnect.umd.edu/~toh/spectrum/SNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/SNRdemoHetero.m
https://terpconnect.umd.edu/~toh/spectrum/RectSNRhetero.png
https://terpconnect.umd.edu/~toh/spectrum/SNRdemoArea.m
https://terpconnect.umd.edu/~toh/spectrum/RectSNRarea.png


Page | 28  

of “smoothing”, which is covered in the next chapter (page 41). 

Ensemble averaging 
One key thing that really distinguishes signal from noise is that random noise is not the same from one 

measurement of the signal to the next, whereas the genuine signal is (ideally) reproducible. So, if the 

signal can be measured more than once, use can be made of this fact by measuring the signal repeatedly, 

as fast as is practical, and adding up all the measurements point-by-point, then dividing by the number 

of signals averaged. This is called ensemble averaging, and it is one of the most powerful methods for 

improving signals, when it can be applied. For this to work properly, the noise must be random, and the 

signal must occur at the same time in each repeat. Look at the example this figure.  

 

Window 1 (left) is a single measurement of a very noisy signal. There is a broad peak near the center of 

this signal, but it is difficult to measure its position, width, and height accurately because the S/N ratio 

is very poor. Window 2 (right) is the average of 9 repeated measurements of this signal, clearly 

showing the peak emerging from the noise. The expected improvement in S/N ratio is 3 (the square root 

of 9). Often it is possible to average hundreds of measurements, resulting in much more substantial 

improvement. The S/N ratio in the resulting average signal in this example is about 5. 

The Matlab/Octave script EnsembleAverageDemo.m demonstrates the technique graphically for an 

ensemble of 500 signals. (If you are reading this online, click for graphic). Other examples are shown 

in the video animation at these links, EnsembleAverage1.wmv or EnsembleAverageDemo.gif, which 

shows the ensemble averaging of 1000 repeats of a signal, improving the S/N ratio by about 30 times. 

You can also reduce digitization noise by ensemble averaging, but only if small amounts of random 

noise are present in, or added to, the signal; see page 304. 

Visual animation of ensemble averaging. This crude 17-second video (EnsembleAverage1.wmv) 

demonstrates the ensemble averaging of 1000 repeats of a signal with a very poor S/N ratio. The signal 

itself consists of three peaks located at x = 50, 100, and 150, with peak heights 1, 2, and 3 units. These 

signal peaks are buried in random noise whose standard deviation is 10. Thus, the S/N ratio of the 

smallest peaks is 0.1, which is far too low to even see a signal, much less measure it. The video shows 

the accumulating average signal as 1000 measurements of the signal are performed. At the end of the 

run, the noise is reduced (on average) by the square root of 1000 (about 32), so that the S/N ratio of the 

smallest peaks ends up being about 3, just enough to detect the presence of a peak reliably. If you are 

reading this online, click here to download a brief video (2 MBytes) in WMV format.  

https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo.png
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverage1.wmv
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo.gif
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverage1.wmv
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverage1.wmv


Page | 29  

Frequency distribution of random noise  

Sometimes the signal and the noise can be partly distinguished based on frequency components: for 

example, the signal may contain mostly low-frequency components and the noise may be located at 

higher frequencies or spread out over a much wider frequency range. This is the basis of filtering and 

smoothing (page 39). In the figures above, the peak itself contains mostly low-frequency components, 

whereas the noise is (apparently) random and distributed over a much wider frequency range. The 

frequency of noise is characterized by its frequency spectrum, often described in terms of noise color. 

White noise is random and has equal power 

over the range of frequencies. It derives its 

name from white light, which has equal 

brightness at all wavelengths in the visible 

region. The noise in the previous example 

signals and in the left half of the figure on 

the right is white. In the acoustical domain, 

white noise sounds like a hiss. In 

measurement science, white noise is very common. For example, quantization noise, Johnson-Nyquist 

(thermal) noise, photon noise, and the noise made by single-point spikes all have white frequency 

distributions, and all have in common their origin in discrete quantized instantaneous events, such as 

the flow of individual electrons or photons.  

A noise that has a more low-frequency character, that is, that has more power at low frequencies than at 

high frequencies, is often called "pink noise". In the acoustical domain, pink noise sounds more like a 

roar. (A commonly-encountered sub-species of pink noise is "1/f noise", where the noise power is 

inversely proportional to frequency, illustrated in the upper right quadrant of the figure on the right). 

Pink noise is more troublesome that white 

noise because a given standard deviation of 

pink noise has a greater effect on the 

accuracy of most measurements than the 

same standard deviation of white noise (as 

demonstrated by the Matlab/Octave 

function noisetest.m, which generated the 

figure on the right). Moreover, the 

application of smoothing and low-pass filtering (page 39) to reduce noise is more effective for white 

noise than for pink noise. When pink noise is present, it is sometimes beneficial to apply modulation 

techniques, for example, optical chopping or wavelength modulation in optical measurements, to 

convert direct-current (DC) signals into alternating current (AC) signals, thereby increasing the 

frequency of the signal to a frequency region where the noise is lower. In such cases, it is common to 

use a lock-in amplifier, or the digital equivalent thereof, to measure the amplitude of the signal. 

Another type of low-frequency weighted noise is Brownian noise, named after the botanist Robert 

Brown. It is also called "red noise"  (by analogy to pink noise) or "random walk", which has a noise 

power that is inversely proportional to the square of frequency. This type of noise can occur in 

https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
http://en.wikipedia.org/wiki/Frequency_spectrum
http://en.wikipedia.org/wiki/Colors_of_noise
http://en.wikipedia.org/wiki/White_noise
https://terpconnect.umd.edu/~toh/spectrum/WhiteNoiseSpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/WhiteNoiseSpectrum.png
http://en.wikipedia.org/wiki/Johnson–Nyquist_noise
http://en.wikipedia.org/wiki/Photon_noise
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#G
http://en.wikipedia.org/wiki/Pink_noise
https://www.google.com/search?ix=aca&sourceid=chrome&ie=UTF-8&q=1%2Ff+noise
https://terpconnect.umd.edu/~toh/spectrum/noisetest.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html
http://en.wikipedia.org/wiki/Optical_chopper
https://www.google.com/search?aq=f&ix=aca&sourceid=chrome&ie=UTF-8&q=wavelength+modulation
http://terpconnect.umd.edu/~toh/models/lockin.html
https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Random_walk
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkFrequencySpectrum.png


Page | 30  

experimental signals and can seriously interfere with accurate signal measurements. See page 314: 

Random walks and baseline correction.  

Conversely, noise that has more power at high frequencies is called “blue” noise. This type of noise is 

less commonly encountered in experimental work, but it can occur in processed signals that have been 

subject to some sort of differentiation process (page 61) or that have been deconvoluted from some 

blurring or broadening process (page 110). Blue noise is easier to reduce by smoothing (page 29), and 

it has less effect on least-squares fits than the equivalent amount of white noise.  

Dependence on signal amplitude 
Noise can also be characterized by the way it varies with the signal amplitude. Constant “background” 

noise is independent of the signal amplitude. Or the noise may increase with signal amplitude, which is 

a behavior that is often observed in emission spectroscopy, mass spectroscopy and in the frequency 

spectra of signals. The technical names for these two types of behaviors are homoscedastic and 

heteroscedastic, respectively. 

One way to observe this is to 

select a segment of signal 

over which the signal 

amplitude varies widely, fit 

the signal to a polynomial or 

to a multiple peak model 

(page 200), and observe how 

the residuals vary with signal 

amplitude. The experimental 

signal shown on the left, in 

the top panel, shows little visible noise. The difference between that signal (the blue dots) and the best-

fit model (the red line) from a least-squares curve-fitting operation (page 195) is shown in the bottom 

panel, leaving the noise easily visible (red dots). Clearly, the noise increases with signal amplitude in 

this case. In other cases, the noise might increase with the square root of the signal, or it might be 

independent of the signal amplitude as in the example on page 25. 

Often, there is a mix of noises with different behaviors. In optical spectroscopy, three fundamental 

types of noise are recognized, based on their origin and on how they vary with light intensity: photon 

noise, detector noise, and flicker (fluctuation) noise. Photon noise (often the limiting noise in 

instruments that use photo-multiplier detectors) is white and is proportional to the square root of light 

intensity. Detector noise (often the limiting noise in instruments that use solid-state photodiode 

detectors) is independent of the light intensity and therefore the detector SNR is directly proportional to 

the light intensity. Flicker noise, caused by light source instability, vibration, sample cell positioning 

errors, sample turbulence, light scattering by suspended particles, dust, bubbles, etc., is directly 

proportional to the light intensity (and is usually pink rather than white), so the flicker S/N ratio is not 

decreased by increasing the light intensity. In practice, the total noise observed is likely to be some 

contribution of all three types of amplitude dependence, as well as a mixture of white and pink noises.  
 

Only in a very few special cases is it possible to eliminate noise completely, so usually, you must be 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RandomWalk
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RandomWalk
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RandomWalk
http://www.livescience.com/38583-what-is-blue-noise.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://www.chem.agilent.com/Library/technicaloverviews/Public/5990-7651EN.pdf
http://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#F
http://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#F
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
http://www.agilent.com/labs/features/2011_101_spectroscopy.pdf


Page | 31  

satisfied by increasing the S/N ratio as much as possible. The key in any experimental system is to 

understand the possible sources of noise, break down the system into its parts and measure the noise 

generated by each part separately, then seek to reduce or compensate for as much of each noise source 

as possible. For example, in optical spectroscopy, source flicker noise can often be reduced or 

eliminated by using in feedback stabilization, choosing a better light source, using an internal standard, 

or specialized instrument designs such as double-beam, dual-wavelength, derivative, and wavelength 

modulation (page 316). The effect of photon noise and detector noise can be reduced by increasing the 

light intensity at the detector, and electronic noise can sometimes be reduced by cooling or upgrading 

the detector and/or electronics. Fixed pattern noise in array detectors can be corrected in software. 

Photon noise can be predicted from first principles, as is done in these spreadsheets that simulate the 

photon noise limited signal-to-noise behavior of ultraviolet-visible spectrophotometry, fluorescence 

spectroscopy, and atomic emission spectroscopy.  

The probability distribution of random noise  
Another property that distinguishes random noise is its probability distribution, the function that 

describes the probability of a random variable falling within a certain range of values. In physical 

measurements, the most common distribution is called a normal curve (also called as a “bell” or 

“haystack” curve) and is described by a Gaussian function, y=e^(-(x-mu)^2 / (2*sigma^2)) / 

(sqrt(2*mu)*sigma), where mu is the mean (average) value and sigma (σ) is the standard deviation. In 

this distribution, the most common noise errors are small (that is, close to the mean) and the errors 

become less common the greater their deviation from the mean. So why is this distribution so common? 

The noise observed in physical measurements is often the balanced sum of many unobserved random 

events, each of which has some unknown probability distribution related to, for example, the kinetic 

properties of gases or liquids or to the quantum mechanical behavior of fundamental particles such as 

photons or electrons. But when many such events combine to form the overall variability of an 

observed quantity, the resulting probability distribution is almost always normal, that is, described by a 

Gaussian function. This common observation is summed up in the Central Limit Theorem. 
 

A simulation can demonstrate how this 

behavior arises naturally. In the example on 

the left, we start with a set of 100,000 

uniformly distributed random numbers that 

have an equal chance of having any value 

between certain limits - between 0 and +1 in 

this case (like the "rand" function in most 

spreadsheets and in Matlab/ Octave). The 

graph in the upper left of the figure shows the 

probability distribution, called a “histogram”, 

of that random variable. Next, we combine 

two sets of such independent, uniformly 

distributed random variables (subtracting 

them so that the average is centered at zero). The result (shown in the graph in the upper right in the 

figure) has a triangular distribution between -1 and +1, with the highest point at zero, because there are 

http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Internal_standard
http://en.wikipedia.org/wiki/Internal_standard
https://terpconnect.umd.edu/~toh/models/UVVisSNR.html
https://terpconnect.umd.edu/~toh/models/DualWave1.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/modspec.html
https://terpconnect.umd.edu/~toh/modspec.html
http://en.wikipedia.org/wiki/Fixed-pattern_noise
https://terpconnect.umd.edu/~toh/models/UVVisSNR.html
https://terpconnect.umd.edu/~toh/models/FluorescenceSNR.html
https://terpconnect.umd.edu/~toh/models/FluorescenceSNR.html
https://terpconnect.umd.edu/~toh/models/AES.html
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Gaussian_function
http://en.wikipedia.org/wiki/Gaussian_function
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://www.wolframalpha.com/input/?i=plot+y%3Dexp%28-%28%28x-mu%29%2F%28sigma%2F%282*sqrt%28ln%282%29%29%29%29%29%5e2%29+for+mu%3D0%2Csigma%3D1
http://en.wikipedia.org/wiki/Normal_distribution#Central_limit_theorem
http://en.wikipedia.org/wiki/Histogram


Page | 32  

many ways for the difference between two random numbers to be small, but only one way for the 

difference to be 1 or to -1 (that happens only if one number is exactly zero and the other is exactly 1). 

Next, we combine four independent random variables (lower left); the resulting distribution has a total 

range of -2 to +2, but it is even less likely that the result be near 2 or -2 and many more ways for the 

result to be small, so the distribution is narrower and more rounded, and is already starting to be 

visually close to a normal Gaussian distribution (generated by using the “randn” function and shown 

for reference in the lower right). If we combine ever more independent uniform random variables, the 

combined probability distribution becomes closer and closer to the Gaussian shown for comparison in 

the bottom right. The important point is that the emerging Gaussian distribution that we observe here is 

not forced by prior assumption; rather, it arises naturally. (You can download a Matlab script for this 

simulation from http://terpconnect.umd.edu/~toh/spectrum/CentralLimitDemo.m).  

Remarkably, the distributions of individual events hardly matter at all. You could modify the individual 

distributions in this simulation by substituting the rand function by modified versions such as 

sqrt(rand), sin(rand), rand^2, log(rand), etc., to obtain other radically non-normal individual 

distributions. But it seems that no matter what the distribution of the single random variable might be, 

by the time you combine even as few as four of them, the resulting distribution is already visually close 

to normal. Real-world macroscopic observations are often the result of millions or billions of individual 

microscopic events, so whatever the probability distributions of the individual events, the combined 

macroscopic observations approach a normal distribution essentially perfectly. It is on this common 

adherence to normal distributions that the common statistical procedures are based; the use of the mean, 

standard deviation σ, least-squares fits, confidence intervals, etc., are all based on the assumption of a 

normal distribution. But it’s usually a very good assumption. 
 

Even so, experimental errors and noise are not always normal; sometimes there are very large errors 

that fall well beyond the “normal” range. They are called “outliers”, and they can have a very large 

effect on the standard deviation. In such cases, it is possible to use the “interquartile range” (IQR), 

defined as the difference between the upper and lower quartiles (i.e. prctile(n,75)-prctile(n,25)), 

instead of the standard deviation, because the interquartile range is not affected by a few outliers. For a 

normal distribution, the interquartile range is equal to 1.34896 times the standard deviation. A quick 

way to check the distribution of a large set of random numbers is to compute both the standard 

deviation and the interquartile range; if they are roughly equal, the distribution is probably normal; if 

the standard deviation is much larger, the data set probably contains outliers and the standard deviation 

without the outliers can be better estimated by dividing the interquartile range by 1.34896.  

The importance of the normal distribution is that if you know the standard deviation (usually given 

the symbol “σ”) of some measured value, then you can predict the likelihood that your measurement 

might be in error by a certain amount. About 68% of values drawn from a normal distribution are 

within one σ away from the mean; 95% of the values lie within 2σ, and 99.7% are within 3σ. This is 

known as the 3-sigma rule. But the real practical problem is this: standard deviations are hard to 

measure accurately unless you have large numbers of samples. See “The Law of Large Numbers” (page 

356). 
 

The three characteristics of noise discussed in the paragraphs above - the frequency distribution, the 

https://terpconnect.umd.edu/~toh/spectrum/CentralLimitDemo.m
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Confidence_limits
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_coverage


Page | 33  

amplitude distribution, and the signal dependence - are mutually independent; a noise may in principle 

have any combination of those properties. 

Representing random noise in Spreadsheets 
Popular spreadsheets, such as Excel or Open Office Calc, have built-in functions that can be used for 

calculating, measuring and plotting signals and noise. For example, the cell formula for one point on a 

Gaussian peak is amplitude*EXP(-1*((x-position)/(0.60056120439323*width))^2), 

where 'amplitude' is the maximum peak height, 'position' is the location of the maximum on the x-axis, 

'width' is the full width at half-maximum (FWHM) of the peak (which is equal to sigma times 2.355), 

and 'x' is the value of the independent variable at that point. The cell formula for a Lorentzian peak is 

amplitude/(1+((x-position)/(0.5*width))^2). Other useful functions include AVERAGE, 

MAX, MIN, STDEV, VAR, RAND, and QUARTILE. Most spreadsheets have only a uniformly-

distributed random number function (RAND) and not a normally-distributed random number function, 

but it is much more realistic to simulate errors that are normally-distributed. But do not worry, you can 

use the Central Limit Theorem to create approximately normally-distributed random numbers by 

combining several RAND functions, for example, the odd-looking expression SQRT(3)*(RAND()-

RAND()+RAND()-RAND()) creates nearly normal random numbers with a mean of zero, a standard 

deviation very close to 1, and a maximum range of ±4. I use this trick in spreadsheet models that 

simulate the operation of analytical instruments. (The expression SQRT(2)*( RAND()-

RAND()+RAND()-RAND()+RAND()-RAND()) works similarly but has a larger maximum range). To 

create random numbers with a standard deviation other than 1, simply multiply by that number. To 

create random numbers with an average other than zero, simply add that number.  

The interquartile range (IQR) can be calculated in a spreadsheet by subtracting the third quartile from 

the first (e.g., QUARTILE(B7: B504,3) - QUARTILE(B7: B504,1)).  

The spreadsheets RandomNumbers.xls, for Excel, and RandomNumbers.ods, for OpenOffice, (screen 

image on next page), and the Matlab/Octave script RANDtoRANDN.m, all demonstrate these facts. 

The same technique is used in the spreadsheet SimulatedSignal6Gaussian.xlsx, which computes and 

plots a simulated signal consisting of up to 6 overlapping Gaussian bands plus random white noise.  

http://www.microsoftstore.com/store/msstore/pd/Excel-Home-and-Student-2010/productID.216446900/vip.true
http://www.microsoftstore.com/store/msstore/pd/Excel-Home-and-Student-2010/productID.216446900/vip.true
http://en.wikipedia.org/wiki/OpenOffice.org_Calc
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#PDF
http://terpconnect.umd.edu/~toh/models/
http://terpconnect.umd.edu/~toh/models/
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.xls
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.ods
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.png
https://terpconnect.umd.edu/~toh/spectrum/RANDtoRANDN.m
https://terpconnect.umd.edu/~toh/spectrum/SimulatedSignal6Gaussian.xlsx


Page | 34  

 

Random functions in Matlab and Python 
Matlab and Octave have built-in functions that can be used for calculating, measuring and plotting 

signals and noise, including mean, max, min, std, kurtosis, skewness, plot, hist, rand, and randn. Just 

type "help" and the function name at the command prompt, e.g., "help mean". Most of these functions 

apply to vectors and matrices as well as scalar variables. For example, if you have a series of results in 

a vector variable 'y', mean(y) returns the average and std(y) returns the standard deviation of all the 

values in y. For vectors, std computes sqrt(mean(y.^2)). You can subtract a scalar number from a vector 

(for example, v = v-min(v) sets the lowest value of vector v to zero). If you have a set of signals in the 

rows of a matrix S, where each column represents the value of each signal at the same value of the 

independent variable (e.g., time), you can compute the ensemble average of those signals just by typing 

"mean(S)", which computes the mean of 

each column of S. Note that function and 

variable names are case-sensitive. (You can 

open the code for any function by selecting 

its name and selecting “open..”). 

The "randn" function in Matlab/Octave 

generates normally-distributed random 

numbers with a mean of zero and a standard 

deviation of 1: e.g., randn(1,100) returns a 

vector of 100 such numbers. (In Python, 

after importing “numpy” as “np”, the syntax 

is similar: np.random.randn(100)).  

In the following example, “rand” is used to 

generate 100 random numbers, then 

Matlab’s "hist" function computes the 

http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/mean.txt
https://terpconnect.umd.edu/~toh/spectrum/max.txt
https://terpconnect.umd.edu/~toh/spectrum/min.txt
https://terpconnect.umd.edu/~toh/spectrum/std.txt
https://terpconnect.umd.edu/~toh/spectrum/kurtosis.txt
https://terpconnect.umd.edu/~toh/spectrum/skewness.txt
https://terpconnect.umd.edu/~toh/spectrum/plot.txt
https://terpconnect.umd.edu/~toh/spectrum/hist.txt
https://terpconnect.umd.edu/~toh/spectrum/rand.txt
https://terpconnect.umd.edu/~toh/spectrum/randn.txt
https://en.wikipedia.org/wiki/Standard_deviation


Page | 35  

histogram (probability distribution) of those random numbers, then my peakfit.m function (page 391, 

download link) fits a Gaussian function (plotted with a red line) to that distribution.  

  [N,X]=hist(randn(size(1:100))); 

  peakfit([X;N]);  

If you change the 100 here to 1000 or to an even higher number, the distribution of those numbers 

becomes closer and closer to a perfect Gaussian and its peak falls closer to 0.00. Here is an MP4 

animation that demonstrates the gradual emergence of a Gaussian normal distribution as the number of 

“randn” samples increases from 2 to 1000. Note how many samples it takes before the normal 

distribution is well-formed. The "randn" function is useful in signal processing for predicting the 

uncertainty of measurements in the presence of random noise, for example by using the Monte Carlo or 

the bootstrap methods that will be described in a later section (pages 165, 166). (Note: In the PDF 

version of this book, you can select, copy, and paste, or select, drag, and drop, any of the single-line or 

multi-line code examples into the Matlab or Octave editor or directly into the command line and press 

Enter to execute it immediately.  

The difference between scripts and functions 
If you find that you are writing the same series of commands repeatedly, consider writing a script or a 

function that will save your code to the computer so you can use it again easily without the danger of 

typographical errors or clumsy copying and pasting. It is extremely handy to create your own user-

defined scripts and functions in Matlab or Python to automate commonly used algorithms.  

In Matlab, scripts and functions are just simple text files saved with the ".m" file extension to the file 

name. The difference between a script and a function is that a function definition begins with the word 

'function'; a script is just any list of Matlab commands and statements. For a script, all the variables 

defined and used are listed in the workspace window and shared with other scripts. For a function, on 

the other hand, the variables are internal and private to that function; values can be passed to the 

function through the input variables (called “arguments”), and values can be passed from the function 

through the output variables, which are both defined in the first line of the function definition.  

[output variables] = FunctionName(input variables) 

That means that functions are a great way to package chunks of code that perform useful operations in 

a form that can be used as components in other scripts and functions without worrying that the internal 

variable names within the function will conflict and cause errors. When you write a function, you can 

save it to the computer, and it can be used just like the built-in functions that came with Matlab. Or you 

can upload it to your Matlab account, where it can be used on a tablet or smartphone. Here is a very 

simple example: a function that calculates the relative standard deviation of a vector x, rsd.m: 

 
 

In Python, the same function would be coded 
 

def rsd(x): 

    # Relative standard deviation of vector x 
    return np.std(x)/np.mean(x) 
 

https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/RANDNGaussianFit.png
https://terpconnect.umd.edu/~toh/spectrum/RANDNGaussianFit1000.png
https://terpconnect.umd.edu/~toh/spectrum/Histogram1000.mp4
https://terpconnect.umd.edu/~toh/spectrum/Histogram1000.mp4
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Monte
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#bootstrap
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability
http://www.ugrad.cs.ubc.ca/~cs302/MatlabGuide/node11.html
http://www.ugrad.cs.ubc.ca/~cs302/MatlabGuide/node11.html
https://terpconnect.umd.edu/~toh/spectrum/rsd.m


Page | 36  

Scripts and functions can call other functions. In older versions of Matlab, scripts must have those 

functions stored in the Matlab search path; functions, on the other hand, can have their required sub-

functions defined within the main function itself and thus can be self-contained. If you write a script or 

function that calls one or more of your custom functions, and  you send it to someone else, be sure to 

include all the custom functions that it calls. (It is best to make all your functions self-contained with 

all required sub-functions included). If one of my scripts gives an error message that says, "Undefined 

function...", you need to download the specified function from http://tinyurl.com/cey8rwh and place it 

in the Matlab/Octave search path. Note: in Matlab R2016b or later, you CAN include functions within 

scripts; just place them at the end of the script and add an additional “end” statement to each function 

added. See https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html.  

To get an explanation of a function, type “help FunctionName” at the command prompt, where 

FunctionName is the name of the function, or, in Python, “help(FunctionName)”. For writing or editing 

scripts and functions, Matlab, the latest version of Octave, and Python/Spyder all have internal editors. 

When you are writing your own functions or scripts, you should always add lots of "comment lines", 

beginning with the character % (or # in Python) that explains what is going on. You will be glad you did 

later. The first group of comment lines, up to the first blank line that does not begin with a %, are used 

as the "help file" for that script or function. Typing “help FunctionName” displays those comment lines 

for that function or script in the command window, just as it does for the built-in functions and scripts. 

It’s also a great idea to add one or more examples of operations that users can copy and paste into the 

command line. This will make your scripts and functions much easier to understand and use, both by 

other people and by yourself in the future. Resist the temptation to skip this. As you develop custom 

functions for your own work, you will be developing a “toolkit” that will become very useful to your 

co-workers, or even to yourself in the future, if you use comments liberally. I say this from personal 

experience. I did not always follow my own advice.  

Matlab has a very handy helper for functions: when you type a function name into the Matlab editor, if 

you pause for a moment after typing the open parenthesis immediately after the function name, Matlab 

will display a pop-up listing all the possible input variables as a reminder. This works even for 

downloaded functions and for any new functions that you yourself create! It is especially handy when 

the function has so many possible input variables that it is hard to remember all of them. The popup 

stays on the screen as you type, highlighting each variable in turn, to remind you where you are: 

 

This feature is easily overlooked, but it is very handy. Clicking on the little “More Help...” link on the 

right displays the help for that function in a separate window. Note: Octave does not have this feature. 

Live scripts  
Both Matlab and Python have interactive alternatives to conventional scripts. Live Scripts in Matlab 

are interactive documents that combine code, output, formatted text, and interactive controllers in a 

single environment called the Live Editor. (Live Scripts were available starting in MATLAB R2016b). 

See page 363. Python has Jupyter Notebooks which are used to create an interactive narrative around 

your code. Both make it easy to create sharable interactive documents with graphical user interface 

https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
http://tinyurl.com/cey8rwh
https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html
https://www.gnu.org/software/octave/news/release/2021/10/30/octave-6.4.0-released.html
https://www.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html
https://jupyter.org/


Page | 37  

devices such as pull-down menus, check boxes, and sliders to adjust numerical values interactively. In 

Matlab, you can simply open a conventional (.m) script in the Live Editor and insert the interface 

devices directly into the script where the numbers in assignment statements would have gone. When 

you save it, it becomes an .mlx file.  

Live scripts make it easy to create custom tools for interactive exploration. An example of a portion of 

a Live Script is shown below. This example shows four types of interactive controllers. Line 1 shows a 

button that opens a file browser that allows you to navigate to a specific file, in this case a data file that 

you want to process. Lines 5 and 6 show checkboxes, which are used to enable or disable optional 

sections of code. Several lines show numeric sliders, which are used to control continuous variables. 

Line 17 shows a drop-down menu that allows multiple choices, shown pulled down in the screenshot 

below.   

  

Live Scripts produce graphic output in small windows on the right side of the Live editor window, 

where you can copy, pan and zoom and export to png files as usual using the mouse. You can also 

convert any Live Script graphic into a standard figure window (by clicking its upper right corner), 

which can then be exported to other graphic formats, expanded to full screen, printed, etc.  

Other examples of Live Scripts include the versatile data smoothing tool shown on page 58, a tool for 

differentiation (page 76), the self-deconvolution script shown above (page 123) and a peak detection 

tool (page 248). These Live scripts are surprisingly easy to create within the Matlab environment by 

modifying a conventional script and a peak fitting tool on page 435. See page 363 for more details 

about developing Matlab Live Scripts and Apps. See page 365 for a table listing of Live Script tools 

and their corresponding keypress-driven functions.   

https://terpconnect.umd.edu/~toh/spectrum/DenomAddDemoLiveScript.png
https://terpconnect.umd.edu/~toh/spectrum/DenomAddDemoLiveScript.png


Page | 38  

User-defined functions related to signals and noise. 

Here are some examples of user-defined functions that I have created for my signal processing toolkit. 

These are not built-in functions; you must download them and put them in the Matlab path to use them. 

Data plotting: plotit.m, an easy-to-use function for plotting and fitting x,y data in matrices or in 

separate vectors. For handling very large signals more easily, plotxrange.m ([xx,yy,irange] 

= plotxrange(x,y,x1,x2)) extracts and plots values of vectors x,y only for x values 

between specified values of x; segplot.m ([s,xx,yy] = segplot(x,y,NumSegs,seg)) 

divides signals into "NumSegs" equal-length segments and plots segments marked by vertical 

lines, each labeled with a small segment number at the bottom, and returns a vector 's' of 

segment indexes and the subset xx,yy, of values in the segment number 'seg'. 

Peak shapes. Here are links to several Matlab functions for peak shapes commonly 

encountered in analytical chemistry such as Gaussian, Lorentzian, lognormal, Pearson 5, 

exponentially-broadened Gaussian, exponentially-broadened Lorentzian, exponential pulse, 

sech2, sigmoid, Gaussian/Lorentzian blend, bifurcated Gaussian, bifurcated Lorentzian), Voigt 

profile, triangular and others. See page 461 and following for a more complete list. The self-

contained script Sech2ShapeComparison.m compares Gaussian, Lorentzian, and sech2 pulse 

shapes, showing the sech2 pulse in intermediate between Gaussian and Lorentzian (graphic). 

peakfunction.m, a function that generates any of those peak types specified by number.  

ShapeDemo demonstrates the 16 basic peak shapes graphically, showing the variable-shape 

peaks as multiple lines. (Graphic on page 419) 

Noise generators. There are several functions for simulating different types of random noise 

(white noise, pink noise, blue noise, proportional noise, and square root noise). 

Miscellaneous Matlab functions: 

stdev.m, a standard deviation function that works in both Matlab and in Octave (the built-in 

std.m function behaves differently in Matlab and Octave); rsd.m, the relative standard deviation.  

PercentDifference.m, simply calculates the percent difference between two variables. 

IQrange.m computes the interquartile range (explained above). 

halfwidth.m for measuring the full width at half maximum of smooth peaks of any shape. 

ExpBroaden.m applies exponential broadening to any time-series vector. 

rmnan.m removes "not-a-number" entries from vectors, which is useful for cleaning up real data 

files; rmz.m removes zeros from vectors, replacing with nearest non-zero numbers. 

val2ind.m returns the index and the value of the element of vector x that is closest to a particular 

value. This is a simple function that is more useful than you might imagine. Search this 

document for “val2ind” to find several examples of the practical use of this function.  

These functions are useful in modeling and simulating analytical signals and testing measurement 

techniques (page 40). In the PDF version of this book, you can click or ctrl-click on these links to 

inspect the code or you can right-click and select "Save link as..." to download them to your computer. 

https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/plotxrange.m
https://terpconnect.umd.edu/~toh/spectrum/segplot.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/lognormal.m
https://terpconnect.umd.edu/~toh/spectrum/pearson.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/explorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/exppulse.m
https://terpconnect.umd.edu/~toh/spectrum/sech2pulse.m
https://terpconnect.umd.edu/~toh/spectrum/sigmoid.m
https://terpconnect.umd.edu/~toh/spectrum/GL.m
https://terpconnect.umd.edu/~toh/spectrum/BiGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/BiLorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/voigt.m
https://terpconnect.umd.edu/~toh/spectrum/voigt.m
https://terpconnect.umd.edu/~toh/spectrum/triangle.m
https://terpconnect.umd.edu/~toh/spectrum/Sech2ShapeComparison.m
https://terpconnect.umd.edu/~toh/spectrum/Sech2ShapeComparison.png
https://terpconnect.umd.edu/~toh/spectrum/peakfunction.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/whitenoise.m
https://terpconnect.umd.edu/~toh/spectrum/pinknoise.m
https://terpconnect.umd.edu/~toh/spectrum/bluenoise.m
https://terpconnect.umd.edu/~toh/spectrum/propnoise.m
https://terpconnect.umd.edu/~toh/spectrum/sqrtnoise.m
https://terpconnect.umd.edu/~toh/spectrum/stdev.m
https://terpconnect.umd.edu/~toh/spectrum/rsd.m
https://terpconnect.umd.edu/~toh/spectrum/PercentDifference.m
http://terpconnect.umd.edu/~toh/spectrum/IQrange.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/rmnan.m
https://terpconnect.umd.edu/~toh/spectrum/rmz.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m


Page | 39  

Once you have downloaded those functions and placed them in the search path, you can use them just 

like any other built-in function. For example, you can plot a Gaussian peak with white noise by typing 

x=[1:256]; y=gaussian(x,128,64) + whitenoise(x); plot(x,y). The script plotting.m, 

shown in the figure on page 17, uses the gaussian.m function to demonstrate the distinction between the 

height, position, and width of a Gaussian curve. The script SignalGenerator.m calls several of these 

downloadable functions to create and plot a realistic computer-generated signal with multiple peaks on 

a variable baseline plus variable random noise; you might try to modify the variables in the indicated 

places to make it look like your type of d ata. All these functions will work in the latest version of 

Octave without change. For a complete list of my downloadable functions and scripts developed for 

this project, see page 461 or on the Web at http://tinyurl.com/cey8rwh. 

The Matlab/Octave function noisetest.m demonstrates the appearance and effect of different noise types. 

It plots Gaussian peaks with four different types of added noise: constant white noise, constant pink 

(1/f) noise, proportional white noise, and square root  white noise, then fits a Gaussian to each noisy 

data set and computes the average and the standard deviation of the peak height, position, width, and 

area for each noise type. Type "help noisetest" at the command prompt. My Matlab/Octave script 

SubtractTwoMeasurements.m (page 24) demonstrates the technique of subtracting two separate 

measurements of a waveform to extract the random noise (but it works only if the signal is stable, 

except for the noise).  

iSignal (page 371) is one of a group of multi-purpose downloadable Matlab modules I have developed 

that combine many of the techniques covered here; iSignal can plot signals with pan and zoom controls, 

measure signal and noise amplitudes in selected regions of the signal and compute the S/N ratio of 

peaks. It is operated by simple key presses. Other capabilities of iSignal include smoothing (page 39), 

differentiation, peak sharpening and de-tailing, deconvolution, least-squares peak measurement, etc.  
 

Others in this group of interactive functions include iPeak, page 250, which focuses on peak detection, 

and ipf.m, page 414, which focuses on iterative curve fitting. These functions are ideal for initial 

explorations of complex signals because they make it easy to select operations and adjust the controls 

by simple key presses. These work even if you run Matlab Online in a web browser, but they do not 

work on Matlab Mobile. Note that  the Octave versions, ipfoctave.m, ipeakoctave.m, isignaloctave.m, 

and ifilteroctave.m, use the < and > keys (with and without shift) for pan and zoom. 

For signals that contain repetitive waveform patterns occurring in one continuous signal, with 

nominally the same shape except for noise, the interactive peak detector function iPeak (page 248), has 

an ensemble averaging function (Shift-E) can compute the average of all the repeating waveforms. It 

works by detecting a single reference peak in each repeat waveform to synchronize the repeats (and 

therefore does not require that the repeats be equally spaced or synchronized to an external reference 

signal). To use this function, first adjust the peak detection controls to detect only one peak in each 

repeat pattern, zoom in to isolate any one of those repeat patterns, and then press Shift-E. The average 

waveform is displayed in Figure 2 and saved as “EnsembleAverage.mat” in the current directory. See 

iPeakEnsembleAverageDemo.m for a demonstration. See page 326: Measuring the Signal-to-Noise 

Ratio of Complex Signals for more examples of the signal-to-ratio in Matlab/Octave computations.  

https://terpconnect.umd.edu/~toh/spectrum/plotting.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/SignalGenerator.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/noisetest.m
https://terpconnect.umd.edu/~toh/spectrum/SubtractTwoMeasurements.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/ipfoctave.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakoctave.m
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m
https://terpconnect.umd.edu/~toh/spectrum/ifilteroctave.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.m
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#SNR
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#SNR


Page | 40  

Numerical experiments: the role of simulation and modeling. 
A simulation is an imitation of the operation of a real-world process or system over time. Simulations 

require the use of models, which represent the important characteristics or behaviors of the selected 

system or process, whereas the simulation represents the evolution of the model over time. The Wik-

ipedia article on simulation lists 27 widely different areas where simulation and modeling are applied. 

In the context of scientific measurement, simulations of measurement instruments (page 350) or of sig-

nal processing techniques have been widely applied. A simulated signal can be synthesized using math-

ematical models for signal shapes (page 461) combined with appropriate types of simulated random 

noise (page 23), both based on the common characteristics of real signals.  
 

It is important to realize that a simulated signal is not a “fake” signal, because it is not intended to de-

ceive. Rather, you can use simulated signals to test the accuracy and precision of a proposed processing 

technique, using simulated data whose true underlying parameters are known (which is not the case for 

real signals). Moreover, you can test the robustness and reproducibility of a proposed technique by cre-

ating multiple signals with the same underlying signal parameters but with imperfections added, such 

random noise, non-zero and shifting baselines, interfering peaks, shape distortion, etc. For example, the 

script CreateSimulatedSignal.m shows how to create a realistic model of a multi-peak signal that is 

based on the measured characteristics of an experimental signal. We will see many applications of this 

idea, e.g., on pages 306, and 332.  
 

Simulation is also applicable in more sophisticated cases. On page 358, I describe a published commer-

cial technical report that contained a detailed example of a practical application of liquid chromatog-

raphy with a diode array detector to separate three similar chemical isomers. With that information I 

was able to create realistic a “data-based” simulation of the data obtained in that experiment, which al-

lowed me to “repeat” the experiment numerically, under different experimental conditions, to explore 

the limits of applicability of that method to other potentially more challenging applications.  

  

https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Simulation
https://terpconnect.umd.edu/~toh/spectrum/CreateSimulatedSignal.m


Page | 41  

Smoothing 
In many experiments in science, the true signal amplitudes (y-axis values) change rather smoothly as a 

function of the x-axis values, whereas many kinds of noise are seen as rapid, random changes in 

amplitude from point to point within the signal. In the latter situation it may be useful in some cases to 

attempt to reduce the noise by a process called smoothing. In smoothing, the data points of a signal are 

modified so that individual points that are higher than the immediately adjacent points (presumably 

because of noise) are reduced, and points that are lower than the adjacent points are increased. This 

naturally leads to a smoother signal (and a slower step response to signal changes). If the true 

underlying signal is smooth, then the true signal will not be much distorted by smoothing, but the high-

frequency noise will be reduced. In terms of the frequency components of a signal, a smoothing 

operation acts as a low-pass filter, reducing the high-frequency components and passing the low-

frequency components with little change. If the signal and the noise is measured for all frequencies, 

then the signal-to-noise ratio will be improved by smoothing, by an amount that depends on the 

frequency distribution of the noise. (Smoothing can be contrasted to wavelet denoising, pages 129 and 

59, which also reduces noise but does not necessarily make the signal completely smooth).  

Smoothing algorithms 
The simplest smoothing algorithms are based on the "shift and multiply" technique, in which a group of 

adjacent points in the original data is multiplied point-by-point by a set of numbers (coefficients) that 

defines the smooth shape, the products are added up and divided by the sum of the coefficients, which 

becomes one point of smoothed data, then the set of coefficients is shifted one point along the original 

data and the process is repeated. The simplest smoothing algorithm is the rectangular boxcar or 

unweighted sliding-average smooth; it simply replaces each point in the signal with the average of m 

adjacent points, where m is a positive integer called the smooth width. For example, for a 3-point 

smooth (m = 3):  

                                                    

This is evaluated for j = 2 to n-1, where Sj is the jth point in the smoothed signal, Yj is the jth point in 

the original signal, and n is the total number of points in the signal. Most spreadsheets and 

programming languages have a “mean” or “average” function which can do this work quickly, so 

Sj=mean(yj-w/2:yj+w/2). Similar smooth operations can be constructed for any desired smooth width, m. 

Usually m is an odd number. If the noise in the data is "white noise" (that is, evenly distributed over all 

frequencies) and its standard deviation is D, then the standard deviation of the noise remaining in the 

signal after the first pass of an unweighted sliding-average smooth will be approximately D over the 

square root of m (D/sqrt(m)), where m is the smooth width. Despite its simplicity, this smooth is 

actually optimum for the common problem of reducing white noise while keeping the sharpest step 

response (click here for a logical proof). The response to a step change is, in fact, linear, so this filter 

has the advantage of responding completely with no residual effect within its response time (which is 

equal to the smooth width divided by the sampling rate). Smoothing can be performed either during 

data acquisition, by programming the digitizer to measure and to average multiple readings and save 

https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html#smoothing
https://en.wikipedia.org/wiki/Low-pass_filter
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#SNR
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#frequency
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf
https://www.dspguide.com/ch15/2.htm


Page | 42  

only the average, or after data acquisition ("post-run"), by storing all the acquired data in memory and 

smoothing the stored data. The latter requires more memory but is more flexible. 

The triangular smooth is like the rectangular smooth, above, except that it implements a weighted 

smoothing function. For a 5-point smooth (m = 5): 

 
for j = 3 to n-2, and similarly for other smooth widths (see the spreadsheet UnitGainSmooths.xls). In 

both of these cases, the integer in the denominator is the sum of the coefficients in the numerator, which 

results in a “unit-gain” smooth that has no effect on the signal where it is a straight line and which 

preserves the area under peaks.  

It is often useful to apply a smoothing operation more than once, that is, to smooth an already smoothed 

signal, to build longer and more complicated smooths. For example, the 5-point triangular smooth 

above is equivalent to two passes of a 3-point rectangular smooth. Three passes of a 3-point rectangular 

smooth result in a 7-point haystack smooth, also called a “p-spline”, for which the coefficients are in 

the ratio 1:3:6:7:6:3:1. The general rule is that n passes of a w-width smooth results in a combined 

smooth width of n*w-n+1. For example, 3 passes of a 17-point smooth results in a 49-point smooth. 

These multi-pass smooths are more effective at reducing high-frequency noise in the signal than a 

rectangular smooth, but they exhibit a slower step response. 

In all these smooths, the width of the smooth m is chosen to be an odd integer, so that the smooth 

coefficients are symmetrically balanced around the central point, which is important because it 

preserves the x-axis position of peaks and other features in the smoothed signal. (This is especially 

critical for analytical and spectroscopic applications because the peak positions are often important 

measurement objectives. 

We are assuming here that the x-axis interval of the signal is uniform, that is, that the difference 

between the x-axis values of adjacent points is the same throughout the signal. This is also assumed in 

many of the other signal-processing techniques described in this book, and it is a very common (but not 

necessary) characteristic of signals that are acquired by automated and computerized equipment.  

More advanced algorithms. The Savitzky-Golay smooth (ref 97) is based on the least-squares fitting 

of polynomials to segments of the data. The algorithm is discussed on Wikipedia. Compared to the 

sliding-average smooths of the same width, the Savitzky-Golay smooth is less effective at reducing 

noise, but more effective at retaining the shape of the original signal. It is capable of differentiation as 

well as smoothing. The algorithm is more complex, and the computational times may be greater than 

the smooth types discussed above, but with modern computers, the difference is seldom significant. 

Code in various languages is widely available online. See page 58. My interactive iSignal function 

(page 371) has a Savitzky-Golay option. The wavelet-based denoise function (see page 133) is a more 

sophisticated algorithm that attempts to distinguish signal from noise by analyzing the frequency 

structure of the signal. 

The shape of any smoothing algorithm can be determined by applying that smooth to a delta function, a 

signal consisting of all zeros except for one point, as demonstrated by the simple Matlab/Octave script 

DeltaTest.m. The result is called the impulse response function.  

https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.xls
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
http://en.wikipedia.org/wiki/Savitzky%96Golay_smoothing_filter
https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://www.google.com/search?sourceid=chrome&ie=UTF-8&q=Savitzky-Golay+smooth+code
https://terpconnect.umd.edu/~toh/spectrum/SmoothingComparison.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/DeltaTest.m


Page | 43  

Noise reduction 
 Smoothing usually reduces the noise in a signal. If the noise is "white" (that is, evenly distributed over 

all frequencies) and its standard deviation is D, then the standard deviation of the noise remaining in 

the signal after one pass of a rectangular smooth will be approximately D/sqrt(m), where m is the 

smooth width. If a triangular smooth is used instead, the noise will be slightly less, about D*0.8/sqrt(m). 

Smoothing operations can be applied more than once: that is, a previously smoothed signal can be 

smoothed again. In some cases, this can be useful if there is a great deal of high-frequency noise in the 

signal. However, the noise reduction for white noise is less in each successive smooth. For example, 

three passes of a rectangular smooth reduce white noise by a factor of approximately D*0.7/sqrt(m), 

only a slight improvement over two passes. For a spreadsheet demonstration, see 

VariableSmoothNoiseReduction.xlsx. 

Effect of the frequency distribution of noise 
 The frequency distribution of noise, designated by noise “color” (page 23), substantially affects the 

ability of smoothing to reduce noise. The Matlab/ Octave function “NoiseColorTest.m” compares the 

effect of a 20-point boxcar (unweighted sliding average) smooth on the standard deviation of white, 

pink, red, and blue noise, all of which have an original unsmoothed standard deviation of 1.0. Because 

smoothing is a low-pass filter process, it affects low-

frequency (pink and red) noise less, and effects high-

frequency (blue and violet) noise more, than it does 

white noise. 

Note that the computation of standard deviation is 

independent of the order of the data and thus of its 

frequency distribution; sorting a set of data does not 

change its standard deviation. The standard deviation 

of a sine wave is independent of its frequency. 

Smoothing, however, changes both the frequency distribution and standard deviation of a data set. 

Original unsmoothed noise 1 

Smoothed white noise 0.1 

Smoothed pink noise 0.55 

Smoothed blue noise 0.01 

Smoothed red (random walk) noise 0.98 

https://terpconnect.umd.edu/~toh/spectrum/VariableSmoothNoiseReduction.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest.m
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest1.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RandomWalk


Page | 44  

End effects and the lost points problem 
In the equations above, the 3-point rectangular smooth is defined only for j = 2 to n-1. There is not 

enough data in the signal to define a complete 3-point smooth for the first point in the signal (j = 1) or 

for the last point (j = n), because there are no data points before the first point or after the last point. 

(Similarly, a 5-point smooth is defined only for j = 3 to n-2, and therefore a smooth cannot be 

calculated for the first two points or for the last two points). In general, for an m-width smooth, there 

will be (m-1)/2 points at the beginning of the signal and (m-1)/2 points at the end of the signal for 

which a complete m-width smooth cannot be calculated the usual way. What to do? There are two 

approaches. One is to accept the loss of points and trim off those points or replace them with zeros in 

the smooth signal. (That's the approach taken in most of the figures in this book). The other approach is 

to use progressively smaller smooths at the ends of the signal, for example to use smooth widths of 2, 3, 

5, 7... points for signal points 1, 2, 3, and 4..., and for points n, n-1, n-2, n-3..., respectively. The latter 

approach may be preferable if the edges of the signal contain critical information, but it increases 

execution time. My Matlab/Octave fastsmooth function (page 467) can utilize either of these two 

methods. An alternative approach is to pad the edges with a mirror image of the data itself, which is 

commonly done in smoothing two-dimensional (image) data. 

Examples of smoothing 
The figure below shows a simple example of 

smoothing. The left half of this signal is a noisy 

peak. The right half is the same peak after 

undergoing a triangular smoothing algorithm. The 

noise is greatly reduced while the peak itself is 

hardly changed. The reduced noise allows the 

signal characteristics (peak position, height, 

width, area, etc.) to be measured more accurately 

by visual inspection. 

 The left half of this signal is a noisy peak. The 

right half is the same peak after undergoing a 

smoothing algorithm. The noise is greatly 

reduced while the peak itself is hardly changed, 

making it easier to measure the peak position, 

height, and width directly by graphical or visual 

estimation (but it does not improve measurements 

made by least-squares methods; see below).  

The larger the smooth width, the greater the noise 

reduction, but also the greater the possibility that 

the signal will be distorted by the smoothing 

operation. The optimum choice of smooth width 

depends upon the width and shape of the signal and 

the digitization interval. For peak-type signals, the 

critical factor is the smooth ratio, the ratio between 

https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://www.machinecurve.com/index.php/2020/02/10/using-constant-padding-reflection-padding-and-replication-padding-with-keras/
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#NOT_smooth


Page | 45  

the smooth width m and the number of points in the half-width of the peak. In general, increasing the 

smoothing ratio improves the signal-to-noise ratio but causes a reduction in amplitude and an increase 

in the width of the peak. Be aware that the smooth width can be expressed in two different ways: (a) as 

the number of data points or (b) as the x-axis interval (for spectroscopic data usually in nm or in 

frequency units). The two are simply related: the number of data points is simply the x-axis interval 

times the increment between adjacent x-axis values. The smooth ratio is the same in either case. 

 The figures here show examples of the effect of three different smooth widths on noisy Gaussian-

shaped peaks. In the figure on the left, the peak has a true height of 2.0 and there are 80 points in the 

half-width of the peak. The red line is the original unsmoothed peak. The three superimposed green 

lines are the results of smoothing this peak with a triangular smooth of width (from top to bottom) 7, 25, 

and 51 points. Because the peak width is 80 

points, the smooth ratios of these three 

smooths are 7/80 = 0.09, 25/80 = 0.31, and 

51/80 = 0.64, respectively. As the smooth 

width increases, the noise is progressively 

reduced but the peak height also is reduced 

slightly. For the largest smooth, the peak 

width is noticeably increased. In the figure on 

the right, the original peak (in red) has a true 

height of 1.0 and a half-width of 33 points. 

(It is also less noisy than the example above.) 

The three superimposed green lines are the 

results of the same three triangular smooths of width 7, 25, and 51 points. But because the peak width, 

in this case, is only 33 points, the smooth ratios of these three smooths are larger - 0.21, 0.76, and 1.55, 

respectively. You can see that the peak distortion effect (reduction of peak height and increase in peak 

width) is greater for the narrower peak because the smooth ratios are higher. Smooth ratios of greater 

than 1.0 are seldom used because of excessive peak distortion. Note that even in the worst case, the 

peak positions are not affected (assuming that the original peaks were symmetrical and not overlapped 

by other peaks). If retaining the shape of the peak is more important than optimizing the signal-to-noise 

ratio, the Savitzky-Golay has the advantage over sliding-average smooths. In all cases, the total signal 

remains unchanged. If the peak widths vary substantially, an adaptive or segmented smooth, which 

allows the smooth width to vary across the signal, may be used (page 329). In this context, “segmented” 

means that the signal is divided into segments with a different smooth applied to each segment. 

The problem with smoothing  
Smoothing is often less beneficial than you might think. It is important to understand that smoothing 

results such as illustrated in the figures above could be viewed as deceptively impressive because they 

employ a single sample of a noisy signal that is smoothed to different degrees. This causes the viewer 

to underestimate the contribution of low-frequency noise, which is hard to estimate visually because 

there are so few low-frequency cycles in the signal record. This problem can be visualized by recording 

a few independent samples of a noisy signal consisting of a single peak, as illustrated in the two figures 

below. 

https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#SegmentedSmooth


Page | 46  

These figures show ten superimposed plots with the same peak but with independent white noise, each 

plotted with a different line color, unsmoothed on the left and smoothed on the right. Clearly, the noise 

reduction is substantial, but close inspection of the different colored smoothed signals on the right 

shows that there is still variation in peak position, height, and width between the 10 samples, which is 

caused by the low-frequency noise remaining in the smoothed signals. Without the noise, each peak 

would have a peak height of 2, peak center at 500, and a width of 150. Just because a signal looks 

smooth does not mean there is no noise. Low-frequency noise remaining in the signals after smoothing 

can still interfere with the precise measurement of peak position, height, and width. 

(The generating scripts below each figure require that the functions gaussian.m, whitenoise.m, and 

fastsmooth.m be downloaded from http://tinyurl.com/cey8rwh.) 

It should be clear that smoothing can seldom eliminate noise completely, because most noise is spread 

out over a range of frequencies and smoothing simply reduces the noise in part of its frequency range. 

Only for some very specific types of noise (e.g., discrete frequency sine-wave noise or single-point 

spikes) is there hope of anything close to complete noise elimination. Smoothing does make the signal 

smoother, and it does reduce the standard deviation of the noise, but whether that makes for a better 

measurement or not depends on the situation. And do not assume that just because a little smoothing is 

good that more will necessarily be better. Smoothing is like alcohol; sometimes you really need it - but 

you should never overdo it. 

  

x=1:1000; 

for n=1:10, 

y(n,:)=2.*gaussian(x,500,150)…   

+whitenoise(x); 

end 

plot(x,y) 

x=1:1000; 

for n=1:10, 

y(n,:)=2.*gaussian(x,500,150)+whitenoise(

x); 

 y(n,:)=fastsmooth(y(n,:),50,3); 

end 

plot(x,y) 

http://tinyurl.com/cey8rwh


Page | 47  

The figure on the right below is another example 

of a signal that illustrates some of these principles. 

The signal consists of two Gaussian peaks, one 

located at x=50 and the second at x=150. Both 

peaks have a peak height of 1.0 and a peak half-

width of 10, and the same normally-distributed 

random white noise with a standard deviation of 

0.1 has been added to the entire signal. The x-axis 

sampling interval, however, is different for the 

two peaks: it is 0.1 for the first peak from x=0 to 

100) and 1.0 for the second peak (from x=100 to 

200). This means that the first peak is 

characterized by ten times more data points than 

the second peak. It may look like the first peak is noisier than the second, but that is just an illusion; the 

signal-to-noise ratio for both peaks is 10. The second peak looks less noisy only because there are 

fewer noise samples there and we tend to underestimate the dispersion of small samples. The result of 

this is that when the signal is smoothed, the second peak is much more likely to be distorted by the 

smooth (it becomes shorter and wider) than the first peak. The first peak can tolerate a much wider 

smooth width, resulting in a greater degree of noise reduction. Similarly, if both peaks are measured 

with the least-squares curve fitting method to be covered later, the fit of the first peak is more stable 

with the noise and the measured parameters of that peak will be about 3 times more accurate than the 

second peak, because there are 10 times more data points in that peak, and the measurement precision 

improves roughly with the square root of the number of data points if the noise is white. You can 

download this data file, "udx", in TXT format or in Matlab MAT format. 

Optimization of smoothing 
As smooth width increases, the smoothing ratio 

increases, noise is reduced quickly at first, then 

more slowly, and the peak height is also reduced, 

slowly at first, then more quickly. The noise 

reduction depends on the smooth width, the 

smooth type (e.g., rectangular, triangular, etc.), 

and the noise color, but the peak height reduction 

also depends on the peak width. The result is that 

the signal-to-noise (defined as the ratio of the 

peak height of the standard deviation of the noise) 

increases quickly at first, then reaches a 

maximum. This is illustrated by the animation on 

the left, which shows the result of smoothing a 

Gaussian peak plus white noise (produced by this 

Matlab/Octave script). The maximum 

improvement in the signal-to-noise ratio depends 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/udx10noiseAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/udx.txt
https://terpconnect.umd.edu/~toh/spectrum/udx.mat
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTest.m


Page | 48  

on the number of points in the peak: the more points in the peak, the greater smooth widths can be 

employed and the greater the noise reduction. This figure also illustrates that most of the noise 

reduction is due to high-frequency components of the noise, whereas much of the low-frequency noise 

remains in the signal even as it is smoothed. 

Which is the best smooth ratio? It depends on the purpose of the peak measurement. If the ultimate 

objective of the measurement is to measure the peak height or width, then smooth ratios below 0.2 

should be used and the Savitzky-Golay (or wavelet denoise: see page 133) smooth is preferred. But if 

the objective of the measurement is to measure the peak position (x-axis value of the peak), larger 

smooth ratios can be employed if desired, because smoothing has little effect on the peak position 

(unless peak is asymmetrical or the increase in peak width is so much that it causes adjacent peaks to 

overlap). If the peak is actually formed of two underlying peaks that overlap so much that they appear 

to be one peak, then curve fitting is the only way to measure the parameters of the underlying peaks. 

Unfortunately, the optimum signal-to-noise ratio corresponds to a smooth ratio that significantly 

distorts the peak, which is why curve fitting the unsmoothed data is often the preferred method for 

measuring peaks position, height, and width. The peak area is not changed by a properly constructed 

smoothing operation unless it changes your estimate of the beginning and the ending of the peak. 

In quantitative chemical analysis applications based on calibration by standard samples, the peak 

height reduction caused by smoothing is not so important. If the same signal processing operations are 

applied to the samples and to the standards, the peak height reduction of the standard signals will be the 

same as that of the sample signals and the effect will cancel out exactly. In such cases, smooth widths 

from 0.5 to 1.0 can be used if necessary, to further improve the signal-to-noise ratio, as shown in the 

figure on the previous page (for a simple sliding-average rectangular smooth). In practical analytical 

chemistry, absolute peak height measurements are seldom required; calibration against standard 

solutions is the rule. (Remember: the objective of quantitative analysis is not to measure a signal but 

rather to measure the concentration of the unknown.) It is very important, however, to apply the same 

signal processing steps to the standard signals as to the sample signals, otherwise a large systematic 

error will result. 

For a more detailed comparison of all four smoothing types considered above, see page 58. 

When should you smooth a signal?   
There are four reasons to smooth a signal: 

(a) for cosmetic reasons, to prepare a nicer-looking or more dramatic graphic of a signal for 

visual inspection or publication, especially in order to emphasize long-term behavior over short-

term, or 

(b) If the signal contains mostly high-frequency ("blue") noise, which can look bad but has less 

effect on the low-frequency signal components (e.g. the positions, heights, widths, and areas of 

peaks) than white noise, or 
 

(c) if the signal will be subsequently analyzed by a method that would be degraded by the 

presence of too much noise in the signal, for example, if the heights of peaks are to be 

determined visually or graphically or by using the MAX function, of the widths of peaks is 

http://en.wikipedia.org/wiki/Savitzky%96Golay_smoothing_filter
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://terpconnect.umd.edu/~toh/spectrum/SmoothingComparison.html


Page | 49  

measured by the halfwidth function, or if the location of maxima, minima, or inflection points 

in the signal is to be determined automatically by detecting zero-crossings in derivatives of the 

signal. Optimization of the amount and type of smoothing is important in these cases (see page 

43). Generally, if a computer is available to make quantitative measurements, it is better to use 

least-squares methods on the unsmoothed data, rather than graphical estimates on smoothed data. 

If a commercial instrument has the option to smooth the data for you, it is best to disable the 

smoothing and record and save the unsmoothed data; you can always smooth it yourself later for 

visual presentation and it will be better to use the unsmoothed data for a least-squares fitting or 

other processing that you may want to do later. Smoothing can be used to locate peaks, but it 

should not be used to measure peaks.  

(d) The formal limit of detection and limit of quantification of an analytical method (references 

91, 92) may be improved by smoothing or averaging, depending on the method of signal 

measurement, as was described on page 26 and demonstrated by the Matlab/Octave script 

SNRdemo.m. 

You must use care in the design of algorithms that employ smoothing. For example, in a popular 

technique for peak finding and measurement discussed later (page 229), peaks are located by detecting 

downward zero-crossings in the smoothed first derivative, but the position, height, and width of each 

peak is determined by least-squares curve-fitting (page 170) of a segment of original unsmoothed data 

in the vicinity of the zero-crossing (page 232), rather than simply taking the maximum of the smoothed 

data. That way, even if heavy smoothing is necessary to provide reliable discrimination against noise 

peaks, the peak parameters extracted by curve fitting are not distorted by the smoothing. 

When should you NOT smooth a signal?  
One common situation where you should not smooth signals is prior to statistical procedures such as 

least-squares curve-fitting. There are several reasons (reference 43). 

(a) Smoothing will not significantly improve the accuracy of parameter measurement by least-

squares measurements between separate independent signal samples. 
 

(b) All smoothing algorithms are at least slightly "lossy", entailing at least some change in 

signal shape and amplitude.  
 

(c) It is harder to evaluate the fit by inspecting the residuals if the data are smoothed, because 

smoothed noise may be mistaken for an actual signal. 
 

(d) Smoothing the signal will seriously underestimate the parameter errors predicted by the 

algebraic propagation-of-error calculations and by the bootstrap method (page 166). Even a 

visual estimate of the quality of the signal is compromised by smoothing, which makes the 

signal look better than it really is. 

Dealing with spikes and outliers.  
Sometimes signals are contaminated with very tall, narrow “spikes” or "outliers" occurring at random 

intervals and with random amplitudes, but with widths of only one or a few points. For example, 

https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Smoothing
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://www.longdom.org/open-access/about-estimating-the-limit-of-detection-by-the-signal-to-noise-approach-2153-2435-1000355.pdf
https://www.longdom.org/open-access/about-estimating-the-limit-of-detection-by-the-signal-to-noise-approach-2153-2435-1000355.pdf
https://terpconnect.umd.edu/~toh/spectrum/SNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
http://wmbriggs.com/blog/?p=195
http://wmbriggs.com/blog/?p=195
http://wmbriggs.com/blog/?p=195
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Smoothing
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Algebraic
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#bootstrap


Page | 50  

optical spectroscopy using photomultiplier tube detectors is subject to spikes caused by “cosmic rays” 

from outer space passing through the front window of the detector, creating a pulse of Cherenkov 

radiation. It not only looks ugly, but it also upsets the assumptions of least-squares computations 

because it is not normally distributed random noise. This type of interference is difficult to eliminate 

using the above smoothing methods without distorting the signal. However, a “median” filter, which 

replaces each point in the signal with the median (rather than the average) of m adjacent points, can 

eliminate narrow spikes, with little change in the signal, if the width of the spikes is only one or a few 

points and equal to or less than m. See http://en.wikipedia.org/wiki/Median_filter. The script 

“TestSpikefilters.m” demonstrates the median filter in action, removing the effect of narrow spikes: 

 
 

PercentAreaErrorBefore =4.5% 

PercentAreaErrorMedian =0.16% 

PercentAreaErrorInterp =0.004% 

For another example, see page 291.  

A different approach to spike elimination is used by my killspikes.m function; it locates and eliminates 

the spikes by "patching over them" using linear interpolation from the signal points immediately before 

and after the spike. See page 56 for details.  

Unlike conventional smooths, these functions can be profitably applied prior to least-squares fitting 

functions. (On the other hand, if the spikes themselves are the signal of interest, and the other 

components of the signal are interfering with their measurement, see page 300).  

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf
https://en.wikipedia.org/wiki/Cherenkov_radiation
https://en.wikipedia.org/wiki/Cherenkov_radiation
https://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median_filter
https://terpconnect.umd.edu/~toh/spectrum/killspikes.m


Page | 51  

Ensemble Averaging 
Another way to reduce noise in repeatable signals, such as the set of ten unsmoothed signals on page 46, 

is simply to compute their average, called ensemble averaging, which can be performed in this case 

very simply by the Matlab/Octave code plot(x, mean(y)); the result shows a reduction in white noise 

by about sqrt(10)=3.2. This improves the signal-to-noise ratio enough to see that there is a single peak 

with Gaussian shape, which can then be measured by curve fitting (covered in a later section, page 195) 

using the Matlab/Octave code peakfit([x; mean(y)],0,0,1), with the result showing excellent agreement 

with the position (500), height (2), and width (150) of the Gaussian peak created in the third line of the 

generating script (on page 46). A huge advantage of ensemble averaging is that the noise at all 

frequencies is reduced, not just the high-frequency noise as in smoothing. This is a big advantage if 

either the signal or the baseline drift. 

Condensing oversampled signals 
Sometimes signals are recorded more densely (that is, with higher sampling frequency or with smaller 

x-axis intervals) than necessary to capture all the important features of the signal. This results in larger-

than-necessary data sizes, which slows down signal processing procedures and may tax storage 

capacity. To correct this, oversampled signals can be reduced in size either by eliminating data points 

(say, dropping every second point or every third point) or by replacing groups of adjacent points by 

their averages, which is often called bunching. Bunching has the advantage of using rather than 

discarding data points, and it acts like smoothing to provide some measure of noise reduction. If the 

noise in the original signal is white, and the signal is condensed by averaging every “n” points, the 

noise is reduced in the condensed signal by the square root of n, but with no change in the frequency 

distribution of the remaining noise. The Matlab/Octave script testcondense.m demonstrates the effect of 

boxcar averaging using the condense.m function to reduce noise without changing the noise color. 

Shows that the boxcar reduces the measured noise, removing the high-frequency components but has 

little effect on the peak parameters. Least-squares curve-fitting on the condensed data is faster and 

results in a lower fitting error, but no more accurate measurement of peak parameters. If you find 

yourself resorting to very large smooth widths, consider using the condense function first. 

Video Demonstration. This 18-second, three MByte video (Smooth3.wmv) demonstrates the effect of 

triangular smoothing on a single Gaussian peak with a peak height of 1.0 and a peak width of 200. The 

initial white noise amplitude is 0.3, giving an initial signal-to-noise ratio of about 3.3. An attempt to 

measure the peak amplitude and peak width of the noisy signal, shown at the bottom of the video, are 

initially seriously inaccurate because of the noise. As the smooth width increases, however, the signal-

to-noise ratio and the accuracy of the measurements of peak amplitudes and peak widths are both 

improved. However, above a smooth width of about 40 (smooth ratio 0.2), the smoothing causes the 

peak to be shorter than 1.0 and wider than 200, even though the signal-to-noise ratio continues to 

improve as the smooth width is increased. 
 

 

  

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#limits
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/10EnsembleAverage.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/10EnsembleAverageCurveFit.png
https://terpconnect.umd.edu/~toh/spectrum/testcondense.m
https://terpconnect.umd.edu/~toh/spectrum/consense.m
https://terpconnect.umd.edu/~toh/spectrum/testcondense.png
https://terpconnect.umd.edu/~toh/spectrum/testcondense2.png
https://terpconnect.umd.edu/~toh/spectrum/testcondense.txt
https://terpconnect.umd.edu/~toh/spectrum/testcondense.txt
https://terpconnect.umd.edu/~toh/spectrum/Smooth3.wmv


Page | 52  

Smoothing in spreadsheets 

Smoothing can be done in spreadsheets using the "shift and multiply" technique described above. In the 

demonstration spreadsheets smoothing.ods and smoothing.xls (screen image) the set of multiplying 

coefficients is contained in the formulas that calculate the values of each cell of the smoothed data in 

columns C and E. Column C performs a 7-point rectangular smooth (1 1 1 1 1 1 1). Column E 

performs a 7-point triangular smooth (1 2 3 4 

3 2 1), applied to the data in column A. You 

can type in (or Copy and Paste) any data you 

like into column A, and you can extend the 

spreadsheet to longer columns of data by 

dragging the last row of columns A, C, and E 

down as needed. But to change the smooth 

width, you would have to change the equations 

in columns C or E and copy the changes down 

the entire column. It is common practice to 

divide the results by the sum of the coefficients 

so that the net gain is unity and the area under 

the curve of the smoothed signal is preserved. 

The spreadsheets UnitGainSmooths.xls and 

UnitGainSmooths.ods (screen image) contain a 

collection of unit-gain convolution coefficients 

for a rectangular, triangular, and p-spline 

smooth of width 3 to 29 in both vertical 

(column) and horizontal (row) forma Copy and 

Paste these into your own spreadsheets.  

The spreadsheets MultipleSmoothing.xls and 

MultipleSmoothing.ods (screen image on the 

left) demonstrate another method in which the 

coefficients are contained in a group of 17 

adjacent cells (in row 5, columns I through Y), 

making it easier to change the smooth shape 

and width (up to a maximum of 17) just by 

changing those 17 cells. (To make a smaller 

smooth, just insert zeros for the unused 

coefficients; in this example, a 7-point 

triangular smooth is defined in columns N - T 

and the rest of the coefficients are zeros). In 

this spreadsheet, the smooth is applied three 

times in succession in columns C, E, and G, resulting in an effective maximum smooth width of n*w-

n+1 = 49 points applied to column G. A disadvantage of the above technique for smoothing in 

spreadsheets is that is cumbersome to expand them to very large smooth widths. 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#algorithms
https://terpconnect.umd.edu/~toh/spectrum/smoothing.ods
https://terpconnect.umd.edu/~toh/spectrum/smoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.png
https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.xls
https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.ods
https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.png
https://terpconnect.umd.edu/~toh/spectrum/MultipleSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/MultipleSmoothing.ods
https://terpconnect.umd.edu/~toh/spectrum/MultipleSmoothing.png


Page | 53  

 A more flexible and powerful technique, especially for very large and variable smooth widths, is to 

use the built-in spreadsheet function AVERAGE, which by itself is equivalent to a rectangular smooth, 

but if applied two or three times in succession, generates triangle and P-spline-shaped smooths. It is 

best used in conjunction with the INDIRECT function (page 348) to control a dynamic range of values. 

This is demonstrated in the spreadsheet VariableSmooth.xlsx in which the data in column A are 

smoothed by three successive applications of AVERAGE, in columns B, C, and D, each with a smooth 

width specified in a single cell F3. If w is the smooth width, which can be any odd positive number, the 

resulting smooth in column D has a total width of n*w-n+1 = 3*w-2 points. The cell formula of the 

smooth operations (=AVERAGE(INDIRECT("A"&ROW(A17)-($F$3-1)/2&":A"&ROW(A17) + 

($F$3-1)/2))) uses the INDIRECT function to apply the AVERAGE function to the data in the rows 

from w/2 rows above to w/2 rows below the current row, where the smooth width w is in cell F3. If you 

Copy and Paste this formula to 

your own spreadsheets, you must 

manually change all references to 

column "A" to the column that 

contains the data to be smoothed 

in your spreadsheet and change 

all references to "$F$3" to the 

location of the smooth width in 

your spreadsheet. Then when you 

drag-copy down to cover all your 

data points, the row cell 

references will take care of 

themselves.  

The example in the graphic above 

shows smoothing applied to a DC (direct current) signal with a step change occurring at x=111. 

Without smoothing (blue line) the step is almost invisible. As an application example, the smoothed 

signal might be used to trigger an alarm whenever it exceeds a value of .2, warning that something has 

occurred, whereas the raw unsmoothed signal would be completely unsuitable for that purpose. 

Another set of spreadsheets that uses this same AVERAGE(INDIRECT()) technique is 

SegmentedSmoothTemplate.xlsx, a segmented multiple-width data smoothing spreadsheet template that 

can apply individually specified different smooth widths to different regions of the signal. This is 

especially useful if the widths or the noise level of the peaks vary substantially across the signal. In this 

version, there are 20 segments. Similar templates could be constructed with any number of segments. 
 

SegmentedSmoothExample.xlsx is an example with data (graphic); note that the plot is conveniently 

lined up with the columns containing the smooth widths for each segment. A related sheet, 

GradientSmoothTemplate.xlsx or GradientSmoothExample2.xlsx (graphic), performs a gradient 

smooth, linearly increasing (or decreasing) in smooth width across the entire signal, given only the 

starting and ending values, and automatically generating as many segments and different smooth 

widths as are necessary. (It also enforces the restriction, in column C, that each smooth width must be 

an odd number, to prevent an x-axis shift in the smoothed data).  

https://terpconnect.umd.edu/~toh/spectrum/VariableSmoothExample.png
https://www.lifewire.com/excel-sum-indirect-dynamic-range-formula-3124100
https://terpconnect.umd.edu/~toh/spectrum/VariableSmooth.xlsx
https://support.office.com/en-us/article/indirect-function-474b3a3a-8a26-4f44-b491-92b6306fa261
https://support.office.com/en-us/article/AVERAGE-function-047BAC88-D466-426C-A32B-8F33EB960CF6
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.png
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothExample2.xls
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothExample2.png


Page | 54  

Smoothing in Matlab and Octave 
The “mean” function, in both Matlab and Python, implements a single sliding average smooth (page 

437). My custom Matlab function fastsmooth implements shift-and-multiply type smooths using a 

faster recursive algorithm. It is a Matlab function of the form s=fastsmooth(a,w, type, edge). The 

argument "a" is the input signal vector; "w" is 

the smooth width (a positive integer); "type" 

determines the smooth type: type=1 gives a 

rectangular (sliding-average or boxcar) 

smooth; type=2 gives a triangular smooth, 

equivalent to two passes of a sliding average; 

type=3 gives a “p-spline” smooth, equivalent 

to three passes of a sliding average; these 

shapes are compared in the figure on the left. 

(See page 58 for a comparison of these 

smoothing modes). The argument "edge" 

controls how the "edges" of the signal (the 

first w/2 points and the last w/2 points) are 

handled. If edge=0, the edges are zero. (In this 

mode the elapsed time is independent of the 

smooth width. This gives the fastest execution time). If edge=1, the edges are smoothed with 

progressively smaller smooths the closer to the end. (In this mode the execution time increases with 

increasing smooth widths). The smoothed signal is returned as the vector "s". (You can leave off the 

last two input arguments: fastsmooth(Y,w,type) smooths with edge=0 and fastsmooth(Y,w) smooths 

with type=1 and edge=0). Compared to convolution-based smooth algorithms, fastsmooth uses a 

simple recursive algorithm that typically gives faster execution times for large smooth widths; it can 

smooth a 1,000,000-point signal with a 1,000-point sliding average in less than 0.1 seconds on a 

standard Windows PC. Here's a simple example of fastsmooth demonstrating the effect on white noise 

(graphic). 
 

x=1:100; 

y=randn(size(x));  

plot(x,y,x, fastsmooth(y,5,3,1),'r') 

xlabel('Blue: white noise.    Red: smoothed white noise.') 

Segmented smoothing  

SegmentedSmooth.m is a segmented version of fastsmooth. The syntax is the same as fastsmooth.m, 

except that the second input argument "smoothwidths" can be a vector: SmoothY = SegmentedSmooth 

(Y, smoothwidths, type, ends). The function divides Y into several equal-length regions defined by the 

length of the vector 'smoothwidths', then smooths each region with a smooth of type 'type' and width 

defined by the elements of vector 'smoothwidths'. In the graphic example on the next page, 

smoothwidths=[31 52 91], which divides up the signal into three equal regions and smooths the first 

region with smoothwidth 31, the second with smoothwidth 51, and the last with smoothwidth 91. You 

http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf#page=282
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf#page=282
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothingWhiteNoise.png
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m


Page | 55  

may use any number of smooth widths and 

any sequences of smooth widths, just by how 

you define the vector “smoothwidths”; no 

other change is needed. Type "help 

SegmentedSmooth" for other examples.  

DemoSegmentedSmooth.m is a 

demonstration script that shows the operation 

with different signals consisting of noisy 

variable-width peaks that become 

progressively wider (figure on the right). If 

the peak widths increase or decrease 

regularly across the signal, you can calculate 

the smoothwidths vector by giving only the 

number of segments ("NumSegments"), the 

first value, "startw", and the last value, 

"endw", like so: 

wstep=(endw-startw)/NumSegments; 

smoothwidths=startw:wstep:endw; 

Other smoothing functions.  

Diederick has published a Savitzky-Golay smooth function in Matlab, which you can download from 

the Matlab File Exchange. It is included in the iSignal function (page 371). Greg Pittam has published a 

modification of my fastsmooth function that tolerates NaNs ("Not a Number") in the data file 

(nanfastsmooth(Y,w,type,tol)) and another version for smoothing “angle” data that repeats every 360o 

or 2 π radians (nanfastsmoothAngle(Y,w,type,tol)). 

SmoothWidthTest.m is a demonstration script that uses the fastsmooth function to demonstrate the effect 

of smoothing on peak height, noise, and signal-

to-noise ratio of a peak. You can change the 

peak shape in line 7, the smooth type in line 8, 

and the noise in line 9. A typical result for a 

Gaussian peak with white noise smoothed with 

a p-spline (pseudo-Gaussian) smooth is shown 

on the left. Here, as it is for most peak shapes, 

the optimal signal-to-noise ratio occurs at a 

smooth ratio of about 0.8. However, that 

optimum corresponds to a significant reduction 

in peak height, which could be a problem. A 

smooth width about half the width of the 

original unsmoothed peak produces less 

distortion of the peak but still achieves good 

noise reduction. SmoothVsCurvefit.m is a 

https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSmooth.m
http://www.mathworks.com/matlabcentral/fileexchange/authors/62607
http://www.mathworks.com/matlabcentral/fileexchange/30299-savitzky-golay-smoothdifferentiation-filters-and-filter-application
http://www.mathworks.com/matlabcentral/fileexchange/30299-savitzky-golay-smoothdifferentiation-filters-and-filter-application
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Interactive_Smoothing
http://uk.mathworks.com/matlabcentral/profile/authors/1859625-greg-pittam
http://uk.mathworks.com/matlabcentral/fileexchange/52688-nan-tolerant-fast-smooth
http://uk.mathworks.com/matlabcentral/fileexchange/52689-angular-fast-smooth-nan-tolerant
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTest.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsCurvefit.m


Page | 56  

similar script but is also compares curve fitting as an alternative method to measure the peak height 

without smoothing. 

This effect is explored more completely by the code below, which shows an experiment in Matlab or 

Octave that creates a Gaussian peak, smooths it, compares the smoothed and unsmoothed version, then 

uses the max(), halfwidth(), and trapz() functions to print out the peak height, halfwidth, and area. 

(“max” and “trapz” are both built-in functions in Matlab and Octave, but you must download 

halfwidth.m. To learn more about these functions, type "help" followed by the function name). 

x=[0:.1:10]'; 

y=exp(-(x-5).^2); 

plot(x,y) 

ysmoothed=fastsmooth(y,11,3,1); 

plot(x,y,x, ysmoothed, 'r') 

disp([max(y) halfwidth(x,y,5) trapz(x,y)]) 

disp([max(ysmoothed) halfwidth(x,ysmoothed,5)  trapz(x, ysmoothed)]) 
 

        max        halfwidth      Area 

            1       1.6662       1.7725 

      0.78442       2.1327       1.7725 

These results show that smoothing reduces the peak height (from 1 to 0.784) and increases the peak 

width (from 1.66 to 2.13) but has no observable effect on the peak area if you measure the total area 

under the broadened peak. Smoothing is useful if the peak height, position, or width are measured by 

simple methods, but there is no need to smooth the data if the noise is white and these peak parameters 

are measured by least-squares methods, because the least-squares results obtained on the unsmoothed 

data will be more accurate than the slightly distorted smoothed signal (see page 228).  

Other noise-reduction functions.  

The Matlab/Octave user-defined function condense.m, condense(y,n), returns a condensed version of y 

in which each group of n points is replaced by its average, reducing the length of y by the factor n. (For 

x,y data sets, use this function on both independent variable x and dependent variable y so that the 

features of y will appear at the same x values).  Random white noise in the signal is reduced by sqrt(n) 

but the noise color is unchanged. 
 

 The Matlab/Octave user-defined function medianfilter.m, medianfilter(y,w), performs a median-

based filter operation that replaces each value of y with the median of w adjacent points (which must be 

a positive integer). killspikes.m is a threshold-based filter for eliminating narrow spike artifacts. The 

syntax is fy= killspikes(x, y, threshold, width). Each time it finds a positive or negative jump in the data 

between y(n) and y(n+1) that exceeds "threshold", it replaces the next "width" points of data with a 

linearly interpolated segment spanning x(n) to x(n+width+1). The script TestSpikefilters compares both 

spike filters on a Gaussian with spikes and shows how accurately they recover the original peak area. 

ProcessSignal is a Matlab/Octave command-line function that performs smoothing and differentiation 

on the time-series data set x,y (column or row vectors). It can employ all the types of smoothing 

described above. Type "help ProcessSignal" at the command line. This function returns the processed 

signal as a vector that has the same shape as x, regardless of the shape of y. The syntax is Processed = 

ProcessSignal(x, y, DerivativeMode, w, type, ends, Sharpen, factor1, factor2, Symize, Symfactor, 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/SmoothExperiment.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothExperiment.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/condense.m
https://terpconnect.umd.edu/~toh/spectrum/medianfilter.m
https://terpconnect.umd.edu/~toh/spectrum/killspikes.m
https://terpconnect.umd.edu/~toh/spectrum/TestSpikefilters.m
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m


Page | 57  

SlewRate, MedianWidth).  
 

Real-time smoothing in Matlab is discussed on page 342. Smoothing in Python is described on page 

437. A Live Script (page 36) for smoothing is covered on page 58. 

iSignal (page 371) is an interactive keystroke-operated function for Matlab that includes smoothing for 

time-series signals using all the 

algorithms discussed above, 

including the Savitzky-Golay 

smooth, the segmented smooth, a 

median filter, and a condense 

function. Simple keystrokes allow 

you to adjust any of the 

smoothing parameters 

continuously while observing the 

effect on your signal instantly, 

making it easy to observe how 

different types and amounts of 

smoothing effect noise and signal, 

such as the height, width, and 

areas of peaks. Other functions of 

iSignal include differentiation, 

peak sharpening, interpolation, least-squares peak measurement, and a frequency spectrum mode that 

shows how smoothing and other functions can change the frequency spectrum of your signals. The 

simple script “iSignalDeltaTest” demonstrates the frequency response of iSignal's smoothing functions 

by applying them to a single-point spike, allowing you to change the smooth type and width to see how 

the frequency response changes. (View the code here or download the ZIP file with sample data for 

testing). The Octave version is isignaloctave.m, which has different keys for pan and zoom. 

You try it: Here's an experiment you can try using iSignal. This uses a previously recorded example of 

a very noisy signal with lots of high-frequency (blue) noise totally obscuring a perfectly good peak in 

the center at x=150, height=1e-4; SNR=90. First, download iSignal.m and NoisySignal.mat into the 

Matlab search path, then execute these statements: 

>> load NoisySignal 

>> isignal(x,y); 

Use the A and Z keys to increase and decrease the smooth width, and the S key to cycle through the 

available smooth types. Hint: use the “p-spline” smooth and keep increasing the smooth width until the 

peak becomes visible. (Unfortunately, iSignal does not currently work in Octave, but it does work in a 

Web browser using Matlab Online. See https://www.mathworks.com/products/matlab-online.html). 

Note: If you are reading this online, you can right-click on any of the m-file links on this site and select 

Save Link As... to download them to your computer for use within Matlab.  

http://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/iSignalDeltaTest.m
https://en.wikipedia.org/wiki/Dirac_delta_function
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/NoisySignal.mat
https://terpconnect.umd.edu/~toh/spectrum/NoisySignal.mat
https://www.mathworks.com/products/matlab-online.html


Page | 58  

Live script for smoothing 

Here is an interactive Matlab Live Script for performing several types of smoothing applied to experi-

mental data stored on disk (page 363; download link: DataSmoothing.mlx). It can perform spike re-

moval, sliding average smooths with up to 5 passes, Savitsky-Golay and Fourier low-pass filtering 

(page 125), and wavelet denoising (page 130, which requires the Matlab Wavelet Toolkit). Clicking the 

Open data file button in line 1 opens a file browser, allowing you to navigate to your data file (in .csv 

or .xlsx format; the script assumes that your x,y data are in the first two columns). All the variables and 

settings appear in the Matlab workspace as usual; the finished smoothed data are in the vector "sy". 

 

The script has several interactive controls. The startpc and endpc sliders in lines 7 and 8 allow you to 

select which portion of the data range to process, from 0% to 100% of the total range of the data file. 

The RemoveSpikes checkbox applies a median filter (page 49) to remove sharp narrow spikes. 

SmoothType drop-down menu in line 13 selects the smoothing algorithm; each has one or more con-

trols specific to that smooth type in lines 16 to 30. The first choice is the recursive sliding average 

(fastsmooth.m) algorithm (page 41). The smooth width and number of passes are controlled by the 

sliders in lines 16 and 17. The other controls are explained in the accompanying comment lines (in 

green). Fourier filtering, Savitsky-Golay and wavelet denoising are topics that will be explained in later 

sections. The PlotBeforeAndAfter checkbox in line 3 gives you the option of plotting the original sig-

nal (in black) along with the processed signal (in red). The FrequencySpectra checkbox in line 4 al-

lows you to show the frequency spectrum of the original and/or processed signals (page 91). Note: to 

https://terpconnect.umd.edu/~toh/spectrum/DataSmoothing.mlx
https://www.mathworks.com/products/wavelet.html
file:///C:/Users/tomoh/Dropbox/SPECTRUM/fastsmooth.m


Page | 59  

view the graphic plots to the right of the code, as shown above, right-click on the empty space on the 

right and select "Disable synchronous scrolling". Note: you can double-click any of the sliders to 

change their ranges if the initial range is insufficient. See page 365 for other interactive tools. 

Smoothing performance comparison 

The Matlab/Octave function "MultiPeakOptimization.m" is a self-contained function that compares the 

performance of four types of linear smooth operations: (1) sliding-average rectangular, (2) triangular, 

(3) p-spline (equivalent to three passes of a sliding-average), and (4) Savitzky-Golay. These are the 

four smooth types discussed above, corresponding to the four values of the “SmoothMode” input ar-

gument of the ProcessSignal and the interactive iSignal functions. These four smooth operations are 

applied to a 18000-point signal consisting of 181 Gaussian peaks all with a height of 1.0 and a FWHM 

(full-width at half-maximum) of 20 points (“wid”, line 10), which are all separated by an x-value of 

160.01 (line 16), plus added noise consisting of normally-distributed random white noise with a mean 

of zero and a standard deviation of “Noise” (line 20). The x-axis peak position and y-axis height of 

each smoothed peak is determined by the height and position of the maximum single signal point for 

each peak. The relative standard deviation of the measured peak heights is recorded as a function of 

“total smooth width”, tsw, which is defined as the halfwidth of the impulse response of each smooth 

type. The results are shown in the figure below for a peak halfwidth of 20 and a noise standard devia-

tion of 0.2 (i.e., 20% of the peak height).  
 

The four quadrants of the graph are: (upper left) peak position error expressed as a percentage of the 

peak separation; (upper right), the mean peak height of the smoothed peaks; (lower left), the standard 

deviation of the smoothed noise; and (lower right) the relative standard deviation of the measured peak 

heights. The different smooth types are indicated by color: blue - sliding-average; red - triangular; yel-

low - p-spline, and purple - Savitzky-Golay. 
 

These results show that the results of these different smooth types are quite similar but that, the Savitz-

ky-Golay smooth gives the smallest reduction in peak height but the smallest reduction in noise ampli-

https://terpconnect.umd.edu/~toh/spectrum/smoothdemo.m
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://en.wikipedia.org/wiki/Full_width_at_half_maximum


Page | 60  

tude, compared to the other methods. All these smoothing methods result in similar improvements in 

the standard deviation of the peak height (bottom right panel) and in the peak position error (upper left 

panel). Moreover, in all cases, the optimum performance is achieved when the total smooth width is 

approximately equal to the halfwidth of the peak. The conclusions are the same for a Lorentzian peak, 

as demonstrated by a similar function "MultiPeakOptimizationLorentzian.m", graphic, the difference 

being that the peak height reduction is greater for the Lorentzian. For applications where the shape of 

the signal must be preserved as much as possible, the Savitzky-Golay is the method of choice. In peak 

detection applications (page 66), on the other hand, where the purpose of smoothing is to reduce the 

noise in the derivative signal, the retention of the shape of that derivative is less important because peak 

parameters are determined by least-squares fitting. Therefore, the triangular or p-spline smooth is well 

suited to this purpose and can be faster for very large smooth widths.  
 

The differences between these methods are even less when the abscissas in the above graphs are 

changed from total smooth bandwidth to white noise reduction factor, defined as the square root of the 

reciprocal of the sum of the square of the impulse response function, as shown below. 

 

An important detail is that these results apply only of the noise in the signal is white (page 29). If you 

smooth a signal that has been differentiated, for example, the second derivative of a Gaussian peak with 

white noise (graphic), high-frequency content of both the signal and the noise are greatly enhanced, and 

these results will be different, showing much poorer relative performance for the simple moving aver-

age (graphic). The Savitzky-Golay smooth remains superior in this case also. A more sophisticated 

method of noise reduction, called wavelet denoising, will be introduced on page 129. 

  

https://terpconnect.umd.edu/~toh/spectrum/MultiPeakOptimizationLorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothingComparisonMultiplePeaksLorentzianFigure2Noise01.png
https://terpconnect.umd.edu/~toh/spectrum/dsmooth2b.GIF
https://terpconnect.umd.edu/~toh/spectrum/SmoothingComparisonGaussian2ndDerivativeFigure2Noise01.png


Page | 61  

Differentiation 
The symbolic differentiation of functions is a topic that is introduced in all elementary Calculus courses. 

The numerical differentiation of digitized signals is an application of this concept that has many uses in 

analytical signal processing. The first derivative of a 

signal is the rate of change of y with x, that is, dy/dx, 

which we interpret as the slope of the tangent to the 

signal at each point, as illustrated by the animation 

shown on the left by this script. (If the animation 

does not show, click this link). The simplest 

algorithm for computing the first derivative is called 

a “finite difference” method: 

(for 1< j <n-1). 

where X'j and Y'j are the X and Y values of the jth 

point of the derivative, n = number of points in the signal, and X is the difference between the X 

values of adjacent data points. A commonly used variation of this algorithm computes the average 

slope between three adjacent points: 

(for 2 < j <n-1). 

This is called a central-difference method; its advantage is that it does not produce a shift in the x-axis 

position of the derivative. It is also possible to compute gap-segment derivatives in which the x-axis 

interval between the points in the above expressions is greater than one; for example, Yj-2 and Yj+2, or 

Yj-3 and Yj+3, etc. This is equivalent to applying a sliding-average (rectangular) smooth (page 39) in 

addition to the derivative.  

The second derivative is the derivative of the derivative: it is a measure of the curvature of the signal, 

that is, the rate of change of the slope of the signal. It can be calculated by applying the first derivative 

calculation twice in succession. The simplest algorithm for direct computation of the second derivative 

in one step is: 

(for 2 < j <n-1). 

Similarly, higher derivative orders can be computed using the appropriate sequence of coefficients: for 

example, +1, -2, +2, -1 for the third derivative and +1, -4, +6, -4, +1 for the 4th derivative, although 

these derivatives can also be computed simply by taking successive lower order derivatives. The first 

derivative we interpret as the slope of the original signal at each point and the second derivative as the 

curvature. Where the signal curvature is concave-down, the second derivative is negative, and where 

http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Slope
http://en.wikipedia.org/wiki/Tangent
https://terpconnect.umd.edu/~toh/spectrum/SlopeAnimation.m
https://terpconnect.umd.edu/~toh/spectrum/SlopeAnimation.gif


Page | 62  

the signal is concave-up, the second derivative is positive. For higher derivatives, we have no single-

word labels, at least in English; each derivative is just the rate of change of the one before it. 

The Savitzky-Golay smooth (page 39) can also be used as a differentiation algorithm with the 

appropriate choice of input arguments; it neatly combines differentiation and smoothing into one 

algorithm. 

The accuracy of numerical differentiation is demonstrated by the Matlab/Octave script 

GaussianDerivatives.m (graphic link), which compares the exact analytical expressions for the 

derivatives of a Gaussian (readily obtained from Wolfram Alpha) to the numerical values obtained by 

the expressions above, demonstrating that the shape and amplitude of the derivatives are an exact 

match as long as the sampling interval is not too coarse. It also demonstrates that you can obtain the 

numerical nth derivative exactly by applying n successive first differentiations. Ultimately, the 

numerical precision limitation of the computer could be a limitation, but only in some extreme cases, as 

demonstrated on page 335. (An alternative differentiation method based on the Fourier Transform, 

page 91, can calculate any derivative order but has not been used much in practice. See reference 88). 

 Basic Properties of Derivative Signals 
The figure on the left shows 

the results of the successive 

differentiation of a 

computer-generated 

Gaussian peak. The signal 

in each of the four windows 

is the first derivative of the 

one before it; that is, 

Window 2 is the first 

derivative of Window 1, 

Window 3 is the first 

derivative of Window 2, 

Window 3 is the second 

derivative of Window 1, and 

so on. You can predict the 

shape of each signal by 

recalling that the derivative 

is simply the slope of the original signal: where a signal slopes up, its derivative is positive; where a 

signal slopes down, its derivative is negative; and where a signal has a slope of zero, its derivative is 

zero. (Matlab/Octave code for this figure.) 

The sigmoidal signal shown in Window 1 has an inflection point (the point where the slope is 

maximum) at the center of the x-axis range. This corresponds to the maximum in its first derivative 

(Window 2) and to the zero-crossing (point where the signal crosses the x-axis going either from 

positive to negative or vice versa) in the second derivative in Window 3. This behavior can be useful 

for precisely locating the inflection point in a sigmoid signal, by computing the location of the zero-

http://en.wikipedia.org/wiki/Savitzky–Golay_smoothing_filter
https://terpconnect.umd.edu/~toh/spectrum/GaussianDerivatives.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianDerivatives.png
http://www.wolframalpha.com/input/?i=second+derivative+of+gaussian
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Numerical
https://terpconnect.umd.edu/~toh/spectrum/derivdemo1.m
https://en.wikipedia.org/wiki/Sigmoid_function


Page | 63  

crossing in its second derivative. Similarly, the location of the maximum in a peak-type signal can be 

computed precisely by computing the location of the zero-crossing in its first derivative. Different peak 

shapes have different derivatives shapes: the Matlab/Octave function DerivativeShapeDemo.m 

demonstrates the first derivative forms of 16 different model peak shapes (graphic on page 419). Any 

smooth peak shape with a single maximum has sequential derivatives that exhibit a series of 

alternating maxima and minima, the total number of which is one more than the derivative order. The 

even-order derivatives have a maximum or a minimum at the peak center, and the odd-order derivatives 

have a zero-crossing at the peak center (Matlab/Octave code). You can also see here that the numerical 

magnitude of the derivatives (y-axis values) is much less than the original signal because derivatives 

are the differences between adjacent y values, divided by the independent variable increment. (It is the 

same reason the odometer in your car usually displays a much larger number than the speedometer 

(unless your car is very new, and you drive very fast). The speedometer is essentially the first derivative 

of the odometer). 

An important property of 

the differentiation of peak-

type signals is the effect of 

the peak width on the 

amplitude of derivatives. 

The figure on the left 

shows the results of the 

successive differentiation 

of two computer-generated 

Gaussian bands. The two 

bands have the same 

amplitude (peak height) 

but one of them is exactly 

twice the width of the 

other. As you can see, the 

wider peak has a smaller 

derivative amplitude, and 

the effect becomes more noticeable at higher derivative orders. In general, the amplitude of the nth 

derivative of a peak is inversely proportional to the nth power of its width, for signals having the same 

shape and amplitude. Thus, differentiation in effect discriminates against wider peaks and the higher 

the order of differentiation the greater the discrimination. This behavior can be useful in quantitative 

analytical applications for detecting peaks that are superimposed on and obscured by stronger but 

broader background peaks. (Matlab/Octave code for this figure). The amplitude of a derivative of a 

peak also depends on the shape of the peak and is directly proportional to its peak height. Gaussian and 

Lorentzian peak shapes have slightly different first and second derivative shapes and amplitudes. The 

amplitude of the nth derivative of a Gaussian peak of height H and width W can be estimated by the 

empirical equation H*(10^(0.027*n^2+n*0.45-0.31)).*W^(-n), where W is the full width at half 

maximum (FWHM) measured in the number of x,y data points.  

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/DerivativeShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeShapes.m
https://en.wikipedia.org/wiki/Odometer
https://terpconnect.umd.edu/~toh/spectrum/derivdemo2.m
https://terpconnect.umd.edu/~toh/spectrum/FirstDerivativeGaussVsLor.png
https://terpconnect.umd.edu/~toh/spectrum/SecondDerivativeGaussVsLor.png
https://terpconnect.umd.edu/~toh/spectrum/DerivativeScaling.m


Page | 64  

Although differentiation completely changes the shape of peak-type signals, a periodic signal like a 

sine wave signal behaves very differently. The derivative of a sine wave of frequency f is a phase-

shifted sine wave, or cosine wave, of the same frequency and with an amplitude that is proportional to f, 

as can be demonstrated in Wolfram Alpha. The derivative of a periodic signal containing several sine 

components of different frequency will still contain those same frequencies, but with altered amplitudes 

and phases. For this reason, when you take the derivative of a music or speech signal, the music or 

speech is still completely recognizable, but with the high frequencies increased in amplitude compared 

to the low frequencies, and as a result, it sounds "thin" or "tinny". See page 389 for an example. 

Applications of Differentiation 
A simple example of the application of the differentiation of experimental signals is shown in the figure 

below. This signal is typical of the type of signal recorded in amperometric titrations and some kinds of 

thermal analysis and kinetic experiments: a series of straight-line segments of different slope. The 

objective is to determine how many segments there are, where the breaks between them fall, and the 

slopes of each segment. This is difficult to do from the raw data because the slope differences are small, 

and the resolution of the computer screen display is limiting. The task is much simpler if the first 

derivative (slope) of the signal is calculated (below right). Each segment is now clearly seen as a 

separate step whose height (y-axis value) is the slope. The y-axis now takes on the units of dy/dx. Note 

that in this example the steps in the derivative signal are not completely flat, indicating that the line 

segments in the original signal were not perfectly straight. This is most likely due to random noise in 

the original signal. Although this noise was not particularly evident in the original signal, it is more 

noticeable in the derivative.  

 

 
The signal on the left seems to be a more-or-less straight line, but its numerically calculated derivative 

(dx/dy), plotted on the right, shows that the line in fact has several approximately straight-line 

segments with distinctly different slopes and with well-defined breaks between each segment. 

 

It is commonly observed that differentiation degrades the signal-to-noise ratio unless the differentiation 

algorithm includes smoothing (page 39) that is carefully optimized for each application. Numerical 

algorithms for differentiation are as numerous as for smoothing and must be carefully chosen to control 

signal-to-noise ratio degradation (page 70). 

https://en.wikipedia.org/wiki/Sine_wave
http://whatis.techtarget.com/definition/cosine-wave
http://www.wolframalpha.com/input/?i=deriv%28sin%28f*t%29%29
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#sounds
https://en.wikipedia.org/wiki/Amperometric_titration
https://en.wikipedia.org/wiki/Thermal_analysis


Page | 65  

A classic use of second differentiation in chemical analysis is in the location of endpoints in 

potentiometric titration. In most titrations, the titration curve has a sigmoidal shape and the inflection 

point, the point where the slope is maximum and the curvature is zero, indicates the endpoint. The first 

derivative of the titration curve will, therefore, exhibit a maximum at the inflection point, and the 

second derivative will exhibit a zero-crossing at that point. Maxima and zero crossings are usually 

much easier to locate precisely than inflection points. 

 
The signal on the left is the pH titration curve of a very weak acid with a strong base, with volume in 

mL on the X-axis and pH on the Y-axis. The endpoint is the point of the greatest slope; this is also an 

inflection point, where the curvature of the signal is zero. With a weak acid such as this, it is difficult to 

locate this point precisely from the original titration curve. The endpoint is much more easily located in 

the second derivative, shown on the right, as the zero-crossing. 

 

The figure above shows a pH titration curve of a very weak acid with a strong base, with volume in mL 

on the X-axis and pH on the Y-axis. The volumetric equivalence point (the "theoretical" endpoint) is 20 

mL. The endpoint is the point of the greatest slope; this is also an inflection point, where the curvature 

of the signal is zero. With a weak acid such as this, it is difficult to locate this point precisely from the 

original titration curve. The second derivative of the curve is shown in Window 2 on the right. The 

zero-crossing of the second derivative corresponds to the endpoint and is much more precisely 

measurable. Note that in the second derivative plot, both the x-axis and the y-axis scales have been 

expanded to show the zero-crossing point more clearly. The 

dotted lines show that the zero-crossing falls at about 19.4 mL, 

close to the theoretical value of 20 mL. 

Derivatives can also be used to detect unexpected asymmetry in 

otherwise symmetrical peaks. For example, pure Gaussian peaks 

are symmetrical, but if they are subjected to exponential 

broadening (page 129), they can become asymmetrical. If the 

degree of broadening is small, it can be difficult to detect visually, 

and that is where differentiation can help. The Matlab/Octave 

script DerivativeEMGDemo.m (graphic) shows the 1st through 5th 

derivatives of a slightly exponentially broadened Gaussian 

(EMG); of those derivatives, the second clearly shows unequal 

positive peaks that would be expected to be equal for a purely 

http://zimmer.csufresno.edu/~davidz/Chem102/Derivative/Derivative.html
https://en.wikipedia.org/wiki/Potentiometric_titration
https://www.khanacademy.org/test-prep/mcat/chemical-processes/titrations-and-solubility-equilibria/a/acid-base-titration-curves
https://terpconnect.umd.edu/~toh/spectrum/DerivativeEMGDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeEMGDemo.png


Page | 66  

symmetrical peak (on the left). The higher derivatives offer no clear advantage and are more 

susceptible to white noise in the signal. For another example, if a Gaussian peak is heavily overlapped 

by a smaller peak, the result is usually asymmetrical. The script DerivativePeakOverlapDemo (graphic) 

shows the 1st through 5th derivatives of two overlapping Gaussians where the second peak is so small 

and so close that it is impossible to discern visually, but again the second derivative shows the 

asymmetry clearly by comparing the heights of the two positive peaks. DerivativePeakOverlap.m 

detects the minimum extent of peak overlap by the first and second derivatives, looking for the point at 

which two peaks are visible; for each trial separation, it prints out the separation, resolution, and the 

number of peaks detected in the first and second derivatives. Here’s another second derivative example. 

Derivatives can also be used to correct peak asymmetry, by adding a weighted portion of the first 

derivative to the original peak, as described in the section on peak sharpening on page 80. 

Peak detection 
 A very common use of differentiation is in the detection of peaks in a signal, especially to 

automatically determine the number of peaks and their locations. It is clear from the basic properties 

described in the previous section that the first derivative of a peak has a downward-going zero-crossing 

at the peak maximum, which can be used to locate the x-value of the peak, as shown on the right 

(script). If there is no noise in the signal, then any data point that has lower values on both sides of it 

will be a peak maximum. But there is always at least a little noise in real experimental signals, and that 

will cause many false zero-crossings simply due to the noise. To avoid this problem, one popular 

technique smooths the first derivative of the signal first, before looking for downward-going zero-

crossings, and then takes only those zero-

crossings whose slope exceeds a certain 

predetermined minimum (called the "slope 

threshold") at a point where the original 

signal amplitude exceeds a certain minimum 

(called the "amplitude threshold"). By 

carefully adjusting the smooth width, slope 

threshold, and amplitude threshold, it is 

possible to detect only the desired peaks over 

a wide range of peak widths and ignore peaks 

that are too small, too wide, or too narrow. 

Moreover, because smoothing can distort 

peak signals, reducing peak heights, and 

increasing peak widths (page 39), this 

technique can be extended to measure the 

position, height, and width of each peak by least-squares curve-fitting of a segment of original 

unsmoothed signal near the top of the peak (where the signal-to-noise ratio is usually the best). Thus, 

even if heavy smoothing is necessary to provide reliable discrimination against noise, the peak 

parameters extracted by curve fitting are not distorted, and the effect of random noise in the signal is 

reduced by curve fitting over multiple data points in the peak. This technique has been implemented in 

Matlab/Octave (page 73) and in spreadsheets (page 73). Peak detection algorithms like this are widely 

https://terpconnect.umd.edu/~toh/spectrum/DerivativePeakOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativePeakOverlapDemo.png
https://terpconnect.umd.edu/~toh/spectrum/DerivativePeakOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DataDifferentiation.png
https://terpconnect.umd.edu/~toh/spectrum/peakdetection.m
https://www.google.com/search?q=peak+detection&oq=peak+detection&aqs=chrome..69i57j0l5.3200j0j4&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=peak+detection&oq=peak+detection&aqs=chrome..69i57j0l5.3200j0j4&sourceid=chrome&ie=UTF-8
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Optimization
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Optimization
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#Spreadsheet


Page | 67  

applied in spectroscopy, biomedical research, environmental monitoring, financial analysis, image 

processing, neuroscience, physics and material science, chemistry and chromatography, speech, and 

audio processing (reference 100). 

Derivative Spectroscopy 

In spectroscopy, the differentiation of spectra is a widely used technique, particularly in infra-red, u.v.-

visible absorption, fluorescence, and reflectance spectrophotometry, referred to as derivative 

spectroscopy. Derivative methods have been used in analytical spectroscopy for three main purposes: 

(a) spectral discrimination, as a qualitative fingerprinting technique to accentuate small structural 

differences between nearly identical spectra;  
 

(b) spectral resolution enhancement (peak sharpening), as a technique for increasing the apparent 

resolution of overlapping spectral bands in order to more easily determine the number of bands and 

their wavelengths;  
 

(c) quantitative analysis, as a technique for the correction for irrelevant background absorption and as a 

way to facilitate multicomponent analysis. (Because differentiation is a linear technique, the amplitude 

of a derivative is proportional to the amplitude of the original signal, which allows quantitative analysis 

applications employing any of the standard calibration techniques (page 447). Most commercial 

spectrophotometers now have a built-in derivative capability. Some instruments are designed to 

measure the spectral derivatives optically, using dual-wavelength or wavelength modulation designs. 

Because the amplitude of the nth derivative of a peak-shaped signal is inversely proportional to the nth 

power of the width of the peak, differentiation may be employed as a general way to discriminate 

against broad spectral features in favor of narrow components. This is the basis for the application of 

differentiation as a method of correction for background signals in quantitative spectrophotometric 

analysis. Very often in the practical applications of spectrophotometry to the analysis of complex 

samples, the spectral bands of the analyte (i.e., the compound to be measured) are superimposed on a 

broad, gradually curved background. Background signals of this type can be reduced by differentiation.  

This idea is 

illustrated by the 

figure on the left, 

which shows a 

simulated UV 

spectrum 

(absorbance vs 

wavelength in nm), 

with the green curve representing the spectrum of the pure analyte and the red line representing the 

spectrum of a mixture containing the analyte plus other compounds that give rise to the large sloping 

background absorption. The first derivatives of these two signals are shown in the center; you can see 

that the difference between the pure analyte spectrum (green) and the mixture spectrum (red) is reduced. 

This effect is considerably enhanced in the second derivative, shown on the right. In this case, the 

spectra of the pure analyte and of the mixture are almost identical. For this technique to work, it is 

http://www.youngin.com/application/AN-0608-0115EN.pdf
http://books.google.com/books?id=Q5V4AiCpqHYC&pg=RA1-PA155&lpg=RA1-PA155&dq=derivative+fluorescence+o%27haver&source=web&ots=6CpSnrbGP1&sig=GimVmSI-S6v6-pWh4XZWqCfEuLE&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://ser.sese.asu.edu/SPECTRA/
http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&hs=TM1&q=derivative+spectroscopy+application&btnG=Search
http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&hs=TM1&q=derivative+spectroscopy+application&btnG=Search
https://terpconnect.umd.edu/~toh/models/Bracket.html
https://terpconnect.umd.edu/~toh/models/DualWave1.html
https://terpconnect.umd.edu/~toh/models/modspec.html


Page | 68  

necessary that the background absorption be broader (that is, have lower curvature) than the analyte 

spectral peak, but this turns out to be a rather common situation. Because of their greater discrimination 

against broad background, second (and sometimes even higher order) derivatives are often used for 

such purposes. See DerivativeDemo.m for a Matlab/Octave. 

It is sometimes (mistakenly) said that differentiation "increases the sensitivity" of analysis. You can see 

how it would be tempting to say something like that by inspecting the three figures above; it does seem 

that the signal amplitude of the derivatives is greater than that of the original analyte signal (at least 

graphically). However, it is not valid to compare the amplitudes of signals and their derivatives because 

they have different units. The y-axis units of the original spectrum are absorbance; the units of the first 

derivative are absorbance per nm, and the units of the second derivative are absorbance per nm2. You 

cannot compare absorbance to absorbance per nm any more than you can compare miles to miles per 

hour. (It is meaningless, for instance, to say that a speed of 30 miles per hour is greater than a distance 

of 20 miles.) You can, however, compare the signal-to-background ratio and the signal-to-noise ratio. 

For instance, in the above example, it would be valid to say that the signal-to-background ratio is better 

(higher) in the derivatives. 

Loosely speaking, the opposite of differentiation is integration, so if you take the first derivative of a 

signal, you might expect to be able to regenerate the original (zeroth derivative) by integration. 

However, there is a catch; the constant term in the original signal (like a flat baseline) is completely lost 

in differentiation; integration cannot restore it. So strictly speaking, differentiation represents a net loss 

of information, and therefore differentiation should only be used in situations where the constant term 

in the original signal is not of interest. 

There are several ways to measure the amplitude of a derivative spectrum for quantitative chemical 

analysis: the absolute value of the derivative at a specific wavelength, the value of a specific feature 

(such as a maximum), or the difference between a maximum and a minimum. Another widely used 

technique is the zero-crossing measurement - taking readings derivative amplitude at the wavelength 

where an interfering peak crosses the zero on the y (amplitude) axis. In all these cases, it is important to 

measure the standards and the unknown samples in the same way. Also, because the amplitude of a 

derivative of a peak depends strongly on its width, it is important to control environmental factors that 

might change spectral peak width subtlety, such as temperature. 

Trace Analysis 
One of the widest uses of the derivative signal processing technique in practical analytical work is in 

the measurement of small (“trace”) amounts of substances in the presence of large amounts of 

potentially interfering materials. In such applications, it is common that the analytical signals are weak, 

noisy, and superimposed on large background signals. Measurement precision is often degraded by 

sample-to-sample baseline shifts due to non-specific broadband interfering absorption, non-

reproducible cuvette (sample cell) positioning, dirt or fingerprints on the cuvette walls, imperfect 

cuvette transmission matching, and solution turbidity. Baseline shifts from these sources are usually 

either wavelength-independent (light blockage caused by bubbles or large suspended particles) or 

exhibit a weak wavelength dependence (small-particle turbidity). Therefore, you can expect that 

differentiation will in general help to discriminate relevant absorption from these sources of baseline 

https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#DerivativeDemo
https://www.google.com/search?q=opposite+of+differentiation+is+integration&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:unofficial&client=seamonkey-a


Page | 69  

shift. An obvious benefit of the suppression of broad background by differentiation is that variations in 

the background amplitude from sample to sample are also reduced. This can result in improved 

precision or measurement in many instances, especially when the analyte signal is small relative to the 

background or if there is a lot of uncontrolled variability in the background. An example of the 

improved ability to detect trace component in the presence of strong background interference is shown 

in this figure: 
 

 

The absorption spectrum on the left shows a weak shoulder near the center due to a small 

concentration of the substance that is to be measured (e.g., the active ingredient in a pharmaceutical 

preparation). The peak is obscured by the strong background caused by other substances in the sample. 

The fourth derivative of this spectrum is shown on the right. The background has been almost 

completely suppressed and the analyte peak now stands out clearly, facilitating measurement. 

The spectrum on the left shows a weak shoulder near the center (at x=130) due to the analyte. The 

signal-to-noise ratio is very good in this spectrum, but despite that, the broad, sloping background 

obscures the peak and makes quantitative measurement very difficult. The fourth derivative of this 

spectrum is shown on the right. The background has been almost completely suppressed and the 

analyte peak now stands out clearly, facilitating measurement. An even more dramatic case is shown 

below. This is essentially the same spectrum as in the figure above, except that the concentration of the 

analyte is ten times lower. The question is: is there a detectable amount of analyte in this spectrum? 

This is quite impossible to say from the normal spectrum, but inspection of the fourth derivative (right) 

shows that the answer is yes. Some noise is visually evident here, but nevertheless the signal-to-noise 

ratio is sufficiently good for a reasonable quantitative measurement. 

 
Like the previous figure, but in this case the peak is ten times lower - so weak that it cannot even be 

seen in the spectrum on the left. The fourth derivative (right) shows that a peak is still there, but much 

reduced in amplitude (note the smaller y-axis scale) and in signal-to-noise ratio. 



Page | 70  

This use of signal differentiation has become widely used in quantitative spectroscopy, particularly for 

quality control in the pharmaceutical industry. In that application, the analyte would typically be the 

active ingredient in a pharmaceutical preparation and the background interferences might arise from the 

presence of fillers, emulsifiers, flavoring or coloring agents, buffers, stabilizers, or other excipients. Of 

course, in trace analysis applications, care must be taken to optimize the signal-to-noise ratio of the 

instrument as much as possible. 

Although it will eventually be shown that more advanced techniques such as curve fitting can also 

perform many of these quantitative measurement tasks quite well (page 294), the derivative techniques 

have the advantage of conceptual and mathematical simplicity and an easily understood graphical way 

of presenting data. 
 

Derivatives and Noise: The Importance of Smoothing 

It is often said that "differentiation 

increases the noise". That is true, 

but it is not the main problem. In 

fact, computing the unsmoothed 

first derivative of a set of random 

numbers increases its standard 

deviation by only the square root 

of 2, simply due to the usual 

propagation of errors of the sum 

or difference between two 

numbers. As an example, the 

standard deviation (std) of the 

numbers generated by the 

Matlab/Octave randn function is 

1.0 and the standard deviation of 

its first derivative, std(deriv1(randn(size(1:10000)))), equals about 1.4. But even a little bit 

of smoothing (page 39) applied to the derivative will reduce this standard deviation greatly, e.g. a 2-

point smooth applied by the fastsmooth function, std(fastsmooth(deriv1(randn(size 

(1:10000))),2,3)), equals about 0.4. More important is the fact that the signal-to-noise ratio of an 

unsmoothed derivative is almost always much lower (poorer) than that of the original signal, mainly 

because the numerical amplitude of the derivative is usually much smaller (as you can see for yourself 

in all the examples on this page). But smoothing is always used in any practical application to control 

this problem; with optimal smoothing, the signal-to-noise of a derivative can be greater than the 

unsmoothed original. For the successful application of differentiation in quantitative analytical 

applications, it is essential to use differentiation in combination with sufficient smoothing, to optimize 

the signal-to-noise ratio. This is illustrated in the figure on the left. (Matlab code for this figure.) 

Window 1 shows a Gaussian band with a small amount of added white noise. Windows 2, 3, and 4, 

show the first derivative of that signal with increasing smooth widths. As you can see, without enough 

smoothing, the signal-to-noise ratio of the derivative can be substantially poorer than the original 

signal. However, with adequate amounts of smoothing, the signal-to-noise ratio of the smoothed 

http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&hs=TM1&q=derivative+spectroscopy+application&btnG=Search
http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&hs=x1L&q=derivative+spectroscopy+pharmaceutical&btnG=Search
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#comparison
https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/spectrum/deriv1.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/derivdemo3.m


Page | 71  

derivative is much better and can even be visibly better than that of the unsmoothed original.  

This effect of smoothing derivatives is even more striking in the second derivative, as shown on the 

right (Matlab/Octave code for this figure). In this case, the signal-to-noise ratio of the unsmoothed 

second derivative (Window 2) 

is so poor you cannot even see 

the signal visually, but the 

smoothed second derivative 

looks fine. Differentiation does 

not actually add noise to the 

signal; if there were no noise at 

all in the original signal, then 

the derivatives would also have 

no noise (exception: see page 

335). 

What is particularly interesting 

about the noise in these 

derivative signals, however, is 

the noise "color". This noise is 

not white; rather, it is blue - 

that is, it has much more power at high frequencies than white noise. The consequence of this is that 

the noise in the differentiated signal is easily reduced greatly by smoothing, as demonstrated above. 

Because sliding-average smoothing and differentiation are both linear operations, it makes no 

difference whether the smooth operation is applied before or after the differentiation. What is important, 

however, is the nature of the smooth, its smooth ratio (ratio of the smooth width to the width of the 

original peak), and the number of times the signal is smoothed. The optimum value of the smooth ratio 

for derivative signals is approximately 0.5 to 1.0. For a first derivative, two applications of a simple 

rectangular sliding-average smooth (or one application of a triangular smooth) is adequate. For a 

second derivative, three applications of a simple rectangular smooth or two applications of a triangular 

smooth are adequate. The general rule is this: for the nth derivative, use a smooth that is the equivalent 

of at least n+1 applications of a rectangular smooth. The Savitzky-Golay method is ideal for computing 

smoothed derivatives because it combines differentiation with the right kind of smoothing. The Matlab 

signal processing program iSignal, discussed on page 371, uses this approach. 

If the peak widths vary substantially across the signal recording - for example, if the peaks get regularly 

wider as the x-value increases - then it may be helpful to use a segmented smooth (page 329), in which 

the smooth width is made to vary across the signal. 

Smoothing derivative signals usually results in a substantial attenuation of the derivative amplitude; in 

the figure on the right above, the amplitude of the most heavily smoothed derivative (in Window 4) is 

much less than its less-smoothed version (Window 3). However, this will not be a problem in 

quantitative analysis applications, if the standard (analytical) curve is prepared using the exact same 

derivative, smoothing, and measurement procedure as is applied to the unknown samples. Because 

differentiation and smoothing are both linear techniques, the amplitude of a smoothed derivative is 

https://terpconnect.umd.edu/~toh/spectrum/derivdemo4.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/SavitzkyGolayHelpFile.txt
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#SegmentedSmooth
http://en.wikipedia.org/wiki/Linearity


Page | 72  

exactly proportional to the amplitude of the original signal, which allows quantitative analysis 

applications employing any of the standard calibration techniques (page 447). If you apply the same 

signal-processing techniques to the standards as well as to the samples, everything works. 

Because of the different kinds and degrees of smoothing that might be incorporated into the 

computation of digital differentiation of experimental signals, it is difficult to compare the results of 

different instruments and experiments unless the details of these computations are known. In 

commercial instruments and software packages, these details may well be hidden. However, if you can 

obtain both the original (zeroth derivative) signal, as well as the derivative and/or smoothed version 

from the same instrument or software package, then the technique of Fourier deconvolution, which will 

be discussed later, can be used to discover and duplicate the underlying hidden computations. 

Interestingly, neglecting to smooth a derivative was ultimately responsible for the failure of the first 

spacecraft of NASA's Mariner program on July 22, 1962, which was reported in InfoWorld's "11 

infamous software bugs". In his 1968 book "The Promise of Space", Arthur C. Clarke described the 

mission as "wrecked by the most expensive hyphen in history." The "hyphen" was in fact a superscript 

bar over the symbol for velocity (the first derivative of position), handwritten in a notebook. An 

overbar conventionally signifies an averaging or smoothing function, so the formula should have 

calculated the smoothed value of the time derivative of position. Without the smoothing function, even 

minor variations would cause its derivative to be very noisy and to trigger the corrective boosters to 

kick in prematurely, causing the rocket's flight to become unstable. To be fair to those pioneering 

engineers, it was quite early in the history of space exploration. 
 

Video Demonstrations 

The first 13-second, 1.5 MByte video (SmoothDerivative2.wmv) demonstrates the huge signal-to-noise 

ratio improvements that are possible when smoothing derivative signals, in this case, a 4th derivative. 

The second video, 17-second, 1.1 MByte, (DerivativeBackground2.wmv ) demonstrates the 

measurement of a weak peak buried in a strong sloping background. At the beginning of this brief 

video, the amplitude (Amp) of the peak is adjusted between 0 and 0.14, but the background is so strong 

that the changes in peak amplitude, located at x = 500, are hardly visible. Then the fourth derivative 

(Order=4) is computed, and the scale expansion (Scale) is increased, with a smooth width (Smooth) of 

88. Finally, the amplitude (Amp) of the peak is varied again over the same range, but now the changes 

in the signal are now quite noticeable and easily measured.  
 

The differentiation of analog signals can be performed with a simple operational amplifier circuit; 

two or more such circuits can be cascaded to obtain second and higher-order derivatives. The same 

noise problems described above apply to analog differentiation also, requiring the use of low-pass filter 

circuits that are analogous to smoothing.  

  

https://terpconnect.umd.edu/~toh/models/Bracket.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
http://en.wikipedia.org/wiki/Mariner_program#Mariners_1_and_2
http://www.infoworld.com/d/security-central/epic-failures-11-infamous-software-bugs-891?page=0,1
http://www.infoworld.com/d/security-central/epic-failures-11-infamous-software-bugs-891?page=0,1
http://www.amazon.com/The-Promise-Space-Arthur-Clarke/dp/0425075656
https://terpconnect.umd.edu/~toh/spectrum/SmoothDerivative2.wmv
https://terpconnect.umd.edu/~toh/spectrum/DerivativeBackground2.wmv
https://terpconnect.umd.edu/~toh/ElectroSim/Differentiator.html


Page | 73  

Differentiation in Spreadsheets 
Differentiation operations such as described above can readily be performed in spreadsheets such as 

Excel or OpenOffice Calc. Both the derivative and the required smoothing operations can be performed 

by the shift-and-multiply method described in the chapter on smoothing (page 39). In principle, it is 

possible to combine any degree of differentiation and smoothing into one set of shift-and-multiply 

coefficients (as illustrated here), but it is more flexible and easier to adjust if you compute the 

derivatives and each stage of smoothing separately in successive columns. This is illustrated by 

DerivativeSmoothing.ods for OpenOffice Calc and DerivativeSmoothing.xls for Excel, which smooths 

the data and computes the first derivative of Y (column B) with 

respect to X (column A), then applies that smoothing and 

differentiation process successively to compute the smoothed second 

and third derivatives. The same smoothing coefficients (in row 5, 

columns K through AA) are applied successively for each stage of 

differentiation; you can enter any set of numbers here (preferably 

symmetrical about the center number in column S). You can type or 

paste your own data into columns A and B (X and Y), rows 8 to 263. 

DerivativeSmoothingWithNoise.xlsx (right) demonstrates the effect 

of smoothing on the signal-to-noise ratio of derivatives of a weak 

peak located at x = 1200 on a 

sloping baseline. It uses the same 

data as DerivativeSmoothing.xls 

but adds simulated white noise to 

the Y data. You can control the 

amount of added noise (cell D5). 
 

Another example of a derivative application is the spreadsheet 

SecondDerivativeXY2.xlsx (left), which demonstrates locating and 

measuring changes in the second derivative (a measure of curvature 

or acceleration) of a time-changing signal. This spreadsheet shows 

the apparent increase in noise caused by differentiation and the 

extent to which the noise can be reduced by smoothing (in this case 

by two passes of a 5-point triangular smooth). The smoothed second 

derivative shows a large peak the point at which the acceleration 

changes (at x=30), and the baseline on either side of the peak is 

distinctly unequal, showing the change in the acceleration before and after the peak (y=2 and 4, 

respectively). Other examples of differentiation and smoothing by "shift-and-multiply" convolution 

include MultipleConvolutionFirstDerivativeDemo.xls and MultipleConvolution4thDerivativeDemo.xls 

Differentiation in Matlab and Python 
Finite difference differentiation functions such as described above can easily be created in Matlab or 

Octave. Some simple derivative functions for equally-spaced time series data: deriv, a first derivative 

using the 2-point central-difference method, deriv1, an unsmoothed first derivative using adjacent 

https://terpconnect.umd.edu/~toh/spectrum/smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/CombinedDerivativesAndSmooths.txt
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.ods
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.ods
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothingWithNoise.xlsx
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/SecondDerivativeXY2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SecondDerivativeXY2.png
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolutionFirstDerivativeDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution4thDerivativeDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/deriv.m
https://terpconnect.umd.edu/~toh/spectrum/deriv1.m


Page | 74  

differences, deriv2, a second derivative using the 3-point central-difference method, a third derivative 

deriv3 using a 4-point formula, and deriv4, a 4th derivative using a 5-point formula. Each of these is a 

simple Matlab function of the form d=deriv(y); the input argument is a signal vector "y", and the 

differentiated signal is returned as the vector "d". For data that are not equally-spaced on the 

independent variable (x) axis, there are versions of the first and second derivative functions, derivxy 

and secderivxy, that take two input arguments (x,y), where x and y are vectors containing the 

independent and dependent variables. 

SmoothDerivative.m combines differentiation and smoothing. The syntax is SmoothedDeriv = 

SmoothedDerivative(x,y,DerivativeOrder,w,type,ends) where 'DerivativeOrder' determines the 

derivative order (0 through 5), 'w' is the smooth width, 'type' determines the smooth mode: 

If type=0, the signal is not smoothed 

If type=1, rectangular (sliding-average or boxcar) 

If type=2, triangular (2 passes of sliding-average) 

If type=3, p-spline (3 passes of sliding-average) 

If type=4, Savitzky-Golay smooth 

'ends' controls how the "ends" of the signal (the first w/2 points and the last w/2 points) are handled: If 

ends=0, the ends are zeroed: If ends=1, the ends are smoothed with progressively smaller smooths the 

closer to the end. Type “help SmoothDerivative” for some examples (graphic). An alternative 

differentiation method based on the Fourier Transform (page 91) can calculate derivatives of any order 

and also inlcudes smoothing (reference 88). 

Peak detection. The simplest code to find peaks in x,y data sets simply looks for every y value that has 

lower y values on both sides (allpeaks.m). An alternative approach is to use the first derivative to find 

all the maxima by locating the points of zero-crossing, that is, the points at which the first derivative 

"d" (computed by derivxy.m) passes from positive to negative. In this example, the “sign” function is a 

built-in function that returns 1 if the element is greater than zero, 0 if it equals zero, and -1 if it is less 

than zero. The routine prints out the value of x and y at each zero-crossing:  

d=derivxy(x,y); 

for j=1:length(x)-1  

  if sign(d(j))>sign(d(j+1)) 

    disp([x(j) y(j)]) 

  end 

end 

If the data are noisy, many false zero crossings will be reported, but smoothing the data will reduce that. 

If the data are sparsely sampled, a more accurate value for the peak position (x-axis value at the zero-

crossing) can be obtained by interpolating between the point before and the point after the zero-

crossing, using the Matlab/Octave “interp1” or “spline” function:  

interp1([d(j) d(j+1)],[x(j) x(j+1)],0)  

In Python, you can import a derivative function using “from scipy.misc import derivative” 

https://terpconnect.umd.edu/~toh/spectrum/deriv2.m
https://terpconnect.umd.edu/~toh/spectrum/deriv3.m
https://terpconnect.umd.edu/~toh/spectrum/deriv4.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://terpconnect.umd.edu/~toh/spectrum/secderivxy.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothDerivative.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothDerivative.png
https://terpconnect.umd.edu/~toh/spectrum/allpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://svitla.com/blog/numerical-differentiation-methods-in-python


Page | 75  

ProcessSignal.m is a Matlab/Octave command-line function that performs smoothing and 

differentiation on the time-series data set x,y (column or row vectors). Type "help ProcessSignal". It 

returns the processed signal as a vector that has the same shape as x, regardless of the shape of y. The 

syntax is Processed = ProcessSignal(x, y, DerivativeMode, w, type, ends, 

Sharpen, factor1, factor2, Symize, Symfactor, SlewRate, MedianWidth) 
 

DerivativeDemo.m (below) is a self-contained Matlab/Octave demo function that uses  

 

ProcessSignal.m and plotit.m to demonstrate an application of differentiation to the quantitative 

analysis of a peak buried in an unstable background (e.g. as in various forms of spectroscopy). The 

object is to derive a measure of peak amplitude that varies linearly with the actual peak amplitude and 

is minimally affected by the background and the noise. To run it, just type DerivativeDemo at the 

command prompt. You can change several of the internal variables (e.g., Noise, BackgroundAmplitude) 

to make the measurement harder or easier. Note that, even though the magnitude of the derivative 

seems to be numerically smaller than the original signal (because it has different units), the signal-to-

noise ratio of the derivative is better than that of the original signals and is much less affected by the 

background instability.  

https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m


Page | 76  

iSignal.m (page 371), shown on the left) is an interactive function for Matlab that performs many 

signal-processing operations that are 

covered in this book, including 

differentiation and smoothing for 

time-series signals, up to the 5th 

derivative, automatically including 

the required type of smoothing. 

Simple keystrokes allow you to adjust 

the smoothing parameters (smooth 

type, width, and ends treatment) while 

observing the effect on your signal 

dynamically. In the animated GIF 

example shown here, a series of three 

peaks at x=100, 250, and 400, with 

heights in the ratio 1:2:3, are buried in 

a strong curved background; the 

smoothed second and fourth 

derivatives are computed to suppress 

that background. View the code here or download the ZIP file with sample data for testing. The 

interactive keypress operation works even if you run Matlab in a web browser, but not on Matlab 

Mobile or in Octave. (Note: figures like the one above that display “Screencast-O-Matic” in the lower-

left are animated graphics that can be viewed in a web browser or in Microsoft Word 365 but will not 

animate in any PDF viewer that I have ever tried.) 

As an example of smoothing in iSignal, the following statements generate the 4th derivative of a noisy 

Gaussian peak and display it in iSignal. You will need to download isignal.m, gaussian.m, and 

deriv4.m before executing the following statements.  

>> x=[1:.1:300]'; 

>> y=deriv4(100000.*gaussian(x,150,50)+.1*randn(size(x))); 

>> isignal(x,y); 

The signal is mostly blue noise (because of the differentiated white noise) unless you smooth it 

considerately. Use the A and Z keys to increase and decrease the smooth width and the S key to cycle 

through the available smooth types. Hint: use the P-spline smooth and increase the smooth width.  

Real-time differentiation in Matlab is discussed on page 342.  
 

Live Script for Differentiation 
 

DataDifferentiation.mlx (graphic) is a Live Script for differentiation and smoothing applied to experi-

mental data stored on disk. It is similar to DataSmoothing.mlx discussed on page 58, with the addition 

of a slider (line 9) to select the derivative order (up to 10). Note: If the "PlotBeforeAndAfter" check 

box is checked, the derivative (red curve) will be scaled to match the maximum of the original signal 

(black curve). If that box is not checked, the derivative will be displayed by itself with its actual ampli-

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/AnimatedDerivative.gif
https://terpconnect.umd.edu/~toh/spectrum/AnimatedDerivative.gif
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal7.zip
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m,
https://terpconnect.umd.edu/~toh/spectrum/deriv4.m
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#realtime
https://terpconnect.umd.edu/~toh/spectrum/DataDifferentiation.mlx
https://terpconnect.umd.edu/~toh/spectrum/DataDifferentiation.png
https://terpconnect.umd.edu/~toh/spectrum/DataSmoothing.mlx


Page | 77  

tude. (This is done because the numerical amplitude of derivatives is often orders of magnitude differ-

ent than the original signals). See page 365 for other interactive tools. 

Peak Sharpening 
The figure below shows a spectrum on the left that consists of several poorly-resolved (that is, partly 

overlapping) bands or peaks. The extensive overlap of the bands makes accurate measurement of the 

peak positions impossible, even though the signal-to-noise ratio is very good. It would be easier to 

measure the positions of the peaks accurately if they were more completely resolved, that is, if the 

peaks were narrower.  

 

 
 

A peak sharpening algorithm applied to the signal on the left artificially improves the apparent 

resolution of the peaks. In the resulting signal, right, you can measure the intensities and positions of 

the peaks more accurately, but at the cost of a decrease in signal-to-noise ratio. 

Even derivative sharpening 

The technique used here, called peak sharpening or resolution enhancement, uses algorithms to artifi-

cially improve the apparent resolution of the peaks. One of the simplest such algorithms computes the 

weighted sum of the original signal and the negative of its second derivative: 
 

  Rj = Yj - k2Y
'' 

 

where Rj is the resolution-enhanced signal, Y is the original signal, Y'' is the second derivative of Y, 

and k2 is a user-selected 2nd derivative weighting factor. It is up to the user to select the weighting 

factor k2 which gives the best trade-off between the extent of sharpening, signal-to-noise degradation, 

and baseline flatness. The optimum choice depends upon the width, shape, and digitization interval of 

the signal. As an inevitable trade-off, the signal-to-noise ratio is degraded, but this can be moderated 

by smoothing (page 39), but at the expense of reducing the sharpening. Nevertheless, this technique 

will be useful only if the overlap of peaks rather than the signal-to-noise ratio is the limiting factor.  

Here is how it works. The figure below shows, in Window 1, a computer-generated peak (with a Lo-

rentzian shape) in red, superimposed on the negative of its second derivative in green).  

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html


Page | 78  

  

The second derivative is amplified (by multiplying it by an adjustable constant) so that the negative 

sides of the inverted second derivative (from approximately X = 0 to 100 and from X = 150 to 250) are 

a mirror image of the sides of the original peak over those regions. In this way, when the original peak 

is added to the inverted second derivative, the two signals will approximately cancel out in the two side 

regions but will reinforce each other in the central region (from X = 100 to 150). The result, shown in 

Window 2, is a substantial (about 50%) reduction in the width, and a corresponding increase in height, 

of the peak. This effect is most dramatic with Lorentzian-shaped peaks; with Gaussian-shaped peaks, 

the resolution enhancement is less dramatic (only about 20 - 30%).  

The reduced widths of the sharpened peaks make 

it easier to distinguish overlapping peaks. In the 

example on the right, the computer-synthesized 

raw signal (blue line) is the sum of three 

overlapping Lorentzian peaks at x=200, 300, and 

400. The peaks are very wide; their halfwidths 

are 200, which is greater than their separation. 

The result is that the peaks overlap so much in 

the raw data, that they form what looks like a 

single wide asymmetrical peak (blue line) with a 

maximum at x=220. However, the result of the 

even derivative sharpening algorithm (red line) 

shows the underlying component peaks at their 

correct positions. The baseline, however, which 

was originally zero far from the peak center, has 

been shifted, as you can see from x=25 to 100. 

Note that the baseline of either side of the resolution-enhanced peak is not quite flat, especially for a 

Lorentzian peak, because the cancellation of the original peak and the inverted second derivative is 

only approximate; the adjustable weighting factor k is selected to minimize this effect. Peak sharpening 

will have little or no effect on the baseline, because if the baseline is linear, its derivative will be zero, 

and if it is gradually curved, its second derivative will be very small compared to that of the peak. 

This technique has been used in various forms of spectroscopy and chromatography for many years 

https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/re1.GIF
https://terpconnect.umd.edu/~toh/spectrum/LorentzianSharpeningExample.png


Page | 79  

(references 74-76), even in some cases using analog electronics. Mathematically, this technique is a 

simplified version of a converging Taylor series expansion, in which only the even order derivative 

terms in the expansion are taken and for which their coefficients alternate in sign. The above example 

is the simplest possible version that includes only the first two terms - the original peak and its negative 

second derivative. Slightly better results can be obtained by adding a fourth derivative term, with two 

adjustable factors k2 and k4:  

     Rj = Yj - k2Y'' + k4Y'''' 

where Y'' and Y'''' are the 2nd and 4th derivatives of Y. The result is a 21% reduction in width for a 

Gaussian peak, as shown in the figure on the left (Matlab/Octave script), and a 60% reduction for a 

Lorentzian peak (script). This algorithm was used in the overlapping peak example above. (It is 

possible to add a sixth derivative term, but the series converges quickly and the results are only slightly 

improved, at the cost of the increased complexity of three adjustable factors).  

There is no universal optimum value for the 

derivative weighting factors; it depends on 

what you consider the best trade-off 

between peak sharpening and baseline 

flatness. However, a good place to start for 

a Gaussian peak is k2 = W2/32 and k4 = 

W4/900, where W is the halfwidth of the 

peak in x units (for example, time in 

chromatography). With those weighting 

factors, a Gaussian peak will be reduced in 

width by 21%, the baseline will still be 

visually flat, and the resulting peak will fit 

a Gaussian model with a percent fitting error of less than 0.3% and an R2 of 0.9999. Larger values of k 

will result in a narrower peak, but the baseline will not be so flat.  For a Lorentzian original shape 

(right), with k2=W3/3 and k4 = W4/600, the 

peak width is reduced by a factor of 3, but 

the resulting peak fits a Gaussian model 

with a larger percent fitting error of 1.15% 

and an R2 of 0.9966. Note that the k factors 

for the second and fourth derivatives vary 

with the width W raised to the 2nd and 4th 

power respectively, so they can vary over a 

very wide numerical range for peaks of 

different width. For this reason, if the peak 

widths vary substantially across the signal, 

it is useful to use segmented and gradient 

versions of this method, as we did previously for smoothing (page 54), so that the sharpening can be 

optimized for each region of the signal (see below). “Segmented” means each segment is defined 

independently; “gradient" means a gradual increase or decrease between specified start and end values.  

https://en.wikipedia.org/wiki/Taylor_series
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo4terms.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo4terms.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#segmented


Page | 80  

Constant-area first-derivative symmetrization (“de-tailing”) 
 

If the peak is asymmetrical - that is, slopes down faster on one side than the other - then the weighted 

addition (or subtraction) of a first derivative term, Y', may be helpful, because the first derivative of a 

peak is antisymmetric (positive on one side and negative on the other). In the graphic example below, 

on the left, the asymmetrical peak (in blue) tails to the right, and its first derivative, Y', (dotted yellow) 

has a positive lobe on the left and a broader but smaller negative lobe on the right. When the peak is 

added to the weighted first derivative, the positive lobe of the derivative reinforces the leading edge 

and the negative lobe suppresses the trailing edge, resulting in improved symmetry. (Had the EMG 

sloped to the left, the negative of its derivative would be added). This is also an old technique, having 

been used in chromatography since at least 1965 (reference 75, 76), where it has been called “de-

tailing”.  

Sj = Yj + k1Y’ 

 

 
 

 In fact, this simple technique can be shown to work perfectly for exponentially broadened peaks of any 

shape, such as the "exponentially modified Gaussian" (EMG) shape shown here (reference 73). 

With the correct first derivative weighting factor, k1, the result is a symmetrical Gaussian with a half-

width substantially less than that of the original (orange line); in fact, it is exactly the underlying 

Gaussian to which the exponential convolution has been applied (References 70, 71) 
 

The first derivative weighting factor k1 is independent of the peak height and width and is simply equal 

to the exponential time constant tau (1/lambda, in some formulations of the EMG). It works perfectly if 

the tau of the peak is the same. In practice, k1 must be determined experimentally, which is most easily 

done for the last peak in a group of peaks (graphic, animation). Put simply, if you get k1 too high, the 

result will dip below the baseline after the peak. 
 

It is easy to determine the optimal k1 value experimentally for an isolated peak; just increase it until the 

processed signal Sj dips below the baseline after the peak, then reduce it until the baseline is flat, as 

shown in the GIF animation at this link. Of course, in real application the signal will contain noise, 

with the result that the symmetrized result will be noisier that the original signal. The first derivative 

weighting factor, k1, will have to be estimated by eye and is therefore subject to some uncertainty. 

https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
https://terpconnect.umd.edu/~toh/spectrum/expgaussian2.m
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://terpconnect.umd.edu/~toh/spectrum/SymmetricalizationAnimation3peaks.png
https://terpconnect.umd.edu/~toh/spectrum/SymmetricalizationAnimation3peaks.gif
https://terpconnect.umd.edu/~toh/spectrum/SymmetricalizationAnimation3peaks.gif


Page | 81  

If one stage of derivative addition does not do the trick, try one of the double exponential routines 

described below. Furthermore, this appears to be a general behavior and it works similarly for any other 

peak shape that is broadened by exponential convolution, such a Lorentzian, and it even works for 

peaks that are already broadened by a previous exponential convolution (i.e., a double exponential), 

which can be handled by two successive stages of derivative addition with different taus. 

The symmetrized peak Sj resulting from the first-derivative addition procedure can still be further 

sharpened by the even-derivative techniques described above, assuming that the signal-to-noise ratio of 

the original is good enough. 

A useful property of all these derivative addition algorithms is that they do not change the total area 

under the peaks because the total area under the curve of any derivative of any peak-shaped signal that 

returns to the baseline is essentially zero (the area under the negative lobes cancels the area under the 

positive lobes). Therefore, these techniques can be helpful in measuring the areas under overlapped 

peaks (page 129).  

However, a remaining problem is that the baseline on either side of the sharpened peak may not be 

perfectly flat, leaving some interference from nearby peaks, even if baseline resolution of adjacent 

peaks is achieved. For the even-derivative technique applied to a Gaussian peak, about 99.7% (graphic 

link) of the area of the peak is contained in the central maximum, and for a Lorentzian peak, about 80% 

of the area of the peak (graphic link) is contained in the central maximum. 

Because differentiation and smoothing are both linear techniques, the superposition principle applies 

and the amplitude of a symmetrized or sharpened signal is directly proportional to the amplitude of the 

original signal, which allows quantitative analysis applications employing any of the standard 

calibration techniques (page 442. But it is essential that you apply the same signal-processing 

techniques to the standards as well as to the samples and measure the signals in the same way.  

Peak sharpening can be useful in automated peak detection and measurement (page 229) to increase the 

ability to detect weak overlapping peaks that appear only as shoulders in the original signal. If you are 

reading this online, click for an animated example. Peak sharpening can also be useful be-

fore measuring the areas (page 141) under overlapping peaks, because it is easier and more accurate to 

measure the areas of peaks that are more completely separated.  

  

https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzian.png
https://en.wikipedia.org/wiki/Linear_system
https://en.wikipedia.org/wiki/Superposition_principle
https://terpconnect.umd.edu/~toh/spectrum/demo5.gif
https://terpconnect.umd.edu/~toh/spectrum/Integration.html


Page | 82  

The Power Law Method 
A very simple method of peak sharpening 

involves raising each data point to a power n 

greater than 1. (references 61, 63). The effect of 

this is to change the peak shapes, essentially 

stretching out the highest center region of the 

peak to greater amplitudes and placing more 

weight on the points near the peak, resulting in 

a smaller peak width. For Gaussian peaks 

specifically, the result is another Gaussian with a 

width reduced by the square root of the power n. 

The technique is demonstrated by the Matlab/ 

Octave script PowerLawDemo.m, shown in the 

figure on the right, which plots noisy Gaussians 

raised to the power p=1 to 7, with their peak 

heights normalized to 1.0, showing that as the 

power increases, peak width decreases and noise 

is reduced on the baseline but increased on the peak maximum. Since this process does not move the 

positions of the peaks, the peak resolution (defined as the ratio of peak separation to peak base width) 

is increased. For Gaussian peaks, the area under the original peak can be calculated from the area under 

the normalized power-sharpened curve (reference 63).  

In the figure on the left, the blue line shows two 

slightly overlapping EMG (exponentially modified 

Gaussian) peaks. The other lines are the result of 

raising the data to the power of n = 2, 3, and 4 and 

normalizing each to a height of 1.00. The results are 

more nearly Gaussian peak shapes (only because 

most peak shapes are locally Gaussian near the peak 

maximum), and the peak widths, measured with the 

halfwidth.m function, are reduced: 19.2, 12.4, 9.9, 

and 8.4 units for powers 1 through 4, respectively. 

This method is independent of, and can be used in 

conjunction with, the other sharpening methods 

discussed above. However, for a signal of two 

overlapping Gaussians, the result of raising the signal 

to a power is not the same as adding two power-narrowed Gaussians: simply, an+bn is not the same as 

(a+b)n for n>1. This can be demonstrated graphically by the script PowerPeaks.m (graphic), which 

curve-fits a two-Gaussian model to the power-raised sum of two overlapping Gaussians; as the power n 

increases, the peaks are narrowed and the valley between them is deepened, but the resulting signal is 

no longer the sum of two Gaussians unless the resolution is sufficiently high that the two peaks do not 

overlap significantly. 

https://terpconnect.umd.edu/~toh/spectrum/PowerLawDemo.png
https://terpconnect.umd.edu/~toh/spectrum/Introduction.html
https://terpconnect.umd.edu/~toh/spectrum/Introduction.html
https://terpconnect.umd.edu/~toh/spectrum/PowerLawDemo.m
https://link.springer.com/article/10.1007%2Fs10337-018-3607-0
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/PowerPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PowerPeaks.png
https://terpconnect.umd.edu/~toh/spectrum/PowerMethod.png


Page | 83  

Some limitations to the power-law method are: 

 (a) It only works if the peaks of interest make a distinct maximum (it is not effective for side 

peaks that are so small that they only form shoulders; there must be a valley between the peaks).  

 (b) The baseline must be zero for best results.  

 (c) For noisy signals there is a decrease in signal-to-noise ratio because the smaller width 

means fewer data points are contributing to the measurement (smoothing, page 39, can help).  

Compensating for the non-linearity.  Naturally, the power method introduces severe non-linearity 

into the signal, changing the ratios between peak heights (as is evident in the previous figure) and 

complicating further processing, especially quantitative measurement calibration. But there is an easy 

way to compensate for this: after the raw data have been raised to the power n and peaks heights and/or 

areas have been measured, the resulting peak measures can be simply raised to the power 1/n, restoring 

the original linearity (but, notably, not the slope) of the calibration curves used in quantitative 

analytical measurements. (This works because the peak area is proportional to the height times width, 

and peak height of the power transformed peaks is proportional to the nth power of the original height, 

but the width of the peak is not a function of peak height at constant n, thus the area of the transformed 

peaks remains proportional to nth power of the original height). The technique is demonstrated 

quantitatively for two variable overlapping peaks by the Matlab/Octave script PowerLawCalibration-

Demo.m (graphic), which takes the nth power of the overlapping-peak signal, measures the areas of the 

power-narrowed peaks, and then takes the 1/n power of the measured areas, constructing and using a 

calibration curve to convert areas to concentration. Peak areas are measured by perpendicular drop, 

using the half-way point to mark the boundary between the peaks. The script simulates a mixture signal 

with concentrations that you can specify in lines 15 and 16. You can change the power and any of the 

parameters in lines 14-22. The results show that the power method improves the accuracy of the 

measurements as long as the 4-sigma resolution (the ratio of peak separation to 4 times the sigma of the 

Gaussians) is above about 0.4. It is most accurate when the peaks are roughly equal in width and when 

the ratio of the two concentrations are not very different from the ratio in the standards from which the 

calibration curve is constructed. Note that, even when the simulated random noise (in line 22) is zero, 

the results are not perfect because of the effect of peak overlap on area measurement, which varies 

depending upon the ratio of two components in the mixture.  

The self-contained function PowerMethodDemo.m demonstrates the power method for measuring the 

area of small shouldering peak that is partly overlapped by a much stronger interfering peak (graphic). 

It shows the effect of random noise, smoothing, and any uncorrected background under the peaks.  
 

Combining sharpening methods. The power method is independent of, and can be used in 

conjunction with, the derivative methods discussed above. However, because the power method is non-

linear, the order in which the operations are performed is important. The first step should be the first-

derivative symmetrization if the signal is exponentially broadened, the second step should be even-

derivative sharpening, and the power method should be used last. The reason for this order is that the 

power method depends on there being a valley between the peaks but cannot create one, whereas the 

derivative methods may be able to create a valley between peaks if the overlap is not too severe. 

Moreover, when used last, the power method reduces the severity of baseline oscillations that are a 

https://terpconnect.umd.edu/~toh/spectrum/PowerLawCalibrationDemo.m
https://terpconnect.umd.edu/~toh/spectrum/PowerLawCalibrationDemo.m
https://terpconnect.umd.edu/~toh/spectrum/PowerLawCalibrationDemo.png
https://terpconnect.umd.edu/~toh/spectrum/PowerMethodDemo.m
https://terpconnect.umd.edu/~toh/spectrum/PowerMethod2.png


Page | 84  

residue of the even-derivative sharpening (particularly noticeable on a Lorentzian peak). The 

Matlab/Octave scripts SharpenedGaussianDemo2.m (Graphic) and SharpenedLorentzianDemo2.m 

(Graphic) make this point for Gaussian and Lorentzian peaks respectively, comparing the result of 

even-derivative sharpening alone with even-derivative sharpening followed by the power method (and 

preforming the power method two ways, taking the square of the sharpened peak or multiplying it by 

the original peak). For both the Gaussian and Lorentzian original peak shapes, the final sharpened 

results are fit to Gaussian models to show the changes in peak parameters. The result is that the 

combination of methods yields (a) the narrowest final peak and (b) the closest to Gaussian final shape. 

Of course, the linearity issues of the power method remain, but they can be compensated as before. 
 

Deconvolution. Another signal processing technique that can increase the resolution of overlapping 

peaks is deconvolution, which will be covered on page 111. It is applicable the situations where the 

original shape of the peaks has been broadened and/or made asymmetrical by some broadening process 

or function. If the broadening process can be described mathematically or measured separately, then 

deconvolution from the observed broadened peaks is in principle capable of extracting the shape of the 

underlying peak.  

Peak Sharpening for Excel and Calc Spreadsheets 

The even-derivative sharpening method with two derivative terms (2nd and 4th) is available for Excel 

and Calc in the form of an empty template (PeakSharpeningDeriv.xlsx and .ods) or with example data 

entered (PeakSharpeningDerivWithData.xlsx and .ods). You can either type in the values of the 

derivative weighting factors K1 and K2 directly into cells J3 and J4, or you can enter the estimated 

peak width (FWHM in number of data points) in cell H4 and the spreadsheet will calculate K1 and K2. 

There is also a demonstration version with adjustable simulated peaks which you can experiment with 

(PeakSharpeningDemo.xlsx and PeakSharpeningDemo.ods).  

 There are also versions that have clickable buttons (detail on 

left) for convenient interactive adjustment of the K1 and K2 

factors by 1% or by 10% for each click. You can type in first 

estimates for K1 and K2 directly into cells J4 and J5 and then 

use the buttons to fine-tune the values. If the signal is noisy, 

adjust the smoothing using the 17 coefficients in row 5 columns K through AA, just as with the 

smoothing spreadsheets (page 52). (Note: Unfortunately, these ActiveX buttons do not work in the iPad 

version of Excel). 

There is also a “segmented” template version where the sharpening constants can be specified for each 

of 20 signal segments (SegmentedPeakSharpeningDeriv.xlsx). For those applications in which the peak 

widths gradually increase (or decrease) with time, there is also a gradient peak sharpening template 

where you need only set the starting and ending peak widths and the spreadsheet will apply the 

required sharpening factors K1 and K2. (GradientPeakSharpeningDeriv.xlsx) and an example with data 

already entered (GradientPeakSharpeningDerivExample.xlsx); 

The template PeakSymmetricalizationTemplate.xlsm (screen image on the next page) performs 

symmetrization of exponentially modified Gaussians (EMG) by the weighted addition of the first 

derivative. PeakSymmetricalizationExample.xlsm is an example application with sample data already 

https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo2.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo2.png
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDeriv.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDeriv.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDerivWithData.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDerivWithData.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/SegmentedPeakSharpeningDeriv.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientPeakSharpeningDeriv.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientPeakSharpeningDerivExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsm


Page | 85  

typed in. It is shown on the next page. 

There is also a demo version that allows you to determine the accuracy of the technique by 

synthesizing overlapping peaks with specified resolution, asymmetry, relative peak height, noise, and 

baseline: PeakSharpeningAreaMeasurementEMGDemo2.xlsm (graphic). These spreadsheets also allow 

further second derivative sharpening of the resulting symmetrical peak.  

PeakDoubleSymmetrizationExample.xlsm performs the symmetrization of a doubly exponential 

broadened peak. It has buttons to interactively adjust the two first-derivative weightings. Two 

variations (1, 2) include data for two overlapping peaks, for which the areas are measured by 

perpendicular drop. 

EffectOfNoiseAndBaselineNormalVsPower.xlsx demonstrates the effect of the power method on area 

measurements of Gaussian and exponentially broadened Gaussian peaks, including the different effects 

that random noise and non-zero baseline has on the power sharpening method. 

 

The spreadsheet template “PeakSymmetricalizationTemplate.xlsm” is shown measuring the areas of 

the first of two pairs of overlapping asymmetrical peaks after applying first derivative symmetrization. 

Peak Sharpening for Matlab and Octave 

The custom Matlab/Octave function sharpen has the form SharpenedSignal = sharpen 

(signal,k1,k2, SmoothWidth), where "signal" is the original signal vector, the arguments k2 and 

k4 are 2nd and 4thderivative weighting factors, and SmoothWidth is the width of the built-in smooth. 

The resolution-enhanced signal is returned in the vector "SharpenedSignal ". If you are reading this 

online, you can click on the link above to inspect the code, or right-click to download for use within 

https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementEMGDemo2.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemoEMG3.png
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample1.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample2.xlsm
https://terpconnect.umd.edu/~toh/spectrum/EffectOfNoiseAndBaselineNormalVsPower.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/sharpen.m


Page | 86  

Matlab or Octave. The k values determine the trade-off between peak sharpness and baseline flatness; 

the values vary with the peak shape and width and should be adjusted for your own needs. For peaks of 

Gaussian shape, a reasonable value for k2 is PeakWidth2/32 and for k4 is PeakWidth4/900 (or 

PeakWidth2/8 and PeakWidth4/700 for Lorentzian peaks), where PeakWidth is the full width at half 

maximum of the peaks in x units. Because sharpening methods are typically sensitive to random noise 

in the signal, it is usually necessary to apply a smoothing operation: the Matlab/Octave 

ProcessSignal.m function allows both sharpening and smoothing to be applied in one function.  

Here is a simple Matlab/Octave example that creates a signal consisting of four partly overlapping 

Gaussian peaks of equal height and width, applies both the derivative sharpening method and the power 

method, and compares a plot (shown below) comparing the original signal (in blue) to the resolution-

enhanced version (in red). 
 

     x=0:.01:18; 

  y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+exp(-(x-13.7).^2); 

  y=y+.001.*randn(size(x)); 

  k1=1212;k2=1147420;   

  SharpenedSignal=ProcessSignal(x,y,0,35,3,0,1,k1,k2,0,0,0,0); 

  figure(1) 

  plot(x,y,x,SharpenedSignal,'r') 

  title('Peak sharpening (red) by the derivative method') 

  figure(2) 

  plot(x,y,x,y.^6,'r') 

  title('Peak sharpening (red) by the power method') 

 

Four overlapping Gaussian peaks of equal height and width.  

Blue: Original. Red: After sharpening by the even-derivative method.  

SharpenedOverlapDemo.m is a script that attempts to automatically determines the optimum degree of 

even-derivative sharpening that minimizes the errors of measuring peak areas of two overlapping 

Gaussians by the perpendicular drop method using the autopeaks.m function. It does this by applying 

different degrees of sharpening and plotting the area errors (percent difference between the true and 

measured errors) vs the sharpening factor. It also shows the height of the valley between the peaks as a 

https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DerivSharp4peaks.png


Page | 87  

yellow line. This shows that: 

(1) the optimum sharpening factor depends upon the width and separation of the two peaks and 

on their height ratio;  

(2) the degree of sharpening is not overly critical, often exhibiting a broad optimum region;  

(3) the optimum for the two peaks is not necessarily the same; and  

(4) the optimum for area measurement might not occur at the point where the valley is zero.  

(To run this script, you must have gaussian.m, derivxy.m, autopeaks.m, val2ind.m, and halfwidth.m in 

the Matlab search path. Download these from https://terpconnect.umd.edu/~toh/spectrum/). 

The power method is effective as long as there is 

a valley between the overlapping peaks, but it 

introduces non-linearity, which must be corrected 

later, whereas the derivative method preserves the 

original peak areas and the ratio between the peak 

heights. PowerLawCalibrationDemo demonstrates 

the linearization of the power transform 

calibration curves for two overlapping peaks by 

taking the nth power of data, locating the valley 

between them, measuring the areas by the 

perpendicular drop method (page 139), and then 

taking the 1/n power of the measured areas 

(graphic).  

 

Constant-area symmetrization (de-tailing) of asymmetric peaks by the weighted addition of the 

first derivative is performed by the function ySym = symmetrize(t,y,factor,smoothwidth,type,ends); "t" 

and "y" are the independent and 

dependent variable vectors, "fac-

tor" is the first derivative 

weighting factor,  and "smooth-

width", "type", and "ends" are the 

SegmentedSmooth parameters for 

the internal smoothing of the de-

rivative. To perform a segmented 

symmetrization, "factor" and 

"smoothwidth" can be vectors. In 

version 2, symmetrize.m smooths 

only the derivative, not the entire 

signal. SymmetrizeDemo.m runs 

all five examples in the symme-

trize.m help file, each in a differ-

ent figure window.  If the tau is 

not known, it can be determined for a single isolated peak by using AutoSymmetrize(t, y, Smooth-

https://terpconnect.umd.edu/~toh/spectrum/PowerLaw4peaks.png
https://terpconnect.umd.edu/~toh/spectrum/
https://terpconnect.umd.edu/~toh/spectrum/PowerLawCalibrationDemo.m
https://terpconnect.umd.edu/~toh/spectrum/PowerTransformCalibrationCurve.png
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SymmetrizeDemo.m


Page | 88  

Width, plots), which finds the value of tau that produces the most symmetrical peak, judged by com-

paring the slope of the tangents to the leading and trailing edges. In the example shown above, the orig-

inal peak (blue line) is a mathematically calculated exponentially modified Gaussian with a tau value of 

100 and the red line is the output generated by AutoSymmetrize, which estimates the tau to an accuracy 

of 1%. Type “help AutoSymmetrize”. The areas of the two are equal within 0.01%. SymmetizedO-

verlapDemo.m demonstrates the optimization of the first derivative symmetrization for the area meas-

urement of two overlapping exponentially broadened Gaussians.  
 

Segmented even-derivative peak sharpening. If the peak widths or the noise variance changes sub-

stantially across the signal, you can use the seg-

mented version SegmentedSharpen.m, for which 

the input arguments factor1, factor2, and 

SmoothWidth are vectors. The script De-

moSegmentedSharpen.m, shown on the right, 

uses this function to sharpen four Gaussian 

peaks with gradually increasing peak widths 

from left to right with increasing degrees of 

sharpening, showing that the peak width 

is reduced by 20% to 22% from to the original.  

DemoSegmentedSharpen2.m shows four peaks 

of the same width sharpened to increasing de-

grees. 
 

Double exponential symmetrization in 

Matlab/Octave is performed by the function 

DEMSymm.m which applies two successive applications of weighted addition of the first derivative, 

with weighting factors ideally equal to the two taus. The objective is to make the peaks more symmet-

rical and narrower while preserving the 

peak area. A three-level plus-and-minus 

bracketing technique helps you to deter-

mine the best values for the two weighting 

factors. The technique is demonstrated by 

the script DemoDEMSymm.m and its two 

variations (1, 2), which creates two over-

lapping double exponential peaks from 

Gaussian originals, then calls the function 

DEMSymm.m to perform the symmetriza-

tion. In the example on the left, the middle 

bracketing line is the optimum value. In 

summary, if you attempt to symmetrize an 

asymmetrical peak by weighted first-

https://terpconnect.umd.edu/~toh/spectrum/SymmetizedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SymmetizedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpen.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSharpen.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSharpen.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpenDemo.txt
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSharpen2.m
https://terpconnect.umd.edu/~toh/spectrum/DEMSymm.m
https://terpconnect.umd.edu/~toh/spectrum/DemoDEMSymm.m
https://terpconnect.umd.edu/~toh/spectrum/DemoDEMSymm2.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSymm3.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpenDemo.png


Page | 89  

derivative addition and the result is still asymmetrical, it may be that the remaining asymmetry could 

be due to another stage of exponential broadening with a different tau, so in that case, the application of 

DEMSymm.m will likely produce a more symmetrical final result. 
 

ProcessSignal, a Matlab/Octave command-line function that performs smoothing, differentiation, and 

peak sharpening on the time-series data set x,y (column or row vectors). Type "help ProcessSignal". It 

returns the processed signal as a vector that has the same shape as x, regardless of the shape of y.  
 

Processed=ProcessSignal(x, y, DerivativeMode, w, type, ends, Sharpen,  

factor1, factor2, Symize, Symfactor, SlewRate, MedianWidth) 
 

iSignal (Version 8.3, page 371) is a multi-function interactive Matlab function that includes peak 

sharpening for time-series signals, using both the even-derivative method (sharpen function)  and the 

first-derivative symmetrization method, with keystrokes that allow you to adjust the derivative 

weighting factors and the smoothing continuously while observing the effect on your signal dynamical-

ly. The E key turns the peak sharpening function on and off. View the code here or download the ZIP 

file with sample data for testing. iSignal estimates the sharpening and smoothing settings for Gaussian 

and for Lorentzian peak shapes using the Y and U keys, respectively, using the expression given above. 

Just isolate a single typical peak in the upper window using the pan and zoom keys, press P to turn on 

the peak measurement mode, then press Y for Gaussian or U for Lorentzian peaks. You can fine-tune 

the sharpening with the F/V and G/B keys and the smoothing with the A/Z keys. (If your signal has 

peaks of widely different widths, one setting will not be optimum for all the peaks. In such cases, you 

can use the segmented sharpen function, SegmentedSharpen.m).  

            Before peak Sharpening in iSignal                                          After peak sharpening in iSignal 

 

https://terpconnect.umd.edu/~toh/spectrum/ps2.png
https://terpconnect.umd.edu/~toh/spectrum/ps1.png
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal7.zip
https://terpconnect.umd.edu/~toh/spectrum/iSignal7.zip
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpen.m


Page | 90  

In iSignal and in iPeak, the Shift-Y key engages the first-derivative symmetrization technique and uses 

the 1, Shift-1, 2, and Shift-2 keys to adjust the weighting factor by 10% or 1% per keypress. The idea 

is to increase the factor until the baseline after the peak goes negative, then increase it slightly so that it 

is as low as possible but not negative. 

 

 

iSignal can also use the power transform method (press the ^ key, enter the power, n (any positive 

number greater than 1.00) and press Enter. To reverse this, simply raise to the 1/n power. iPeak, (page 

248), a Matlab interactive peak detection and measurement program, has a built-in peak sharpening 

mode that is based on the even derivative technique, as well as the first-derivative symmetrization 

using the same keystrokes as iSignal. See ipeakdemo5 on page 264. The GIF animation demonstrates 

this in action. 

Peak sharpening, both by the even-derivative symmetrization and Fourier self-deconvolution methods, 

are included as part of the interactive peak detection tool PeakDetection.mlx discussed on page 248. 

Real-time peak sharpening in Matlab is discussed on page 342.  

  

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#demos
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.mlx


Page | 91  

Harmonic analysis and the Fourier Transform. 
Some signals exhibit periodic components that repeat at fixed intervals throughout the signal, like a 

sine wave. It is often useful to describe the amplitude and frequency of such periodic components 

exactly. In fact, it is possible to analyze any arbitrary set of data into periodic components, whether or 

not the data appear periodic. Harmonic analysis is conventionally based on the Fourier transform, 

which is a way of expressing a signal as a weighted sum of sine and cosine waves. It can be shown that 

any arbitrary discretely sampled signal can be described completely by the sum of a finite number of 

sine and cosine components whose frequencies are 0, 1, 2, 3 ... n/2 times the frequency f=1/nΔx, where 

Δx is the interval between adjacent x-axis values and n is the total number of points. The Fourier 

transform is simply the set of amplitudes of those sine and cosine components (or, which is equivalent 

mathematically, the frequency and phase of sine components). You could calculate those coefficients 

yourself simply but laboriously by multiplying the signal point-by-point with each of those sine and 

cosine components and adding up the products. The famous “Fast Fourier Transform” (FFT) dates 

from 1965 and is a faster and more efficient algorithm that makes use of the symmetry of the sine and 

cosine functions and other math shortcuts to get the same result much more quickly. The inverse 

Fourier transform (IFT) is a similar algorithm that converts a Fourier transform back into the original 

signal. As a mathematical convenience, Fourier transforms are traditionally expressed in terms of 

“complex numbers”, which allows one to combine the sine and cosine (or amplitude and phase) 

information at each frequency onto a single compact expression, using the identity 
 

cos(2πft) + i sin(2πft) = ei2πft 
 

Even for data that are not complex, using the “exp” notation rather than “sin+cos” is surely more 

compact and elegant, and most computer languages can handle complex arithmetic automatically. But 

this terminology can be misleading: the sine and cosine parts are equally important; just because the 

two parts are called "real" and "imaginary" in mathematics does not imply that the first is more 

significant than the second. (For a rigorous explanation, see Fourier Transforms by Gary Knott). 
 

The concept of the Fourier transform is involved in two very important modern instrumental methods 

in chemical analysis. In Fourier transform infrared spectroscopy (FTIR), the Fourier transform of the 

spectrum is measured directly by the instrument, as the interferogram formed by plotting the detector 

signal vs mirror displacement in a scanning Michaelson interferometer. In Fourier Transform Nuclear 

Magnetic Resonance spectroscopy (FTNMR), excitation of the sample by an intense, short pulse of 

radio-frequency energy produces a free induction decay signal that is the Fourier transform of the 

resonance spectrum. In both cases, a computer is used to recover the spectrum by inverse Fourier 

transformation of the measured (interferogram or free induction decay) signal.  

The power spectrum or frequency spectrum is a simple way of showing the total amplitude at each of 

these frequencies. It is calculated as the square root of the sum of the squares of the coefficients of the 

sine and cosine components. The power spectrum retains the frequency information but discards the 

phase information, so that the power spectrum of a sine wave would be the same as that of a cosine 

wave of the same frequency, even though the complete Fourier transforms of sine and cosine waves are 

different in phase. In rare situations where the phase components of a signal are the major source of 

http://resonanceswavesandfields.blogspot.com/2009/01/spectrum-of-waveform-fourier-analysis.html
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Sine_wave
ftp://www.myphysicslab.com/trig_identity1.html
https://pdfs.semanticscholar.org/1790/fe007bc1ab161a1ea814748b42e3acbdc958.pdf
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html#sft
https://en.wikipedia.org/wiki/Complex_number
http://www.civilized.com/files/newfourier.pdf
http://en.wikipedia.org/wiki/Fourier_transform_spectroscopy
http://en.wikipedia.org/wiki/NMR#Fourier_spectroscopy
http://en.wikipedia.org/wiki/NMR#Fourier_spectroscopy
http://en.wikipedia.org/wiki/Frequency_spectrum


Page | 92  

noise (e.g. random shifts in the horizontal x-axis position of the signal), it can be advantageous to base 

measurement on the power spectrum, which discards the phase information, by ensemble averaging 

(page 26) the power spectra of repeated signals: this is demonstrated by the Matlab/Octave scripts 

EnsembleAverageFFT.m and EnsembleAverageFFTGaussian.m.  

The Fourier transform is simply the set of amplitudes of those sine and cosine components A time-

series signal with n points gives a power spectrum with only (n/2)+1 points. The first point is the zero-

frequency (constant) component, corresponding to the DC (“direct current”) component of the signal; it 

looks like a straight flat line. The second 

point corresponds to a frequency of 1/nΔx 

(whose period is exactly equal to the time 

duration of the data), the next point to 

2/nΔx, the next point to 3/nΔx, etc., where 

Δx is the interval between adjacent x-axis 

values and n is the total number of points. 

The last (highest frequency) point in the 

power spectrum (n/2)/nΔx=1/2Δx, which 

is one-half the sampling rate. The figure 

on the left shows a simulated one-second, 

1000-point signal with a sampling rate of 

1000 Hz (middle panel). This signal 

contains only three sine waves (shown 

separately in different colors in the top 

panel), all of which are clearly 

distinguishable when added up in the 

signal itself (middle panel). You can even 

count the cycles of the sine waves to 

confirm their frequencies. The frequencies 

all show up at the expected places and with the expected relative amplitudes in the Fourier amplitude 

spectrum, which I have drawn here as a bar graph (bottom panel), showing frequencies only up to 50 

Hz, out of a maximum of 500 Hz. This also works similarly with cosine waves, which differ from sine 

waves only in their phase (x-axis shift). 

The limits of sampling. The highest frequency that can be represented in a discretely sampled 

waveform is one-half the sampling frequency, which is called the Nyquist frequency. In the signal 

above, the Nyquist frequency is ½ x1000 = 500 Hz. Attempts to digitize analog signals with higher 

frequencies are "folded back" to lower frequencies, severely distorting the signal. This is called 

aliasing. The frequency resolution, that is, the difference between the frequencies of adjacent points in 

the calculated frequency spectrum, is simply the reciprocal of the time duration of the signal, 1 Hz. 

The self-contained Matlab script AliasingDemo.m (graphic) demonstrates the phenomenon of aliasing 

and frequency folding. It creates a sine wave of a fixed frequency (100 Hz), then samples it repeatedly 

at gradually decreasing sampling rates, starting at 600 Hz, well above the Nyquist frequency (200 Hz) 

and ending at 130 Hz, well below the Nyquist frequency. The running graphic shows that the distortion 

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageFFT.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageFFTGaussian.m
http://en.wikipedia.org/wiki/Nyquist_frequency
https://terpconnect.umd.edu/~toh/spectrum/AliasingDemo.m
https://terpconnect.umd.edu/~toh/spectrum/AliasingDemo.png


Page | 93  

caused by sampling starts small but increases drastically as the sampling rate approaches 200 Hz, 

below which the apparent frequency - indicated by the number of peaks counted - decreases. 

 

A pure sine or cosine wave that has an exact integral number of cycles within the recorded signal has a 

single non-zero Fourier component corresponding to its frequency (above left). Conversely, a signal 

consisting of zeros everywhere except at a single point, called a delta function, has equal Fourier 

components at all frequencies (previous page, center). Random noise also has a power spectrum that is 

spread out over a wide frequency range. The noise amplitude distribution depends on the noise color 

(page 29) with pink noise having more power at low frequencies, blue noise having more power at high 

frequencies, and white noise having roughly the same power at all frequencies (above right).  
 

Example of real signals. The figure below shows a real-data 60-second recording of a heartbeat, called 

an electro-cardiograph (ECG), which is an example of a periodic waveform that repeats over time. The 

figure shows the waveform in blue in the top panel and its frequency spectrum in red in the bottom 

panel. The smallest repeating unit of 

the signal is called the period, and 

the reciprocal of that period is called 

the fundamental frequency. Non-

sinusoidal periodic waveforms like 

this exhibit a series of frequency 

components that are multiples of the 

fundamental frequency, which are 

called "harmonics". This spectrum 

shows a fundamental frequency of 

0.6685 Hz (which is 40.1 beats per 

minute, somewhat slow for a normal 

awake human heart rate), with 

multiple harmonics at frequencies 

that are ×2, ×3, ×4..., etc., times the 

fundamental frequency. The lowest 

frequency in the spectrum is 0.067 

Hz (the reciprocal of the recording 

https://terpconnect.umd.edu/~toh/spectrum/ECGlarge.png
http://en.wikipedia.org/wiki/Electrocardiography
http://en.wikipedia.org/wiki/Fundamental_frequency


Page | 94  

time) and the highest is 400 Hz (one-half the sampling rate). The fundamental and the harmonics are 

sharp peaks, and they are labeled with their frequencies on tis graph. The spectrum is qualitatively 

similar to that for perfectly regular identical peaks (graphic). (Recorded vocal sounds, especially 

vowels, also have this kind of periodic waveform with harmonics (graphic)). The sharpness of the 

peaks in the electrocardiogram shows that the amplitude and the frequency are very constant over the 

60 second recording interval in this example (which is normal behavior for a healthy heart). Changes in 

amplitude or frequency over the recording interval will produce clusters or bands of Fourier 

components rather than sharp peaks, as in the example on page 299. 

Another familiar example of stable periodic oscillation is the seasonal variation in temperature, for ex-

ample, the average daily temperature measured in New York City between 1995 and 2015, shown in 

the figure below. This signal exhibits obvious periodicity, except for the sharp negative spikes (which 

are due to missing data points – perhaps local power outages). Note the logarithmic scale on the y-axis 

of the spectrum in the bottom panel; this spectrum covers a very wide range of amplitudes. 

 

In this example, the spectrum in the lower panel, in red, is plotted with time (the reciprocal of frequen-

cy) on the x-axis. This is called a periodogram. Despite 

the considerable random noise due to local weather varia-

tions and missing data, this shows the expected peak at 

exactly 1 year; that peak is over 100 times stronger than 

the background noise and is very sharp because the peri-

odicity is extremely precise (in fact, it is literally astro-

nomically precise). In contrast, the random noise 

is not periodic but rather is spread out roughly equally 

over the entire periodogram.  
 

The figure on the right shows some simulated data that 

demonstrates how hard it is to see a periodic component 

in the presence of random noise, and yet how easy it is to 

https://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/EvenlySpacedSpikes.png
https://terpconnect.umd.edu/~toh/spectrum/EvenlySpacedSpikes.png
https://terpconnect.umd.edu/~toh/spectrum/VocalHarmonics.png
https://terpconnect.umd.edu/~toh/spectrum/VocalHarmonics.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#F
https://terpconnect.umd.edu/~toh/spectrum/NYCTemp.png
http://coolwiki.ipac.caltech.edu/index.php/What_is_a_periodogram%3F
https://terpconnect.umd.edu/~toh/spectrum/NYCTemp.png


Page | 95  

pick it out in the frequency spectrum. In this example, the signal (top panel) contains an equal 

mixture of random white noise and a single sine wave; the sine wave is almost completely obscured by 

the random noise. The frequency spectrum (created using my Matlab/Octave function 

"PlotFrequencySpectrum") is shown in the bottom panel. The frequency spectrum of the white noise is 

spread out evenly over the entire spectrum, whereas the sine wave is concentrated into a single spectral 

element, where it stands out clearly. Here is the Matlab/ Octave code that generated that figure; you can 

Copy and Paste it into Matlab/Octave:  

x=[0:.01:2*pi]'; 

y=sin(200*x)+randn(size(x)); 

subplot(2,1,1); 

plot(x,y); 

subplot(2,1,2); 

PowerSpectrum=PlotFrequencySpectrum(x,y,1,0,1); 

A common practical application is the use of the power spectrum as a diagnostic tool to distinguish be-

tween signal and noise components. An example is the AC power-line pickup depicted in the figure 

below, which has a fundamental frequency of 60 Hz in the USA (why that frequency?) or 50 Hz in 

many other countries. Again, the sharpness of the peaks in the spectrum shows that the amplitude and 

the frequency are very constant; power companies take pains to keep the frequency of the AC very 

constant to avoid problems between different sections of the power grid. Other examples of signals and 

their frequency spectra are shown below. 

 

iSignal, showing data from an audio recording, zoomed in to the “quiet” period immediately before 

(left) and after (right) the actual sound. This shows there is a residual sinusoidal oscillation in those 

periods (x = time in seconds). In the lower panel, the power spectrum of each signal (x = frequency in 

Hz) shows a strong sharp peak very near 60 Hz, suggesting that this oscillation is caused by stray pick-

up from the 60 Hz power line (since it was recorded in the USA; had the recording been made in Eu-

rope, it would be 50 Hz). Improved shielding and grounding of the equipment might reduce this inter-

ference. The "before" spectrum, on the left, has a frequency resolution of only 10 Hz (the reciprocal of 

the recording time of about 0.1 seconds) and it includes only about 6 cycles of the 60 Hz frequency 

(which is why that peak in the spectrum is the 6th point); to achieve a better resolution you would have 

https://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
http://www.allaboutcircuits.com/news/why-is-the-us-standard-60-hz/
http://www.allaboutcircuits.com/news/why-is-the-us-standard-60-hz/
https://terpconnect.umd.edu/~toh/spectrum/SilenceBeforeSignal.png
https://terpconnect.umd.edu/~toh/spectrum/SilenceAfterSignal.png


Page | 96  

had to have begun the recording earlier, to achieve a longer recording. The "after" spectrum, on the 

right, has an even shorter recording time and thus a poorer frequency resolution. 

Peak-type signals have power spectra that are concentrated in a range of low frequencies, whereas ran-

dom noise often spreads out over a much wider frequency range. This is the reason smoothing (low-

pass filtering) can make a noisy signal look nicer, but also why smoothing does not usually help with 

quantitative measurement, because most of the peak information is found at low frequencies, where 

low-frequency noise remains unchanged by smoothing (See page 43). 

  
 The figures above show a classic example of harmonic analysis; it shows the annual variation in the 

number of observed sunspots, which have been recorded annually since the year 1700! In this case, the 

time axis is in years (top window). A plot of the power spectrum (bottom window, left) shows a strong 

peak at 0.09 cycles/year, and the periodogram (right) shows a peak at the well-known 11-year cycle, 

plus some evidence of a weaker cycle at around a 100-year period. (You can download this data set or 

the latest yearly sunspot data from NOAA. These frequency spectra are plotted using my Matlab 

function iSignal (page 371). In this case, the peaks in the spectrum are not sharp single peaks, but 

rather form a cluster of Fourier components, because the amplitude and the frequency are not constant 

over the nearly 300-year interval of the data, as is obvious by inspecting the data in the time 

domain. The strong solar 

flares observed in 2024 fall on 

the next predicted sunspot 

maximum and also on a 

maximum in the solar radio-

frequency emissions, which 

effects communications and 

power grids.  

An example of a time series 

with complex multiple 

periodicities is the world-

https://terpconnect.umd.edu/~toh/spectrum/PageLoads.png
https://terpconnect.umd.edu/~toh/spectrum/sunspots.txt
https://www.ngdc.noaa.gov/stp/solar/ssndata.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://svs.gsfc.nasa.gov/14593#:~:text=During%20the%20week%20of%20May%2010%20to%20May,date%20on%20May%2014%20that%20peaked%20at%20X8.7.
https://svs.gsfc.nasa.gov/14593#:~:text=During%20the%20week%20of%20May%2010%20to%20May,date%20on%20May%2014%20that%20peaked%20at%20X8.7.
https://www.swpc.noaa.gov/products/solar-cycle-progression
https://www.swpc.noaa.gov/products/solar-cycle-progression
https://www.swpc.noaa.gov/phenomena/f107-cm-radio-emissions
https://www.swpc.noaa.gov/phenomena/f107-cm-radio-emissions
https://www.discovermagazine.com/the-sciences/solar-flares-are-stunning-but-are-they-dangerous-heres-what-to-know
https://www.discovermagazine.com/the-sciences/solar-flares-are-stunning-but-are-they-dangerous-heres-what-to-know
https://terpconnect.umd.edu/~toh/spectrum/SunspotSpectrumMode2.png


Page | 97  

wide daily page views (x=days, y=page views) for this web site over a 2070-day period (about 5.5 

years). In the periodogram plot (shown here) you can clearly see sharp peaks at 7 and 3.5 days, 

corresponding to the first and second harmonics of the expected workday/weekend cycle. It also shows 

smaller peaks at 365 days (corresponding to a sharp dip each year during the winter holidays in the 

northern hemisphere) and at 182 days (roughly a half-year), perhaps caused by increased use in the 

two-per-year semester cycle at universities. The large values at the longest times are caused by the 

gradual increase in use over that time period, which can be thought of as a very low-frequency 

component whose period is much longer than the entire data record.  

Another example is shown below; the signal (in the top window) contains no visually evident periodic 

components; it seems to be just 

random noise. However, the 

frequency spectrum (in the bottom 

window) shows that there is much 

more to this signal than meets the eye. 

There are two major frequency 

components: one at low frequencies 

around 0.02 and the other at high 

frequencies between 0.5 and 5. (If the 

x-axis units of the signal plot had been 

seconds, the units of the frequency 

spectrum plot would be Hz; note that 

the x-axis is logarithmic). In this case, 

the lower frequency component is, in 

fact, the signal, and the frequency 

component is residual blue noise 

remaining from previous signal 

processing operations. The two components are fortunately well separated on the frequency axis, 

suggesting that low-pass filtering (i.e., smoothing, page 41) will be able to remove the noise without 

distorting the signal.  

In all the examples shown above, the signals are time-series signals with frequency (or time) as the 

independent variable. More generally, it is possible to compute the Fourier transform and power 

spectrum of any signal, such as an optical spectrum, where the independent variable might be 

wavelength or wavenumber, or an electrochemical signal, where the independent variable might be 

volts, or a spatial signal, where the independent variable might be in length units. In such cases, the 

units of the x-axis of the power spectrum are simply the reciprocal of the units of the x-axis of the 

original signal (e.g., nm-1 for a signal whose x-axis is in nm).  

https://terpconnect.umd.edu/~toh/spectrum/iSignal27spectrum.png
https://terpconnect.umd.edu/~toh/spectrum/Summary4.txt
http://terpconnect.umd.edu/~toh/spectrum/
https://terpconnect.umd.edu/~toh/spectrum/PageLoads.png


Page | 98  

Analysis of the frequency spectra of signals 

provides another way to understand signal-to-

noise ratio, filtering, smoothing, and 

differentiation. Smoothing is a form of low-

pass filtering, reducing the high-frequency 

components of a signal. If a signal consists of 

smooth features, such as Gaussian peaks, then 

its spectrum will be concentrated mainly 

at low frequencies. The wider the width of the 

peak, the more concentrated the frequency 

spectrum will be at low frequencies. (If the 

figure below does not animate, click this link). 

A signal that has white noise (spread out evenly 

over all frequencies), then smoothing will make 

the signal look better, because it reduces the 

high-frequency components of the noise. However, the low-frequency noise will remain in the signal 

after smoothing, where it will continue to interfere with the measurement of signal parameters such as 

peak heights, positions, widths, and areas. This can be demonstrated by a least-squares measurement.  
 

Conversely, differentiation is a form of high-

pass filtering, reducing the low-frequency 

components of a signal and emphasizing 

any high-frequency components present in the 

signal. A simple computer-generated Gaussian 

peak shown above (click for GIF animation) 

has most of its power is concentrated in just a 

few low frequencies, but as successive orders 

of differentiation are applied (yellow circle), 

the waveform of the derivative swings from 

positive to negative like a sine wave, and its 

frequency spectrum shifts progressively to 

higher frequencies. This behavior is typical 

of any signal with smooth peaks. So, the 

optimum range for signal information of a differentiated signal is restricted to a relatively narrow 

range, with little useful information above and below that range.  

The fact that white noise (page 29) is spread out in the frequency domain roughly equally over all 

frequencies has a subtle advantage over other noise colors when the signal and the noise cannot be 

cleanly separated in the time domain; you can more easily estimate the intensity of the noise by 

observing it in frequency regions where the signal does not interfere, since most signals do not occupy 

the entire spectrum frequency range. This idea will be used later as a method for estimating the errors 

of measurements that are based on least-squares curve fitting of noisy data (page 166). 

The technique of peak sharpening (page 76) also emphasizes the high-frequency components by adding 

https://terpconnect.umd.edu/~toh/spectrum/EffectOfWidth.gif
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/EffectOfWidth.gif
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Smoothing
https://terpconnect.umd.edu/~toh/spectrum/DerivGaussSpectrum.gif
https://terpconnect.umd.edu/~toh/spectrum/DerivGaussSpectrum2.gif
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/DerivGaussSpectrum.gif


Page | 99  

a portion of the second and fourth derivatives to the original signal. You can see this clearly in the 

Matlab/Octave script PeakSharpeningFrequencySpectrum.m, which shows the frequency spectrum of 

the original and sharpened version of a signal consisting of several peaks (graphic).  

SineToDelta.m. A demonstration animation (click for animated graphic) shows the waveform and the 

power spectrum of a rectangular pulsed sine wave of variable duration (whose power spectrum is a 

"sinc" function) changing continuously from a pure sine wave at one extreme (where its power 

spectrum is a delta function) to a single-point pulse at the other extreme (where its power spectrum is a 

flat line).GaussianSineToDelta.m is similar, except that it shows a Gaussian pulsed sine wave, whose 

power spectrum is a Gaussian function, but which is the same at the two extremes of pulse duration 

(animated graphic).  

Real experimental signals are often contaminated with drift and baseline shift, which are essentially 

low-frequency effects, and random noise, which is usually spread out over all frequencies. For these 

reasons, differentiation is always used in 

conjunction with smoothing. Working 

together, smoothing and differentiation act 

as a kind of frequency-selective bandpass 

filter that optimally passes the band of 

frequencies containing the differentiated 

signal information but reduces both 

the lower-frequency effects, such as slowly 

changing drift and background, as well as 

the high-frequency noise. An example of 

this can be seen in the DerivativeDemo.m described in a previous section (page 73). In the set of six 

original signals, shown above in different colors, the random noise occurs mostly in high frequencies, 

with many cycles over the x-axis range, and the baseline shift is a much lower-frequency phenomenon, 

with only a small fraction of one cycle occurring over that range. In contrast, the peak of interest, in the 

center of the x-range, occupies an intermediate frequency range, with a few cycles over that range. 

Therefore, we could predict that a quantitative measure based on differentiation and smoothing might 

work well, because that emphasizes the intermediate frequencies. 

Smoothing and differentiation change the amplitudes of the various frequency components of signals, 

but they do not change or shift the frequencies themselves. An experiment described later (page 389) 

illustrates this idea by smoothing and differentiating a brief recording of human speech. Interestingly, 

different degrees of smoothing and differentiation will change the timbre of the voice but has little ef-

fect on the intelligibility, because the sequence of pitches is not shifted in pitch or time but merely 

changed in amplitude by smoothing and differentiation. Because of this, recorded speech can survive 

digitization, transmission over long distances, algorithmic compression, and playback via tiny speakers 

and headphones without significant loss of intelligibility. Music, on the other hand, suffers greater loss 

under such circumstances, as you can tell by listening to telephone "hold" music, which often sounds 

terrible even though speech over the same connection is very intelligible, because music has a different 

frequency structure than speech. Cochlear implants for the hearing impaired have the same limitation 

(as dramatized in the 2019 movie “The Sound of Metal”). 

https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningFrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/SineToDelta.m
https://terpconnect.umd.edu/~toh/spectrum/SineToDelta.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianSineToDelta.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianSineToDelta.gif
https://terpconnect.umd.edu/~toh/spectrum/DerivativeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#sounds
https://en.wikipedia.org/wiki/Timbre
https://www.reddit.com/r/AskEngineers/comments/2dwj84/why_does_hold_music_always_sound_so_terrible/
https://terpconnect.umd.edu/~toh/spectrum/OriginalSignals.png


Page | 100  

Software details 
In a spreadsheet or computer language, a sine wave can be described by the 'sin' function y=sin(2πfx+p) 

or y=sin(2π(1/t)x+p), where π is 3.14159...., f is frequency of the waveform, t is the period of the 

waveform, p is the phase, and x is the independent variable (usually time).  

There are several Web sites that can compute Fourier transforms interactively (e.g. WolframAlpha). 

Microsoft Excel has an add-in function that makes it possible to perform Fourier transforms relatively 

easily: (Click Tools > Add-Ins... > Analysis Toolpak > Fourier Analysis). See "Excel and Fourier" 

for details. See “Excellaneous” (http://www.bowdoin.edu/~rdelevie/excellaneous/) for an extensive and 

excellent collection of add-in functions and macros for Excel, by Dr. Robert deLevie of Bowdoin 

College. There are several dedicated FFT spectral analysis programs, including ScopeDSP 

(https://iowegian.com/scopedsp/) and Audacity (http://sourceforge.net/projects/audacity/). If you are 

reading this online, you can Ctrl-Click these links to open these sites automatically  

Matlab and Octave 
Matlab and Octave have built-in functions for computing the Fourier transform (fft and ifft). These 

functions express their results as complex numbers. For example, if we compute the Fourier transform 

of a simple 3-element vector, we get a 3-element result of complex numbers: 

y=[0 1 0]; 

fft(y) 

ans = 1.0000    -0.5000-0.8660i    -0.5000+0.8660i 

where the "i" indicates the "imaginary" part. The first element of the fft is just the sum of elements in y. 

The inverse fft, ifft([1.0000    -0.5000-0.8660i    -0.5000+0.8660i]), returns the 

original vector [0 1 0].  

For another example, the fft of [0 1 0 1] is [2  0  -2  0]. In general, the fft of an n-element vector of real 

numbers returns an n-element vector of real or complex numbers, but only the first n/2+1 elements are 

unique; the remainder is a mirror image of the first. Operations on individual elements of the fft, such 

as in Fourier filtering, must take this structure into account. 
 

The frequency spectrum “s” of a signal vector "y" can be computed as real(sqrt(fft(y) .* 

conj(fft(s)))). Here is a simple example where we know the answer in advance, at least 

qualitatively: an 8-element vector of integers that trace out a single cycle of a sine wave:  

y=[0 7 10 7 0 -7 -10 -7]; 

s=real(sqrt(fft(y).*conj(fft(y))))  

The frequency spectrum in this case is [0 39.9 0 0.201 0 0.201 0 39.9]. \ 
 

In Python, the syntax is similar: y=np.array([0, 7, 10, 7, 0, -7, -10,-7]) 

s=np.real(np.sqrt(fft.fft(y)*np.conj(fft.fft(y)))). Again, the first element is the 

average (which is zero) and elements 2 through 4 are the mirror image of the last 4. The unique ele-

ments are the first four, which are the amplitudes of the sine wave components whose frequencies are 

0, 1, 2, 3 times the frequency of a sine wave that would just fit a single cycle in the period of the signal. 

In this case, is the second element (39.8) that is the largest by far, which is just what we would expect 

https://www.google.com/search?q=fourier+transform&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:unofficial&client=seamonkey-a#q=calculate+discrete+fourier+transform+online
http://www.wolframalpha.com/input/?i=Fourier+transform+calculator
http://www.brainmapping.org/NITP/PNA/tests/ProblemSet3_files/FourierExcel.htm
http://www.bowdoin.edu/~rdelevie/excellaneous/
https://iowegian.com/scopedsp/
http://sourceforge.net/projects/audacity/
http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/FFT.txt
https://terpconnect.umd.edu/~toh/spectrum/IFFT.txt
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html


Page | 101  

for a signal that approximates a single cycle of a sine (rather than a cosine) wave. Had the signal been 

two cycles of a sine wave, s = [0 10 0 -10 0 10 0 -10], the third element would have been the strongest 

(try it). The highest frequency that can be represented by an 8-element vector is one that has a period 

equal to 2 elements. It takes a minimum of 4 points to show one cycle, e.g. [0  +1  0  -1].  
 

If you are reading this online, click here for a Matlab script that creates and plots a sine wave and then 

uses the fft function to calculate and plot the power spectrum. Try different frequencies (third line). 

Watch what happens when the frequency approaches 50. Hint: the Nyquist frequency is 1/(2*Deltat) = 

1/0.02=50. Also, see what happens when you change Deltat (first line), which determines how fine the 

sine wave is sampled.  
 

My function FrequencySpectrum.m (syntax fs=FrequencySpectrum(x,y)) returns real part of 

the Fourier power spectrum of x,y as a matrix. PlotFrequencySpectrum.m plots frequency spectra and 

periodograms on linear or log coordinates. Type "help PlotFrequencySpectrum" or try this example: 

    x=[0:.01:2*pi]'; 
  f=25; % Frequency 

  y=sin(2*pi*f*x)+randn(size(x)); 

  subplot(2,1,1); 

  plot(x,y); 

  subplot(2,1,2); 

  FS=PlotFrequencySpectrum(x,y,1,0,1); 
  

The plot of the frequency spectrum FS (plotit(FS); graphic) shows a single strong peak at 25. The 

frequency of the strongest peak in FS is given by FS(val2ind(FS(:,2),max(FS(:,2))),1). 

For some other examples of using FFT, see these examples. A “Slow Fourier Transform” function has 

also been published; it is 3000 to 7000 times slower with a 10,000-point data vector, as can be shown 

by this bit of code that you can copy/paste into the Matlab command line: 

y=cos(.1:.01:100); tic; fft(y); ffttime=toc; tic; sft(y); sfttime=toc; 

TimeRatio=sfttime/ffttime. 

Time-segmented Fourier power spectrum.  

The function PlotSegFreqSpect.m, syntax PSM = PlotSegFreqSpect(x, y, NumSegments, 

MaxHarmonic, logmode), creates and 

displays a time-segmented Fourier power 

spectrum. It breaks the signal into 'Num-

Segments' equal-length segments, multi-

plies each by an apodizing Hanning win-

dow, computes the power spectrum of 

each segment, and plots the magnitude of 

the first 'MaxHarmonic' Fourier compo-

nents versus segment number as a contour 

plot. The function returns the power spec-

trum matrix (time-frequency-amplitude) 

as a matrix of size NumSegments x Max-

https://terpconnect.umd.edu/~toh/FrequencySpectrumDemo.m
https://terpconnect.umd.edu/~toh/spectrum/FrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/FrequencySpectrumExample.png
https://www.mathworks.com/examples/search?q=fourier
https://terpconnect.umd.edu/~toh/spectrum/sft.m
http://www.mathworks.com/matlabcentral/fileexchange/2271-numerical-methods-for-physics/content/edition1/matlab4/sft.m
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpect.m
https://en.wikipedia.org/wiki/Contour_line
https://en.wikipedia.org/wiki/Contour_line


Page | 102  

Harmonic. If logmode=1, it computes and plots the base10 log of the amplitudes as a contour plot with 

different colors representing amplitudes (blue=low; yellow=high). Other examples in the help file in-

clude the spectrum of a passing automobile horn, showing the Doppler effect, and of a sample of hu-

man speech (or sonogram) shown in example 2 (graphic on previous page, right).  
 

The next example (script) shows a complex signal consisting of three components added together (be-

low left): two weak Gaussian peaks at x=5000 and 10000 (blue) with height=0.15, a strong swept-

frequency sine-wave interference (red), and white 

noise (green). When you add up all three of those 

components, the Gaussian peaks are totally buried and 

are invisible in the raw signal, above right. (I will call 

this the “buried peaks” signal, and I will use it again 

later, page 131). Inspection of the PlotSegFreqSpect 

function (left) reveals the strong diagonal stripe of yel-

low from the swept sine wave and the blue and white 

background from the random noise, but you also see 

two yellow blobs in time segments 2 and 4 at the bot-

tom of the segmented spectrum (left). What that tells 

us is that there is something around the 2nd and 4th time 

segments that has higher frequencies than the surrounding area. Once you see that, you can constrain 

the range of further observation there and can verify the peaks by smoothing to reduce the high fre-

quencies or by curve-fitting to the raw data (introduced on page 170). In fact, the curve fitting results 

shown below give good values (±10% or better) for the peak positions (true values =5000 and 10000), 

heights (0.15), and widths (2500), despite the invisibility of the peaks in the raw data.  
 

   Peak#   Position    Height     Width      Area 

              1      5031.4     0.15749    2280.6     382.33 

              2      10036      0.16136    2407.2     413.46 
 

But you must see the peaks to know how to try that. Based on the raw data alone, you might never try.  

  

https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpectExample1.png
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpectExample2.png
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpectExample2.png
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpectExample6.m
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpectExample6c.png
https://terpconnect.umd.edu/~toh/spectrum/Example6CurveFitResults.png


Page | 103  

Observing Frequency Spectra with iSignal  

iSignal (page 371) is a multi-purpose interactive signal processing tool that has a Frequency 

Spectrum mode, toggled on and off by the Shift-S key; it computes the frequency spectrum of the 

segment of the signal displayed in the upper window and displays it in the lower window (in red). You 

can use the pan and zoom keys to adjust the region of the signal to be viewed or press Ctrl-A to select 

the entire signal. Press Shift-S again to return to the normal mode. In the frequency spectrum mode, 

you can press Shift-A to cycle through four plot modes (linear, semilog X, semilog Y, or log-log). 

Because of the wide range of amplitudes and frequencies exhibited by some signals, the log plot modes 

often result in a clearer graph that the linear modes. You can also press Shift-X to toggle the x-axis 

between frequency and time. Details and instructions are on page 371. You can download a ZIP file that 

contains iSignal.m version 8 and some demos and sample data for testing.  

Frequency visualization.  
What happens if the frequency content changes with time? Consider, for example, the signal shown in 

the following figure. The signal (download from SineBursts.mat) consists of three intermittent bursts of 

sinewaves of three different frequencies, with zeros between the bursts. 

 
The Matlab function iSignal.m displays a signal (top panel) and its frequency spectrum (bottom panel). 

Here the signal is shown in the upper panel in the iSignal.m function (page 371) by typing:  
 

load SineBursts 

isignal(x,y); 
 

at the Matlab command prompt. By pressing Shift-S, its frequency spectrum is displayed in the lower 

panel, which shows three discreet frequency components. But which one is which? The normal Fourier 

transform by itself offers no clue, but iSignal allows you to pan and zoom across the signal, using the 

cursor arrow keys, so you would be able to isolate each. Alternatively, my function PlotSegFreqSpec.m, 

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/SineBursts.mat
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpec.m


Page | 104  

just described in the previous section (figures below) is another way to display this signal in a single 

static graphic that clearly displays the time and frequency variation of the signal.  

 

You can do a similar visualization with Matlab’s inbuilt “Short Time Fourier Transform” function 

stft.m (below), which displays both positive and negative frequencies.  

Signal enhancement  

A very important feature of iSignal is that all signal processing functions remain active in the frequency 

spectrum mode (smooth, derivative, etc.), so you can observe the effect of these functions on the 

frequency spectrum of the signal immediately. Some signal processing operations may have the side-

effect of increasing the effect of random noise or of distorting the signal. The advantage of iSignal is 

that you can directly observe the trade-off between the desired effect and the side effects while 

adjusting the signal-processing variables interactively. The figure on the next page shows an example. 

It shows the effect of increasing the smooth width on the 2nd derivative of a signal containing three 

weak noisy peaks. Without smoothing, the signal seems to be all random noise; with enough 

smoothing, the three weak peaks are clearly visible (in derivative form) and measurable. 

https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html


Page | 105  

 

The animation above shows the frequency spectrum mode of iSignal.m, as the smooth width is varied with the A 

and Z keys. This shows dramatically how the signal (top panel) and the frequency spectrum (below) are both 

affected by smooth width.(If you are reading this online, click for GIF animation.) 

The script “iSignalDeltaTest” demonstrates the frequency response of the smoothing and differentiation 

functions of iSignal by applying them to a delta function. Change the smooth type, smooth width, and 

derivative order and see how the power spectrum changes. 

Showing that the Fourier spectrum of a Gaussian is also a Gaussian 
One special (math-nerdy) thing about the Gaussian signal shape compared to other shapes is that the 

Fourier frequency spectrum of a Gaussian is also a Gaussian. You can demonstrate this numerically by 

downloading the gaussian.m and isignal.m functions and executing the following statements: 

 

x=-100:.2:100; 

width=2; y=gaussian(x,0,width); 

isignal([x;y],0,400,0,3,0,0,0,10,1000,0,0,1); 
  

Click on the figure window, press Shift-T to transfer the frequency spectrum to the top panel, then 

press Shift-F, press Enter three times, and click on the peak in the upper window. The program 

computes a least-squares fit of a Gaussian model to the frequency spectrum now in the top panel. The 

fit is essentially perfect. If you repeat this with Gaussians of different widths (e.g., width=1 or 4), you 

will find that the width of the frequency spectrum peak is inversely proportional to the width of the 

signal peak. In the limit of an infinitely narrow peak width, the Gaussian becomes a delta function, and 

https://terpconnect.umd.edu/~toh/spectrum/iSignalSpectrumMode.gif
https://terpconnect.umd.edu/~toh/spectrum/iSignalDeltaTest.m
https://en.wikipedia.org/wiki/Dirac_delta_function
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignalSpectrumMode.gif


Page | 106  

its frequency spectrum is flat. In the limit of an infinitely wide peak width, the Gaussian becomes a flat 

line, and its frequency spectrum is non-zero only at zero frequency. 

Fourier Convolution 
Convolution is a "shift-and-multiply" operation performed on two signals; it involves multiplying one 

signal by a delayed or shifted version of another signal, integrating or averaging the product, and 

repeating the process for different delays. Convolution is a useful process because it describes some 

effects that occur widely in scientific measurements, such as the influence of a frequency filter on an 

electrical signal or of the spectral bandpass of a spectrometer on the shape of a recorded optical 

spectrum, which cause the signal to be spread out in time and reduced in peak amplitude.  

 

 

 

Fourier convolution is used here to determine how the optical spectrum in Window 1 (top left) will ap-

pear when scanned with a spectrometer whose slit function (spectral resolution) is described by the 

Gaussian function in Window 2 (top right). The Gaussian function has already been rotated so that its 

maximum falls at x=0. The resulting convoluted optical spectrum (bottom center) shows that the two 

lines near x=110 and 120 will not be resolved but the line at x=40 will be partly resolved. Fourier 

convolution is used in this way to correct the analytical curve non-linearity caused by spectrometer 

resolution, in hyperlinear absorption spectroscopy (Page 271). 

For large signals, it is common to perform the calculation by point-by-point multiplication of the two 

signals in the Fourier domain. First, the Fourier transform of each signal is obtained. Then the two 

https://www.electronics-tutorials.ws/filter/filter_2.html
https://www.electronics-tutorials.ws/filter/filter_2.html
https://www.horiba.com/en_en/bandpass-resolution/


Page | 107  

Fourier transforms are multiplied point-by-point by the rules for complex multiplication and the result 

is then inverse Fourier transformed. Fourier transforms are usually expressed in terms of "complex 

numbers", with real and imaginary parts; if the Fourier transform of the first signal is a + ib, and the 

Fourier transform of the second signal is c + id, then the product of the two Fourier transforms is 

(a + ib)(c + id)  =  (ac - bd) + i(bc + ad). Although this seems to be a round-about method, it turns out 

to be faster than the shift-and-multiply algorithm when the number of points in the signal is large. 

Convolution can be used as a powerful and general algorithm for smoothing and differentiation. Many 

computer languages will perform this operation automatically when the two quantities divided are 

complex. In typeset mathematical texts, convolution is often designated by the symbol ⁕ (Reference). 

Fourier convolution is used as a very general algorithm for the smoothing and differentiation of digital 

signals, by convoluting the signal with a (usually) small set of numbers representing the convolution 

vector. Smoothing is performed by convolution with sets of positive numbers, e.g. [1 1 1] for a 3-point 

boxcar. Convolution with [–1 1] computes a first derivative; [1 -2 1] computes a second derivative. 

Successive convolutions by Conv1 and then Conv2 is equivalent to one convolution with the 

convolution of Conv1 and Conv2. First differentiation with smoothing is done by using a convolution 

vector in which the first half of the coefficients is negative, and the second half is positive (e.g. [-1 -2 0 

2 1]).  

Simple whole-number convolution vectors 

Differentiation vectors: 
[-1 1]         First derivative 

[1 -2 1]       Second derivative 

[1 -3 3 -1]    Third derivative 

[1 -4 6 -4 1]  Fourth derivative 
 

Results of successive convolution by two vectors Conv1 and Conv2: (⁕ stands for convolution) 
 

Conv1                            Conv2         Result                               Description 

[1 1 1]     ⁕   [1 1 1]  = [1 2 3 2 1]        Triangular smooth 

[1 2 1]     ⁕   [1 2 1]  = [1 4 6 4 1]        P-spline smooth 

[-1 1]      ⁕   [-1 1]   = [1 -2 1]           2nd derivative 

[-1 1]      ⁕   [1 -2 1] = [1 -3 3 -1]        3rd derivative 

[1 -2 1]    ⁕   [1 -2 1] = [1 -4 6 -4 1]               4th derivative  

[-1 1]      ⁕   [1 1 1]  = [1 0 0 -1)         1st derivative gap-segment 

[-1 1]      ⁕   [1 2 1]  = [1 1 -1 -1)        Smoothed 1st derivative 

[1 1 -1 -1] ⁕   [1 2 1]  = [1 3 2 -2 -3 -1]   Same with more smoothing 

[1 -2 1]    ⁕   [1 2 1]  = [1 0 -2 0 1]       2nd derivative gap-segment  

[1 1 1 1]   ⁕   [1 1 1 1] = [1 2 3 4 3 2 1]   2 passes of 4-point sliding average   

Rectangle ⁕ rectangle = triangle or trapezoid, depending on relative widths. 

Gaussian ⁕ Gaussian = Gaussian of greater width. 

Gaussian  ⁕  Lorentzian = Voigt profile (i.e., something in between Gaussian and Lorentzian, depend-

ing on relative widths. Similar (but not identical) to the weighted sum of a Gaussian and Lorentzian). 

https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Convolution


Page | 108  

Software details for convolution 
 

Spreadsheets can perform "shift-and-multiply" convolution for digitally sampled data sets (for 

example, MultipleConvolution.xlsx, MultipleConvolutionFirstDerivativeDemo.xls (screen shot) and 

MultipleConvolution4thDerivativeDemo.xls (screen shot) for Excel and MultipleConvolutionOO.ods 

for Calc), but for larger data sets the performance is slower than Fourier convolution (which is easier 

done in Matlab/Octave or in Python than in spreadsheets). Spreadsheets, however, show the cell-by-cell 

"shift-and-multiply" operation more clearly and explicitly. 

Matlab/Octave have a built-in function for convolution of two vectors: conv (numpy.convolve in 

Python). This function can be used to create filters and smoothing functions, such as sliding-average 

and triangular smooths:  

ysmoothed=conv(y,[1 1 1 1 1],'same')./5;  

This smooths the vector y with a 5-point unweighted sliding average (boxcar) smooth. 

ysmoothed=conv(y,[1 2 3 2 1],'same')./9;  

This smooths the vector y with a 5-point triangular smooth. (The optional argument 'same' returns the 

central part of the convolution that is the same size as y. If that optional argument is "full", then the 

length of the result is ones less than the sum of the lengths of the two vectors). 

Differentiation can be combined with smoothing by using a convolution vector in which the first half of 

the coefficients is negative, and the second half is positive (e.g. [-1 0 1], [-2 -1 0 1 2], or [-

3 -2 -1 0 1 2 3]). These compute a first derivative with increasing amounts of smoothing.  

The conv function in Matlab/Octave can easily be used to combine successive convolution operations, 

for example, a second differentiation followed by a 3-point triangular smooth: 
 

>> conv([1 -2 1],[1 2 1]) 

ans = 1     0    -2     0     1 

The next example creates an exponential trailing transfer function (c), which has an effect like a simple 

RC low-pass filter and applies it to y.  

    c=exp(-(1:length(y))./30);    

    yc=conv(y,c,'full')./sum(c);  

In each of the above three examples, the result of the convolution is divided by the sum of the 

convolution transfer function, to ensure that the convolution has a net gain of 1.000 and thus does not 

affect the area under the curve of the signal. This makes the mathematical operation closer to the 

physical convolutions that spread out the signal in time and reduce the peak amplitude but conserve the 

total energy in the signal, which for a peak-type signal is proportional to the area under the curve. 

Alternatively, you could perform the convolution yourself, without using the built-in Matlab/Octave 

"conv" function, by multiplying the Fourier transforms of y and c using the "fft.m" function, and then 

inverse transform the result with the "ifft.m" function. The results are essentially the same and the 

elapsed time is slightly faster than using the conv function. However, c must be zero-filled to  match 

the size of yc because the point-by-point multiplication or division of two vectors requires that they 

have the same length.  The "conv" function performs any required zero filling automatically. 

https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution.xlsx
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution.xlsx
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolutionFirstDerivativeDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolutionFirstDerivativeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution4thDerivativeDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution4thDerivativeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolutionOO.ods
http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/conv.txt
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://terpconnect.umd.edu/~toh/spectrum/bsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/tsmooth.m


Page | 109  

    yc=ifft(fft(y).*fft(c)); 

When using convolution for smoothing, it's common to want to keep the area under the signal y the 

same after smoothing. This is easily ensured by dividing by the sum of the members of c: 

yc=ifft(fft(y).*fft(c))./sum(c); 

GaussConvDemo.m shows that a Gaussian of unit height convoluted with a Gaussian of the same 

width is a Gaussian with a height of 1/sqrt(2) and a width of sqrt(2) and of equal area to the original 

Gaussian. (Figure window 2 shows an attempt to recover the original “y” from the convoluted “yc” by 

using the deconvgauss function). You can optionally add noise in line 9 to show how convolution 

smooths the noise and how deconvolution restores it. Requires gaussian.m, peakfit.m and 

deconvgauss.m in the Matlab path.  

iSignal (page 371) has a Shift-V keypress that displays the menu of Fourier convolution and 

deconvolution operations that allow you to convolute a Gaussian or exponential function with the 

signal and asks you for the Gaussian width or the time constant (in X units).  
 

Fourier convolution/deconvolution menu  

  1. Convolution 

  2. Deconvolution 

Select mode 1 or 2: 1 

  

Shape of convolution/deconvolution function: 

  1. Gaussian 

  2. Exponential 

Select shape 1 or 2: 2 
  

Enter the exponential time constant: 
 

Then you enter the time constant (in x units) and press Enter.  

Multiple sequential convolution 

In the real world, signal broadening 

mechanisms are not always reducible to a 

single convolution. Sometimes two or more 

convolution mechanisms may be in play at 

the same time.  A good example of this 

occurs in the technique of twin-column 

recycling separation process (TCRSP), a 

novel chromatography technique in which 

the injected sample is recycled back to the 

two columns for obtaining better and better 

resolution, allowing chromatographers to 

solve challenging separation problems 

caused by the partition coefficients for the 

components being too similar and/or too low 

column efficiencies [reference 90]. In TCRSP, after the sample is separated by the first column, it flows 

https://terpconnect.umd.edu/~toh/spectrum/GaussConvDemo.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://www.sciencedirect.com/science/article/abs/pii/S0021967317314188


Page | 110  

into the second identical column, and after that separation, switching valves connect it back into the 

first column. That cycle repeats as many times as required. Each pass through a column increases the 

separation between the components slightly, so that with a sufficiently large number of cycles, very 

similar substances can be separated. Chromatographic separations often involve broadening of the 

peaks by asymmetrical mechanisms (page 137), usually modeled as an exponentially modified 

Gaussian (EMG). Any broadening that occurs in the first pass will occur repeatedly in the subsequent 

passes. The net result will be a final peak shape that cannot be described by a single convolution. The 

success of the TCRSP technique depends on the fact that the separation between the components 

increases faster than the width increase caused by the successive convolutions of broadening 

mechanisms. But multiple sequential convolutions produce results that differ from a single large 

convolution. This is demonstrated by the simple example of two sequential exponential convolutions 

applied to a Gaussian, as shown in the figure on the previous page, generated by a Matlab script. The 

blue curve is the original Gaussian. The red curve is the result of a single convolution by an 

exponential function whose time constant tau is 2. The cyan curve is the result of two successive 

convolutions with that same tau. The orange curve is an attempt to duplicate that with a single wider 

convolution of tau equal to 3. That attempt fails; the result is a poor match to the cyan curve. In fact, 

experiments show that no single wider exponential convolution can match the result of two (or more) 

successive convolutions; the shape is fundamentally different. Multiple exponential convolutions result 

in a less asymmetrical peak, more shifted to larger x values. On the other hand, a single convolution by 

a function that is the product of the Fourier transforms of the two separate functions does work (black 

dots). With greater numbers of successive convolutions, the peaks become more symmetrical and more 

Gaussian, as demonstrated by this graphic, generated by this Matlab script. (You can choose the 

number of convolutions in line 20). 

  

https://terpconnect.umd.edu/~toh/spectrum/TwiceBroadenedPeak2.m
https://terpconnect.umd.edu/~toh/spectrum/MultipleBroadenedPeak.png
https://terpconnect.umd.edu/~toh/spectrum/MultipleBroadenedPeak.m


Page | 111  

Fourier Deconvolution 
Fourier deconvolution is the converse of Fourier convolution in the sense that division is the converse 

of multiplication. If you know that m times x equals n, where m and n are known but x is unknown, 

then x equals n divided by m. Similarly, if you know that the vector M convoluted with the 

vector X equals the vector N, where M and N are known but X is unknown, then X equals M 

deconvoluted from N.  

In practice, the deconvolution of one signal from another is usually performed by point-by-point 

division of the two signals in the Fourier domain, that is, dividing the Fourier transforms of the two 

signals point-by-point and then inverse-transforming the result. Fourier transforms are usually 

expressed in terms of complex numbers, with “real” and “imaginary” parts representing the sine and 

cosine parts. If the Fourier transform of the first signal is a + ib, and the Fourier transform of the 

second signal is c + id, then the ratio of the two Fourier transforms, by the rules for the division of 

complex numbers, is 

 
Most scientific computer languages (such as Fortran, Matlab and Python) will perform this operation 

automatically when two complex numbers are divided.  

Note: It is important to realize that the word "deconvolution" can have two different meanings in the 

scientific literature, which can lead to confusion. The Oxford dictionary defines the word as "A process 

of resolving something into its constituent elements or removing complication in order to clarify it", 

which in one sense applies to Fourier deconvolution. However, the same word is also sometimes used 

for the process of resolving or decomposing a set of overlapping signals into their separate additive 

components by the technique of iterative least-squares curve fitting (page 195) of a proposed model of 

the signal to the data set. However, that process is conceptually distinct from Fourier deconvolution, 

because in Fourier deconvolution, the underlying peak shape is unknown, but the broadening function 

is assumed to be known; whereas in iterative least-squares curve fitting, it is just the reverse: the peak 

shape is assumed to be known but the width of the broadening process, which determines the width and 

shape of the peaks in the recorded data, is usually unknown. Thus, the term "spectral deconvolution" is 

ambiguous: it might mean the Fourier deconvolution of a response function from a spectrum, or it 

might mean the decomposing of a spectrum into its separate additive components. These are different 

processes; do not get them confused.  

The practical significance of Fourier deconvolution in signal processing is that it is used as a 

computational way to 

reverse the result of a 

convolution occurring in the 

physical domain, for 

example, to reverse the 

signal distortion effect of an 

electrical filter or of the 

http://www.dspguide.com/ch17/2.htm
http://www.dspguide.com/ch6.htm
http://www.mesacc.edu/~scotz47781/mat120/notes/complex/dividing/dividing_complex.html
http://www.mesacc.edu/~scotz47781/mat120/notes/complex/dividing/dividing_complex.html
http://www.oxforddictionaries.com/us/definition/american_english/deconvolution?q=deconvolution
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/FourierDivide.gif


Page | 112  

finite resolution of a spectrometer. In some cases, the physical convolution can be measured 

experimentally by applying a single spike impulse ("delta") function to the input of the system, then 

that function can be used as a deconvolution vector. In that application, deconvolution works perfectly 

only when the signals contain no noise and when the original convolution function is known exactly, as 

in the case shown in the figure below where a square pulse is convoluted with a Gaussian convolution 

function, c.  

 

 

Fourier deconvolution is used here to remove the distorting influence of an exponential tailing re-

sponse function from a recorded signal (Window 1, top left) that is the result of a low-pass filter built 

into the electronics to reduce noise. The response function (Window 2, top right) must be known and is 

usually either calculated based on some theoretical model or is measured experimentally as the output 

signal produced by applying an impulse (delta) function to the input of the system. The response func-

tion, with its maximum at x=0, is deconvoluted from the original signal. The result (bottom, center) 

shows a closer approximation to the real shape of the peaks; however, the signal-to-noise ratio is una-

voidably degraded compared to the recorded signal, because the Fourier deconvolution operation is 

simply recovering the original signal before the low-pass filtering, noise and all. 

(If you are reading this online, click for Matlab/Octave script.) 

Note that this process has an effect that is visually similar to derivative peak sharpening (page 76) alt-

hough the latter requires no specific knowledge of the broadening function that caused the peaks to 

overlap. 

Even if there is no known physical convolution that has broadened the signal, it is possible to use 

https://terpconnect.umd.edu/~toh/spectrum/DeconvolutionDemo4.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html


Page | 113  

deconvolution as a method of peak sharpening by deconvolution of a model of that peak shape from the 

signal; that is referred to as “self-deconvolution”, because the shape of the deconvolution function is 

the same as the shape of the peaks in the signal. Self-deconvolution is a common method of peak 

sharpening which can be applied to a signal consisting of one or more peaks of a predictable peak 

shape. The idea is that a noiseless model of the peak shape is deconvoluted from the signal and the 

width of that model peak is adjusted to provide the desired degree of sharpening.  

Deconvolution can also be used to determine the form of an unknown convolution operation that has 

been previously applied to a signal, by deconvoluting the original and the convoluted signals, as shown 

in the following page. 

 

 

A different application of Fourier deconvolution is to reveal the nature of an unknown data transfor-

mation function that has been applied to a data set by the measurement instrument itself. In this exam-

ple, the figure in the top left is an ultraviolet-visible absorption spectrum recorded on a commercial 

photodiode array spectrometer (X-axis: nanometers; Y-axis: milliabsorbance). The figure in the top 

right is the first derivative of that spectrum produced by an (unknown) algorithm in the software sup-

plied with the spectrometer. The objective here is to understand the nature of the differentiation/ 

smoothing algorithm that the instrument's internal software uses. The signal in the bottom left is the 

surprisingly simple result of deconvoluting the derivative spectrum (top right) from the original spec-

trum (top left). This, therefore, must be the convolution function used by the differentiation algorithm in 

the spectrometer's software or its equivalent. Rotating and expanding it on the x-axis makes the func-

tion easier to see (bottom right). Expressed in terms of the smallest whole numbers, the convolution 

series is simply +2, +1, 0, -1, -2, which is a combination of differentiation and smoothing (page 107). 

This elementary example of “reverse engineering” makes it easier to compare results from other in-

struments or to duplicate these results on other equipment. 

https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Smoothing
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Smoothing
https://en.wikipedia.org/wiki/Reverse_engineering


Page | 114  

When applying Fourier deconvolution to experimental data, for example, to remove the effect of a 

known broadening or low-pass filter operator caused by the experimental system, there are three 

serious problems that limit the utility of the method:  
 

(1) A mathematical convolution might not be an accurate model for the convolution occurring in 

the physical domain.  

(2) The width of the convolution - for example, the time constant of a low-pass filter operator or 

the shape and width of a spectrometer slit function - must be known, or at least adjusted by the 

user to get the best results.  

 (3) A serious signal-to-noise degradation commonly occurs; any noise added to the signal by 

the system after the convolution by the broadening or low-pass filter operator will be greatly 

amplified when the Fourier transform of the signal is divided by the Fourier transform of the 

broadening operator, because the high frequency components of the broadening operator (the 

denominator in the division of the Fourier transforms) are typically very small, with some 

individual components often of the order of 10-12 or 10-15, resulting a huge amplification of 

those particular frequencies in the resulting deconvoluted signal. This can be controlled to some 

extent by smoothing or filtering to reduce the amplitude of the highest-frequency components.  

You can see the amplification of high-frequency noise happening in the first graphic example above on 

the previous pages. On the other hand, this effect is not observed in the second example, because in that 

case, the noise was present in the original signal, before the convolution performed by the 

spectrometer's derivative algorithm. The high-frequency components of the denominator in the division 

of the Fourier transforms are typically much larger than in the previous example, avoiding the noise 

amplification and divide-by-zero errors, and the only post-convolution noise comes from numerical 

round-off errors in the math computations performed by the derivative and smoothing operation, which 

is always much smaller than the noise in the original experimental signal.  

In many cases, the width of the physical convolution is not known exactly, so the deconvolution must 

be adjusted empirically to yield the best results. Similarly, the width of the final smooth operation must 

also be adjusted for the best results. The result will seldom be perfect, especially if the original signal is 

noisy, but it is often a better approximation to the real underlying signal than the recorded data without 

deconvolution.  

As a method for peak sharpening, deconvolution can be compared to the derivative peak sharpening 

method described earlier or to the power method, in which the raw signal is simply raised to some 

positive power n. 

Computer software for deconvolution 

Matlab and Octave 

Matlab and Octave have a built-in function for Fourier deconvolution: deconv. An example of its 

application is shown in the figure on the next page: the vector yc (line 6) represents a noisy rectangular 

pulse (y) convoluted with a transfer function c before being measured. In line 7, c is deconvoluted 

from yc, to recover the original y. This requires that the transfer function c be known. The rectangular 

signal pulse is recovered in the lower right (ydc), complete with the noise that was present in the  

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/deconv.txt


Page | 115  

original signal. The Fourier deconvolution 

reverses not only the signal-distorting effect of 

the convolution by the exponential function, 

but also its low-pass noise-filtering effect. As 

explained above, there is a significant 

amplification of any noise that is 

added after the convolution by the transfer 

function (line 5). This script can be used to 

demonstrate that there is a big difference 

between noise added before the convolution 

(line 3), which is recovered unmodified by the 

Fourier deconvolution along with the signal, 

and noise added after the convolution (line 6), 

which is amplified compared to that in the 

original signal. Download this script. Note 

that the “sum(c)” term in line 7 is included 

simply to scale the amplitude of the result 

(specifically the area under the curve) to match the original y. 
 

x=0:.01:20;y=zeros(size(x));  % 2000 point signal with 200-point 

y(900:1100)=1;                % rectangle in center, y  

y=y+.01.*randn(size(y));      % Noise added before the convolution 

c=exp(-(1:length(y))./30);    % exponential convolution function, c 

yc=conv(y,c,'full')./sum(c);  % Create exponential trailing function, yc 

% yc=yc+.01.*randn(size(yc)); % Noise added after the convolution 

ydc=deconv(yc,c).*sum(c);     %  Recover y by deconvoluting c from yc 

% Plot all the steps 

subplot(2,2,1); plot(x,y); title('original y'); subplot(2,2,2); 

plot(x,c);title('c'); subplot(2,2,3); plot(x,yc(1:2001)); title('yc'); 

subplot(2,2,4); plot(x,ydc);title('recovered y') 
 

 

Alternatively, you could perform the Fourier deconvolution yourself without using the built-in Matlab/ 

Octave "deconv" function by dividing the Fourier transforms of yc and c using the built-in Matlab/ 

Octave "fft.m" function and inverse transform the result with the built-in Matlab/Octave "ifft.m" 

function. Note that c must be zero-filled to match the size of yc. The results are essentially the same 

(except for the numerical floating-point precision of the computer, which is usually negligible), and it is 

faster than using the deconv function:  

 

ydc=ifft(fft(yc)./fft([c zeros(1,2000)])).*sum(c);  

 

If you are reading this online, click here for a simple explicit example of Fourier convolution and 

deconvolution for a small 9-element vector,  with the vectors printed out at each stage.  

https://terpconnect.umd.edu/~toh/spectrum/DeconvTest.m
https://www.techopedia.com/definition/10143/zero-filling
https://terpconnect.umd.edu/~toh/spectrum/ConvolutionDeconvolutionExample.txt
https://terpconnect.umd.edu/~toh/spectrum/deconvolution.png


Page | 116  

The script DeconvDemo3.m is like the previous example, except that it demonstrates Gaussian Fourier 

convolution and deconvolution of the same rectangular pulse, utilizing the fft/ifft formulation just 

described. The animated screen graphic on the right (If you are reading this online, click link for 

animation) demonstrates the effect of changing the deconvolution width. The raw deconvoluted signal 

in this example (bottom left quadrant) is 

extremely noisy, but that noise is mostly 

"blue" (high frequency) noise that you can 

easily reduce by a little smoothing (page 39). 

As you can see in both animated examples 

here, deconvolution works best when the 

deconvolution width exactly matches the 

width of the convolution to which the 

observed signal has been subjected; the further 

off you are, the worse will be the wiggles and 

other signal artifacts. In practice, you must try 

several different deconvolution widths to find 

the one that results in the smallest wiggles, 

which of course becomes harder to see if the 

signal is very noisy. Note that in this example 

the deconvolution width must be within 1% of the convolution width. In general, the wider the physical 

convolution width relative to the signal, the more 

accurately the deconvolution width must be 

matched to the physical convolution width. 

 DeconvDemo5.m (left) shows an example with 

two closely-spaced underlying peaks of equal width 

that are completely unresolved in the observed 

signal but are recovered with their 2:1 height ratio 

intact in the deconvoluted and smoothed result. 

This is an example of Gaussian “self-

deconvolution”. DeconvDemo6.m is the same 

except that the underlying peaks are Lorentzian. 

(Note that all these scripts require functions than 

can be downloaded from 

http://tinyurl.com/cey8rwh). In all the above 

simulations, the deconvolution method works as well as it does because the signal-to-noise ratio of the 

"observed signal" (upper right quadrant) is quite good; the noise is not even visible on the scale 

presented here. In the absence of any knowledge of the width of the deconvolution function, finding the 

correct deconvolution width depends upon experimentally minimizing the wiggles that appear when the 

deconvolution width is incorrect, and a poor signal-to-noise ratio will make this much more difficult. 

Of course, smoothing can reduce noise, especially high-frequency (blue) noise, but smoothing also 

slightly increases the width of peaks, which works counter to the point of deconvolution, so it must not 

be overused. The image on the left shows the widths of the peaks (as full width at half maximum); the 

https://terpconnect.umd.edu/~toh/spectrum/GaussianDeconvolution5.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.gif
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.gif
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo5.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo6.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo6.png
https://terpconnect.umd.edu/~toh/spectrum/functions.html
http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.gif


Page | 117  

widths of the deconvoluted peaks (lower right quadrant) are only slightly larger than in the (unobserved) 

underlying peaks (upper left quadrant) either because of imperfect deconvolution or the broadening 

effects of the smoothing needed to reduce the high-frequency noise. As a rough but practical rule of 

thumb, if there is any visible noise in the observed signal, it is likely that the results of self-

deconvolution, of the type shown in DeconvDemo5.m, will be too noisy to be useful.  

In the example shown on the right. (Download this script), the underlying signal (uyy) is a Gaussian, 

but in the observed signal (yy) the peak is broadened exponentially resulting in a shifted, shorter, and 

wider peak. Assuming that the exponential broadening time constant ('tc') is known, or can be guessed 

or measured (page 80), the Fourier deconvolution of cc from yy successfully removes the broadening 

(yydc), and restores the original height, position, and width of the underlying Gaussian, but at the 

expense of considerable noise increase. The noise is caused by the fact that a little constant white noise 

has been added after the broadening convolution 

(cc), to make the simulation more realistic. 

However, the noise remaining in the 

deconvoluted signal is "blue" (high-frequency 

weighted, see page 29) and so is easily reduced 

by smoothing (page 43) and has less effect on 

least-square fits than does white noise. (For a 

greater challenge, try more noise in line 6 or a 

bad guess of the time constant ('tc') in line 7). To 

plot the recovered signal overlaid with the 

underlying signal: plot(xx,uyy,xx,yydc). 

To plot the observed signal overlaid with the 

underlying signal: plot(xx,uyy,xx,yy). To 

curve fit the recovered signal to a Gaussian to 

determine peak parameters: 

[FitResults,FitError]=peakfit([xx;yydc],26,42,1,1,0,10), which yields excellent 

values for the original peak positions, heights, and widths. You can demonstrate to yourself that with 

ten times the previous noise level (Noise=.01 in line 6), the values of peak parameters determined by 

curve fitting are still quite good, and even with 100x more noise (Noise=.1 in line 6) the peak 

parameters are more accurate than you might expect for that amount of noise (because that noise 

is blue). Remember, there is no need to smooth the results of the Fourier deconvolution before curve 

fitting, as seen previously on page 49.  

An alternative to the above deconvolution approach is to use iterative curve fitting (page 195) to fit the 

observed signal directly with an exponentially broadened Gaussian model (shape number 5):  
 

>> [FitResults,FitError] = peakfit([xx;yy], 26, 50, 1, 5, 70, 10) 
 

Both methods give good values of the peak parameters, but the Fourier deconvolution method is faster 

because fitting the deconvoluted signal with a simple Gaussian model is faster than iteratively curve 

fitting the observed signal with the more complicated exponentially broadened Gaussian model. 
  

https://terpconnect.umd.edu/~toh/spectrum/GaussianDeconvolution5.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo2.m
http://en.wikipedia.org/wiki/Colors_of_noise
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#NOT_smooth
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo2.png


Page | 118  

If the exponential factor "tc" is not known, it can be determined by iterative curve fitting using ipf.m 

(page 411), manually adjusting the exponential factor ('extra') interactively with the A and Z keys to get 

the best fit: 
  

>>ipf([xx;yy]);  

which in this case gives a best fit when the 

exponential factor "tc" is adjusted to about 

69.9 (close the correct value of 70 in this 

simulation).  

Alternatively, you can use peakfit.m with 

the unconstrained variable exponentially 

broadened Gaussian (shape 31), which will 

automatically find the best value of "tc", 

but in that case the best results will be 

obtained if you give it a rough first guess 

("start") as the eighth input argument, with 

values within a factor of two or so of the 

correct values: 

>>[FitResults,FitError]=peakfit([xx;yy],0,0,1,31,70,10, [20 10 50]) 

            Peak#   Position   Height     Width     Area     tc 
              1     25.006     0.99828    10.013   10.599   69.83 
GoodnessOfFit = 
      0.15575      0.99998 

The value of the exponential factor determined by this method is 69.8, again close to 70. However, if 

the signal is very noisy, there will be quite a bit of uncertainty in the value of the exponential factor so 

determined - for example, the value will vary a bit if slightly different regions of the signal are selected 

for measurement (e.g., by panning or zooming in ipf.m or by changing the center and window 

arguments in peakfit.m). See page 303 for another example with four overlapping Gaussians.  

Noise reduction in deconvoluted signals 

The most common way to control the high-frequency noise amplification resulting from deconvolution, 

as described above, is low-pass filtering, either by some form of sliding average filter or by a Fourier 

filter. The basic limitation of such filters, unfortunately, is that they are limited in their ability to handle 

situations where near-zero values in the fft of the deconvolution function in the denominator result in 

astronomically large values in the deconvoluted signal. To appreciate this problem, consider the figures 

below, created by the Matlab script DenomAdditionDemo.m, which shows the application of self-

deconvolution to sharpen a single isolated Gaussian peak by deconvolving a narrower zero-centered 

Gaussian function (0.8 times the width of the original peak), using only a Fourier filter (page 126) to 

reduce noise and ringing. (Double-click to view enlarged figures) 

https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitExponentialGaussian.png


Page | 119  

  

Figure window 1 (left) shows the original peak (top left) and the remaining subplots show the 

deconvoluted peaks after smoothing by a Fourier filer with 5 different frequency cutoffs to reduce the 

ringing. The corresponding frequency spectra of those five deconvoluted signals are shown in figure 

window 2 (right), which shows two distinct frequency regions:  

(a) The left-hand (low frequency) side is a smooth curved region. This is the frequency region 

dominated by the peaks that have been sharpened by deconvolution. The narrower the peak, the 

more gradually the curve drops off at higher frequencies. 
 

(b) The right-hand (high frequency) end of the spectrum is dominated by the noise and ringing 

in the deconvoluted signal. We want to reduce this region as much as possible without reducing 

the lower frequencies too much (which would broaden the peaks). 

Observing these spectra can be a useful guide to adjusting the deconvolution parameters. The ringing in 

the signal peaks in Figure 1 window corresponds to the pronounced spike near the middle of the 

spectrum. As the cutoff frequency is decreased, the high-frequency components are reduced, as 

expected, but that spike still remains even at the lowest cutoff (green line), at which point the width of 

the deconvoluted peak has been broadened by the filter, opposite to the original intent of sharpening.  

Excess noise reduction by denominator addition 

This problem can be solved by an independent method of noise reduction introduced by Farooq Wahab 

and me in 2023 (reference 98). This involves simply adding a small positive non-zero constant or 

distribution function to the denominator in the deconvolution calculation, which prevents excessively 

small numbers in the denominator. The quantity added is small, typically 1% to 5% of the amplitude of 

the denominator. In Matlab, the plain deconvolution operation is coded like so: 

ydc=ifft(fft(y)./(fft(df))).*sum(df) 
 

Here is the code for the case where the demoninator addition is a constant: 

ydc=ifft(fft(y)./(fft(df)+FDA.*max(fft(df)))).*sum(df) 
 

where y is the original signal, df is the deconvolution function and FDA is the fractional denominator 

addition. The addition is scaled to the maximum value of the fft of the deconvolution function df so that 

https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo2Figure1.png
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo2Figure2.png


Page | 120  

the quantity added will adjust to the varying amplidudes of different experimental signals.  

An alternative is to add a constant only to those members of the denominator below a pecified threshold, 

e.g. using the “no lower than” function nlt(a,b): 

ydcDA=ifft(fft(y)./(nlt(fftc,DA.*0.01.*max(fftc)))).*sum(df); 
 

(The denominator addition method is included in the Matlab Live Script example on page 363). 

    

Figure windows 3 and 4 (above) show the effect of varying the fractional denominator addition without 

frequency filtering. The subplot on the top left shows the original peak and the remaining five subplots 

show the results of adding increasing amounts to the denominator, from zero to 0.1. The frequency 

spectra of those five deconvoluted signals are shown in figure window 4 (right), showing that the effect 

of denominator addition is to reduce the overall amplitude of the noisy right-hand half of the frequency 

spectrum, without changing the frequency distribution. With zero addition (blue), the large spike near 

the center is seen as before, but even the smallest addition (red) eliminates it. With the maximum 10% 

addition (green), the noise is greatly reduced but the deconvoluted peak is sharper (FWHM=0.7) than 

the width of the peak with only the filter applied (FWHM=0.82) and has the same SNR. Note: if you 

run the script DenomAdditionDemo.m, again, a different noise sample will be generated each time. 

The two frequency spectra in the above figures show that low-pass filtering and denominator addition 

are orthogonal operations in the frequency domain. Filtering operates “horizontally” along the x 

(frequency) axis, whereas denominator addition operates “vertically” along the y (amplitude) axis and 

reduces the amplitude of the all the frequencies that are the most highly amplified by deconvolution. 

Both methods reduce noise, but they work in different ways and can be used together.  

An good way to explore the interplay between the values of the many variables is to use the Matlab 

Live Script DenomAdditionDemo.mlx (graphic), which has sliders and a drop down menu for adjusting 

the parameters interactively. See page 363. (See page 365 for other interactive tools). 

Reference 98 explores this method in greater detail, including adding distributions rather than a 

constant and showing several examples of applications to experimental signals.  

https://terpconnect.umd.edu/~toh/spectrum/nlt.m
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.mlx
https://terpconnect.umd.edu/~toh/spectrum/DenomAddDemoLiveScript.png
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo1Figure1.png


Page | 121  

Deconvolution for peak area measurements 

Measuring the areas under peaks is a common requirement in quantitative analysis (page 141), but it 

works only if there is sufficient separation between peaks. Because deconvolution sharpens peaks but 

does not change the area under them, it can be used to improve the measurement of the areas of 

overlapping peaks. The Matlab Live Script DenomAdditionDemo.mlx (graphic) uses Fourier self-

deconvolution to sharpen peaks to improve the accuracy of the perpendicular drop method for a pair of 

overlapping peaks (check the box to the right of “PeakAreaMeasurements” in line 3. The Live Script 

format allows interactive controls that allow you to explore the settings for signal generation and peak 

area measurement). See page 123. 

In the Matlab script GLSDPerpDropDemo16.m, the areas of a group of three partially overlapping 

peaks is measured, by the perpendicular drop method, before and after peak sharpening by Fourier self-

deconvolution. The measurements are repeated with random peak heights, to test how the peak overlap 

interferes with precise area measurement. After sixteen trials with randomized peak heights, the true 

peak areas are plotted against the measured areas, and the R2 values for each case are compared before 

and after deconvolution. The results are summarized on this PDF file. Conclusion: in every case, from 

the “easiest” to the most challenging, the areas of the peaks sharpened by deconvolution are the most 

accurate. 

Multiple sequential deconvolution 

In cases where the original signal has been subject to two or more sequential distorting convolu-

tions(page 109), the reversal of those convolutions requires multiple sequential deconvolutions and 

cannot be undone accurate-

ly by a single larger decon-

volution. As a simple exam-

ple of that situation, the 

Matlab/ Octave script De-

convoluteTwiceBroad-

enedPeak.m, demonstrates 

the attempted deconvolution 

of two exponential broaden-

ings, represented by the 

vectors of b1 and b2, that 

have been applied to an 

originally Gaussian peak. In 

the resulting graphic on the 

left, the light blue curve is 

the unknown original under-

lying signal, the yellow 

curve is the observed signal 

after the original has been twice exponentially broadened, and the red curve is an attempt to deconvo-

lute a single wider exponential function with a larger time constant, using the de-tailing method de-

https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.mlx
https://terpconnect.umd.edu/~toh/spectrum/DenomAddDemoLiveScript.png
https://terpconnect.umd.edu/~toh/spectrum/GLSDPerpDropDemo16.m
https://terpconnect.umd.edu/~toh/spectrum/3peaks.pdf
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteTwiceBroadenedPeak.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteTwiceBroadenedPeak.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteTwiceBroadenedPeak.m


Page | 122  

scribed on page 80. That attempt is obviously unsuccessful; in fact, no single simple deconvolution can 

remove the effects of two or more convolutions. The black dotted line is the result of performing a de-

convolution with the product fft(b1)*fft(b2), which is the Fourier transform of the convolution of 

b1 and b2. That attempt is successful: the black dots overlay the original Gaussian, in blue, exactly.  

Segmented deconvolution 
If the peak widths or tailing vary substantially across the signal, you can use a segmented 

deconvolution, which allows the deconvolution vector to adapt to the local conditions in different 

signal regions. SegExpDeconv(x,y,tc) divides x,y into several equal-length segments defined by the 

length of the vector “tc”, then each segment is deconvoluted with an exponential decay of the form 

exp(-x./t) where “t” is the corresponding element of the vector “tc”. Any number and sequence of t 

values can be used. SegExpDeconvPlot.m is the same except that it plots the original and deconvoluted 

signals and shows the divisions between the segments by vertical magenta lines to make it easier to 

adjust the number and values of the segments. This is demonstrated by the script 

SegExpDeconvPlotExample.m, shown in the figure below). The inevitable noise increase can be 

moderated by denominator addition (page 119) or by segmented smoothing (page 329).  

 

SegGaussDeconv.m and SegGaussDeconvPlot.m are the same except that they perform symmetrical 

(zero-centered) Gaussian deconvolution. SegDoubleExpDeconv.m and SegDoubleExpDeconvPlot.m 

perform symmetrical (zero-centered) exponential deconvolution. If the peak widths increase regularly 

across the signal, you can calculate a reasonable initial value for the vector “tc” by giving only the 

number of segments (“NumSegments”), the first value, “startt”, and the last value, “endt”: 
 

tstep=(endt-startt)/NumSegments; 

tc=startt:tstep:endt;  

https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconvPlot.m
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconvPlotExample.m
https://terpconnect.umd.edu/~toh/spectrum/SegGaussDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegGaussDeconvPlot.m
https://terpconnect.umd.edu/~toh/spectrum/SegDoubleExpDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegDoubleExpDeconvPlot.m


Page | 123  

Live script Self-deconvolution Tool 

The Live Script DeconvoluteData.mlx can perform Fourier self-deconvolution on your own data stored 

in disk. Clicking the "Open data file" button in line 1 opens a file browser, allowing you to navigate to 

your data file (in .csv or .xlsx format; the script assumes that your x,y data are in the first two columns; 

you can change that in lines 13 and 14). In the case shown here, the data file is 'HepteneTestData.csv', 

shown as the 'file' variable in the Matlab workspace. (To view the figures to the right as shown below, 

right-click on the right-hand panel and select "Disable synchronous scrolling").  

The startpc and endpc sliders in lines 9 and 10 allow you to select which portion of the data range to 

process, from 0% to 100% of the total range of the data file. The PeakShape drop-down menu in line 

17 selects the convolution function shape (in this case, a Gaussian-Lorentzian blend) and the 

PCGaussian slider in the next line allows selection of the percent Gaussian of that shape. The dw slid-

er in line 21 controls the deconvolution half-width, the DA slider in line 23 controls the percent denom-

inator addition.  Smoothing, by Fourier filtering, is controlled by the FrequencyCutoff and Cut-

OffRate in lines 25 and 27. All variables are accessible in the Matlab workspace; the final signal is 

'syDA'. Note: you can double-click any of the sliders to change their ranges if the initial range is insuf-

ficient. Click the FrequencySpectra check box in line 4 to view the frequency spectra. Click the 

PlotAllSteps check box in line 5 to view all the steps leading up to the final result.  

 

See page 365 for other interactive tools. 

https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteData.mlx
https://terpconnect.umd.edu/~toh/spectrum/HepteneTestData.csv
https://terpconnect.umd.edu/~toh/spectrum/FourierSelfDeconvolution.png


Page | 124  

Interactive deconvolution with iSignal 

In my iSignal version 8.3 and later (page 371), you can press Shift-V to display the menu of Fourier 

convolution and deconvolution operations that allow you to convolute or to deconvolute a Gaussian, 

Lorentzian or exponential function. It will ask you for the initial width or time constant of the 

deconvolution function (in X units), then you can use the 3 and 4 keys to decrease or increase the width 

by 10% (or Shift-3 and Shift-4 to adjust by 1%). This version of iSignal includes an additional way to 

reduce ringing and noise in the deconvoluted signal, by adding a constant to the denominator (reference 

85) and adjusting it with the 5 and 6 keys to decrease or increase the constant by 10% (or Shift-5 and 

Shift-6 to adjust by 1%).  

 

In this example, the original signal is shown as the dotted green line and the result of deconvoluting it 

with a Lorentzian deconvolution function is shown as the blue line. The deconvolution width was ad-

justed as large as possible without causing significant negative dips between the peaks, which for many 

types of experimental data, would be non-physical. (Recall that the mathematics of the deconvolution 

operation is structured so that the area under the peaks remains unchanged, even though the widths are 

reduced, and the heights are increased). The zoomed-in close-up in the upper panel shows that several 

peaks with shoulders are resolved into distinct peaks, allowing their peak positions to be measured 

more accurately. Fortunately, the amplitude of those revealed peaks is greater than the small amount of 

noise remaining in the signal (thanks to the good signal-to-noise ratio of the original signal. 

  

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/iSignalConvDeconvMenu.txt
https://terpconnect.umd.edu/~toh/spectrum/iSignalConvDeconvMenu.txt
https://terpconnect.umd.edu/~toh/spectrum/iSignalLorDeconvData658ver83.png


Page | 125  

Fourier Filter 
A Fourier filter is a type of filtering function that is based on direct manipulation of the frequency 

components of a signal. It works by taking the Fourier transform of the signal, then attenuating or 

amplifying specific frequencies or ranges of frequencies, and finally inverse transforming the result.  
 

In many scientific measurements, such as spectroscopy and chromatography, the signals are relatively 

smooth shapes that can be represented by a surprisingly small number of Fourier components. For 

example, the figure below (script) shows in the top panel a simulated signal with three smooth peaks, 

with peak heights of 1, 2, and 3, where the x-axis is time in seconds. The middle panel shows the first 

50 frequencies of its Fourier spectrum, where the x-axis is frequency in Hz. The amplitude of the 

Fourier components is strongest at low 

frequencies and drops to near zero at 

25 Hz.  
 

The bottom panel shows the signal re-

constructed by adding up the first "n" 

Fourier components, where n=1, 2, 

3…. A GIF animation of this process 

(visible in the Microsoft Word 365 

version or click to view in any web 

browser) shows the results of 

including the frequencies between 1 

through 25 progressively. The 

reconstructed signal starts as a big 

featureless blob with only a few 

frequencies included. The peaks 

emerge and become narrower as more 

frequencies are added, and the 

baseline between the peaks becomes 

flatter, until the result is visually 

indistinguishable from the original 

signal when 26 frequencies are included. But notice what the reconstructed signal looks like even when 

it gets only to 16 frequencies. By that point, the amplitude of the frequencies has already dropped very 

low and there is relatively little amplitude in the remaining frequencies, so the three peaks are rendered 

well. But the baseline has a small but distinct ripple, caused by the abrupt cut-off of the frequencies 

beyond that point. That can be avoided by including more frequencies or by using a filter with an 

adjustable filter shape that allows the cut-off rate to be controlled.  
 

Optimization of the Fourier filter for the signal-to-noise (SNR) ratio of peak signals faces the same 

compromise as conventional smoothing functions: the optimum SNR is achieved when the peak height 

is less than the noiseless maximum. For example, the script GaussianSNRFrequencyReconstruction.m 

shows that for a Gaussian peak, the optimum SNR is reached when the peak height is about half the 

true value, but the peak area is the same. (White noise has equal amplitude at all frequencies, (page 29) 

https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.gif
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianSNRFrequencyReconstruction.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency


Page | 126  

whereas most of the peak signal is concentrated in the first few frequencies).  
 

A more dramatic example is shown the figure on the left (script). In this case, the signal (top left) seems 

to be only random high-frequency noise, and its Fourier spectrum (top right, shown with a log y scale) 

shows that high-frequency 

components dominate the spectrum 

over most of its frequency range. 

The bottom left panel shows the 

Fourier spectrum expanded in the X 

and Y directions to show the low-

frequency region more clearly. 

There, the series of relatively 

smooth bumps, with peaks at the 

1st, 20th, and 40th frequencies, are 

most likely the actual signal. 

Working on the hypothesis that the 

components above the 40th 

harmonic are increasingly 

dominated by noise, using a Fourier 

filter function (FouFilter.m) that 

can gradually reduce the higher 

harmonics and reconstruct the 

signal from the modified Fourier transform (red line). The result (bottom right) shows that the signal 

contains two partly overlapping Lorentzian peaks that were totally obscured by high-frequency noise in 

the original signal.  

Computer software for Fourier Filtering 

MATLAB. The simplest possible code for a Fourier simply cuts out all frequencies above a certain 

limit. To do this correctly, care must be 

taken to use both the sine and cosine (or 

equivalently the frequency and phase or 

the real and imaginary) components of the 

Fourier transform. The operation must 

account for the mirror-image structure of 

the Matlab's Fourier transform: the lowest 

frequencies are at the extremes of the fft 

and the highest frequencies are in the 

center portion. So, to pass the lowest n 

frequencies, you must pass the first n 

points and the last n points and zero out 

the others. 

  

https://terpconnect.umd.edu/~toh/spectrum/GaussianSNRFrequencyReconstructionFigure2.png
https://terpconnect.umd.edu/~toh/spectrum/GaussianFrequencyReconstruction3.gifFourierFilterDemo.png
https://terpconnect.umd.edu/~toh/spectrum/FourierFilterDemo.m
https://terpconnect.umd.edu/~toh/spectrum/FouFilter.m


Page | 127  

ffty=fft(y); % ffty is the fft of y 

lfft=length(ffty); % Length of the FFT 

ffty(n:lfft-n)=0; % Frequencies between n and lfft-n in the fft are set to zero. 

fy=real(ifft(ffty)); % Real part of the inverse fft 

The function form of this simple Fourier low pass filter is flp.m. This is the minimal essence of a 

Fourier filter, but it is not really a practical filter, however, because its abrupt cutoff usually results in 

ringing on the baseline, as shown above.  

General-purpose Fourier filter function. To make the Fourier filter more generally useful, we must 

add code not only low-pass filters, but also for high-pass, band-pass, and band-reject filter modes, plus 

a provision for more gentle and variable cut-off rates.  

The custom Matlab/Octave function FouFilter.m is a more flexible Fourier filter that can serve as a low 

pass, high pass, bandpass, or band-reject (notch) filter with variable cut-off rate. This function has as 

the form [ry,fy,ffilter,ffy] = FouFilter (y,samplingtime,centerfrequency, 

frequencywidth,shape,mode), where y is the time-series signal vector, 'samplingtime' is the total 

duration of sampled signal in seconds, 

milliseconds, or microseconds; 'centerfrequency' 

and 'frequencywidth' are the center frequency and 

width of the filter in Hz, KHz, or MHz, 

respectively; 'Shape' determines the sharpness of 

the cut-off. If shape = 1, the filter is Gaussian; as 

shape increases the filter shape becomes more and 

more rectangular. Set mode = 0 for band-pass filter, 

mode = 1 for band-reject (notch) filter. FouFilter 

returns the filtered signal in 'ry'. It can handle 

signals of 

virtually any 

length, limited 

only by your computer’s memory. Here are two example scripts 

that call FouFilter.m: TestFouFilter.m demonstrates a Fourier 

bandpass filter applied to a noisy 100 Hz sine wave that appears in 

the middle third of the signal record, shown in the figure above. 

You can see that this filter is effective in extracting the signal from 

the noise, but that the response time is slow. The script 

TestFouFilter2.m demonstrates a Fourier bandpass filter applied to 

a noisy 100 Hz sine wave signal with the filter center frequency 

swept from 50 to 150 Hz. Both require the FouFilter.m function in 

the Matlab/Octave path.  

The figure on the right (Matlab script) demonstrates the effect of 

the bandwidth of a Fourier low-pass filter applied to a typical peak 

signal with white noise. The graph shows a semi-log plot of the 

signal-to-noise ratio (red) and the percent errors in the peak parameters (height, width, and position) as 

a function of filter width. The signal to noise ratio is also shown. As usual, the results are poor if the 

https://terpconnect.umd.edu/~toh/spectrum/flp.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/FouFilter.m
https://terpconnect.umd.edu/~toh/spectrum/TestFouFilter.m
https://terpconnect.umd.edu/~toh/spectrum/TestFouFilter2.m
https://terpconnect.umd.edu/~toh/spectrumFourierFilterBandwidthOptimization.m


Page | 128  

bandwidth is either too low or too high, but in this case the signal-to-noise ratio is best at a relatively 

low bandwidth whereas most of the peak height and width measurements are most accurate at much 

higher values. A slightly different result is obtained with shape=2, for which the cut-off rate is faster. 

As usual, compromise is a must. 

The interactive Live Script data smoothing tool includes Fourier filtering among several other data 

smoothing methods. (Page 58; download link: DataSmoothing.mlx). 

Segmented Fourier filter. SegmentedFouFilter.m is a segmented version of FouFilter.m, which applies 

different center frequencies and widths to different segments of the signal. The syntax is the same as 

FouFilter.m except that the two input arguments centerFrequency and filterWidth must be vectors with 

the values of centerFrequency and filterWidth for each segment. The function divides the signal into 

several equal-length segments determined by the length of centerFrequency and filterWidth, which 

must be equal in length. For help and examples, type “help SegmentedFouFilter”. The figure below 

shows Example 2, which demonstrates a Fourier low-pass filter with decreasing bandwidth as the peak 

widths become wider from left to right. If you look closely, you can see that the random noise in the 

filtered signal, which was constant in the original raw signal, decreases from left to right as the filter 

width increases. 

 

  

https://terpconnect.umd.edu/~toh/spectrum/FourierFilterBandwidthOptimizationShape2.png
https://terpconnect.umd.edu/~toh/spectrum/DataSmoothing.mlx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedFouFilter.m


Page | 129  

Further Matlab-based applications using an interactive Fourier filter, iFilter.m, shown above, allows 

you to adjust the filter parameters with keystrokes while observing the effect on your signal 

dynamically. This is described on page 386. There is also a version for Octave users, ifilteroctave.m 

which uses different keys for the filter center and width adjustments. 

  

A demonstration of a real-time Fourier filter is discussed on page 342.  
 

A Live Script version of this interactive Fourier filter is described on page 391. 

  

https://terpconnect.umd.edu/~toh/spectrum/InteractiveFourierFilter.htm
https://terpconnect.umd.edu/~toh/spectrum/ifilteroctave.m


Page | 130  

Wavelets and wavelet denoising  
Wavelets are literally “little waves”, small oscillating waveforms that begin from zero, swell to a 

maximum, and then quickly decay to zero again. They can be contrasted to sine or cosine waves, which 

go on “forever”, repeating out to positive and negative infinity. In the previous sections we have seen 

how useful it is to use the Fourier Transform of a signal, which expresses a signal as the sum of sine 

and cosine waves, allowing such useful operations as convolution, deconvolution, and Fourier filtering. 

But there is a downside to the Fourier Transform; it covers the entire signal duration, giving only the 

average frequency content. Although we saw on page 101 that it is possible to use segmented or time-

resolved variations of the Fourier transform to overcome this difficulty, a more sophisticated way to 

solve this limitation of Fourier analysis is to use wavelets as a basis set for representing signals rather 

than sine and cosine waves. Like sine waves, wavelets can be stretched or compressed along their “x” 

or time axis to cover different frequencies. But unlike sine waves, wavelets can be translated along the 

time axis of a signal to probe the time variations, because wavelets are of short duration compared with 

the signals they are used with.  
 

Wavelets were introduced by mathematicians and mathematical physicists in the early years of the 20 th 

century and the subsequent development has been highly mathematical. Many of the treatments of 

wavelets in the literature are aimed at the formal mathematical aspects, which have been “worked out 

in excruciating detail” (according to reference 82). The value system of mathematics – rigorous proofs, 

exhaustive exploration, assumption of mathematical background, and the need for compact notation - 

makes it difficult for the non-specialists. Because of this, there are many “easy” introductions to the 

subject (references 79 - 82) that promise to soften the blow of mathematical abstraction. For that 

reason, I will not repeat all those mathematical details here. Rather, I will attempt to show what you can 

accomplish using wavelets without understanding all the underlying mathematics. I am particularly 

interested in situations when wavelets work better than the best available conventional techniques, but I 

also call out a few situations where the conventional techniques remain superior.  
 

A wavelet transform (WT) is a decomposition of a signal into a set of “basis functions” consisting of 

contractions, expansions, and translations of a wavelet function (reference 85). It can be computed by 

repeated convolution of the signal (page 106) with the chosen wavelet as the wavelet is translated 

across the time dimension (to probe the time variation) and as it is stretched or compressed (to probe 

different frequencies). Because two dimensions are being probed, the result is naturally a 3D surface 

(time-frequency-amplitude) that can be conveniently displayed as a time-frequency contour plot with 

different colors representing the amplitudes at that time and frequency. Of course, such calculations 

will require more complex algorithms and greater execution times, often taking about 5 to 20 times 

longer than conventional methods. That might have been a problem in the early days of computers, but 

with modern fast processors and great memory capacity, it is less likely to be of concern now.  

Wavelets are used for the visualization, analysis, compression, and denoising of complex data. There 

are dozens of different wavelet shapes, which by itself is a big difference from sinewave-based Fourier 

analysis. The Wikipedia article on wavelets mentions three of them, which are shown below, from left 

to right: the Meyer, the Morlet and the Mexican hat. Wavelets are conventionally constructed so that 

the area under the curve is zero and the integral of their squares is 1.0.  

https://www.sciencedirect.com/topics/computer-science/wavelet-transforms
https://www.google.com/search?q=contour+plot&oq=contour+plot&aqs=chrome..69i57j0l7.2879j0j7&sourceid=chrome&ie=UTF-8
https://en.wikipedia.org/wiki/Wavelet


Page | 131  

   

In Matlab, the easiest way to access these tools is to use the Wavelet Toolbox, if that is included in your 

school or company campus Matlab site license or if you purchase it separately. This toolbox includes a 

graphical user interface (GUI) for a Wavelet Analyzer, Signal Multiresolution Analyzer, and a Wavelet 

Signal Denoiser, as well as an extensive collection of command-line wavelet functions. Documentation 

is available at https://www.mathworks.com/products/wavelet.html.  

However, it is not necessary to have the Wavelet Toolbox, because wavelet code has been published on 

the Internet in a variety of languages. For example, several papers (reference 84, 90) include or 

reference Matlab code that implement wavelets using only the inbuilt Matlab functions “fft”, “ifft”, and 

“conv”. In this chapter will use all these software approaches to describe the properties and applications 

of wavelets to scientific measurement.  

Visualization and analysis 
Wavelets are quite effective at visualizing complicated signals and helping observers make sense of 

them. A good example is given in reference 84, which describes a 3-second-long signal sampled at 

1000 Hz consisting of three overlapping components that are initially unknown to the experimenter. 

These components are shown in the figure below: (1) a swept sine wave (called a ‘chirp’) going from 5 

Hz to 20 Hz, (2) another simultaneous ‘chirp’ going in reverse from 20 Hz to 5 Hz, and finally (3) a 

Gaussian-modulated 20 Hz sine wave that peaks in the center of the signal.  

 

https://terpconnect.umd.edu/~toh/spectrum/WaveletHelp.txt
https://www.mathworks.com/products/wavelet.html


Page | 132  

 

When there three are added are up, the resulting waveform, shown in the upper panel of the figure 

below (displayed in iSignal.m) 

is a complicated jumble that 

offers no hint of its underlying 

structure. The conventional 

Fourier transform spectrum, 

shown in the lower panel, shows 

only that the frequency 

components of the signal fall in 

the range between about 3 Hz 

and 25 Hz. In fact, the Fourier 

spectrum is misleading; it 

suggests that there might be two 

components, one at a higher 

frequency range than the other, 

with a small gap in between near 12 Hz. But there are in fact three components, two of them covering a 

wide frequency range and the third one fixed at about 12 Hz. The Fourier spectrum is no help there. 
 

In contrast, the wavelet-based time-frequency-amplitude contour shown below, which was computed 

using the Morlet wavelet by the Matlab code in reference 86, helps to unravel the complexities, 

showing all three components clearly. In this display, yellow corresponds to the greatest amplitudes and 

blue to the lowest. The Gaussian-modulated 20 Hz sine wave is clearly visible at the top center. 

(Incidentally, there is an ambiguity concerning the two swept sine waves at the point where they cross 

in frequency in the middle of the signal and cancel out momentarily; do they keep going in the same 

direction, forming an “X”, or do they both reverse direction, forming a “V” and its reflection?  The two 

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/Morlet.m


Page | 133  

behaviors would result in the same final signal. The simplest assumption would be the former).  

Another example is closer to a typical scientific application: digging a signal out of an excess of noise 

and interference. This one is 

based on the “buried peaks” 

signal that I used before on page 

102. The signal (top panel in the 

iSignal screen on the left) has a 

pair of hidden Gaussian peaks 

that are totally buried in a much 

stronger interfering swept-

frequency sine wave and 

random white noise. The Fourier 

spectrum, observed here in the 

bottom panel, again offers no 

obvious hint of the underlying 

peaks.  

Here I applied the Morlet 

wavelet to this signal to create the time-frequency-amplitude matrix shown on the left (script and 

Morlet wavelet function). Don’t be 

distracted by the big yellow diagonal stripe; 

that corresponds to the swept sine wave. 

Look instead at the two weaker green 

humps at the bottom left, at the low-

frequency end, near data points 5000 and 

10000. Those are the two Gaussian peaks. 

On the basis of that observation, you 

would be justified to perform smoothing or 

curve-fitting in that specific region, as we 

did before on page 102. (You can compare 

this graphic to the segmented Fourier 

spectrum display for this signal shown on 

that page, which is cruder but displays 

similar information. The wavelet is clearly 

a finer-grained tool). 

Wavelet denoising 
In the context of wavelets, the term “denoising” means reducing the noise as much as possible without 

distorting the signal. Denoising makes use of the time-frequency-amplitude matrix created by the 

wavelet transform. It assumes that the undesired noise will be separated from the desired signal by their 

frequency ranges. Most commonly in scientific measurements, the desired signal components are 

located at relatively low frequencies and the noise is mostly at higher frequencies. The process is 

controlled both by the selection of wavelet type and by a positive integer number called the wavelet 

https://terpconnect.umd.edu/~toh/spectrum/MorletExample2.m
https://terpconnect.umd.edu/~toh/spectrum/mwavelet.m
https://terpconnect.umd.edu/~toh/spectrum/Example6iSignalSmooth.png
https://terpconnect.umd.edu/~toh/spectrum/Example6CurveFitResults.png


Page | 134  

“level”; the higher the level, the lower is the frequency divider between signal and noise. (To that 

extent, the wavelet level is qualitatively like the smooth width of a smoothing operation).  
 

Again, Matlab’s Wavelet Toolbox provides some useful tools. First, there is the GUI app called the 

“Wavelet Signal Denoiser”. The selection of the wavelet type and level are all selectable manually in 

that app. I used it to analyze the “buried peaks” signal described on the previous page, using the “sym4” 

wavelet at a relatively high level of 11, because lower levels allow too much of the interfering swept 

sine wave to come through and higher levels would damp out the Gaussian peaks too much. (The 

number in the wavelet name refers to the number of so-called “vanishing moments”. More vanishing 

moments means that it can represent more complex functions). The “Approximation” result (the dotted 

line in the graph below) is the low-frequency information in the data, and you can clearly see that this is 

a “denoised” version of the original signal (shown in blue).  The two bumps at sample numbers 5000 

and 10000 are the two Gaussian peaks.  
 

So, both the sym4 wavelet in the Wavelet Signal Denoiser pictured above and the Morlet wavelet’s 

time-frequency-amplitude matrix shown on the previous page give evidence of the hidden Gaussian 

peaks, but they display them in different ways.  
 

In addition to the GUI app, there is also a command-line denoising function called “wdenoise” (syntax: 

wdenoise(noisydata,level,…). The selection of the wavelet type and level are set by including 

optional input arguments to this function. The advantage of a function, compared to a GUI app, is that it 

is possible to write scripts that quickly and automatically compare many different wavelet settings, or 

that compare the results to several conventional noise reduction methods, or that automate the batch 

processing of large numbers of stored data sets (see page 340). For example, the question of the 

optimal selection of wavelet level is answered by the script OptimizationOfWaveletLevel3peaks.m, 

https://math.stackexchange.com/questions/128165/what-is-a-vanishing-moment
https://terpconnect.umd.edu/~toh/spectrum/OptimizationOfWaveletLevel3peaks.m


Page | 135  

which creates a signal consisting of three noisy unit-height Gaussian (or Lorentzian) peaks with 

different peak widths, with added white noise, as in the following figure.  

 
The script uses the wdenoise.m function to denoise the signal with the “coiflet” wavelet from levels 1 

to 11, measuring three quantities for each level: (a) the height of the peaks, (b) the signal-to-noise ratio 

improvement, and (c) the closeness to the noiseless underlying signal, as shown in the three plots below. 

 
 

We can see from these plots that a level of about 7 is optimum in this case. Above 7, the signal-to-noise 

ratio (center graph) continues to improve, but the results are unreliable and tend to scatter around too 

much. (Changing to Lorentzian peaks - line 28 of the script - yields similar results). 
 

The script WaveletsComparison.m compares five different wavelet types on the same signal: BlockJS, 

bior5.5, coif2, sym8, and db4, all at level 12 (graphic). The results are similar but the sym8 has a slight 

edge. For most smooth peak shapes with additive white noise, the different wavelet types perform 

similarly. For signals with high-frequency weighted noise, the bior5.5 wavelet works better than the 

others (script; graphic). For square pulses, the Haar wavelet is clearly superior.  

 

Another script, SmoothVsWavelets2Gaussians.m, compares five different non-wavelet smoothing 

techniques and two different wavelets, all using the same simulated signal consisting of two Gaussian 

https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparison.m
https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparison.png
http://wavelets.pybytes.com/wavelet/bior5.5/
https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparisonBlueNoise.m
https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparisonBlueNoise.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsWaveletsSquareWave.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsWavelets2Gaussians.m


Page | 136  

peaks with a 50-fold difference in peak width, with additive white noise. For each method, the percent 

errors in the peak height, width, and area are measured, as well as the difference between the 

underlying noiseless signal and the denoised (or smoothed) noisy signal. This illustrates a significant 

advantage that wavelet denoising has over smoothing; it adapts much better to differences in peak 

width. A summary of typical results is shown in this table. (Peak 1 is the narrow peak; peak 2 is 50 

times wider). 
 

Typical results         Percent errors of peak1|peak2 
Method        Residuals     Height         Width          Area  

Original        9.88%    6.29%|25.8%    6.31%|-23.24%  -2.49%|0.86% 

Gaussian        2.53%   -3.34%|-3.79%   5.72%|4.35%     -2.6%|0.82% 

Segmented       2.04%  -24.48%|3.09%    37.8%|0.21%    -7.07%|0.85% 

Savitsky-Golay  2.93%   -2.08%|6.45%    8.66%|-3.04%    -1.9%|0.86% 

RC filter       3.29%   -6.53%|9.58%   16.06%|-5.45%  -11.76%|0.86% 

Hamming filter  2.91%   -5.12%|8.7%     8.19%|-5.31%   -2.17%|0.86% 

coif2 wavelet   1.02%    1.78%|1.18%   -5.59%|0.22%    -6.54%|0.75% 

db2 wavelet     1.17%   11.47%|3.82%    3.36%|2.38%    -5.34%|0.81% 
 

The “Residuals” are the percent differences between the underlying noiseless signal and the signal with 

random noise after denoising; it accounts for both the residual noise in the signal and distortion of the 

signal shape. As you can see, the coif2 wavelet comes out ahead by most measures. This illustrates the 

most significant practical advantages of wavelet denoising: (1) it gives results that are at least as good 

as, and often better than, con58ventional smoothing methods; (2) it is easier to use because it 

automatically adapts to different peak widths; and (3) it is easier to optimize because in most cases only 

the level setting makes much difference in the practical results.  
 

However, there are a few situations where conventional methods are still better. For example, in 

calculating the second derivatives of noisy peaks of variable width, a segmented Gaussian-weighted 

smooth (page 329) gives  a signal-to-noise ratio better than that of a wavelet denoise (script; graphic), 

especially if the signal-to-noise ratio is poor (graphic), presumably because the frequency spectrum of 

the noise is so strongly high-frequency weighted. Also, wavelet denoising does not work at all if the 

amplitude of the noise is proportional to the signal amplitude, rather than constant (script; graphic). 

Sometimes, if the original signal-to-ratio is very poor, wavelet denoising produces narrow spike 

artifacts in the denoised signals, even when soft thresholding is used. These are special cases, however; 

there are many more situations where the wavelet denoise is really the method of choice, assuming that 

the slower speed of wavelet methods is not an issue. 
 

The signal-to-noise ratio improvement performance of wavelet denoising is compared to traditional 

smoothing methods, as a function of smooth ratio, in the previous chapter on smoothing, page 58. The 

wavelet method performs better but is 10 times slower than even the Savitzky-Golay smooth. 
 

Wavelet denoising is one of the several types of noise reduction smoothing available in the Live Script 

data smoothing tool described on page 58. This is a very convenient way to compare wavelet denoising 

to other forms of noise reduction, such as the moving average, Savitsky-Golay, and Fourier filtering. 
 

For Python programmers, there is a wavelet package called PyWavelets that has over 100 built-in 

wavelet filters, support for custom wavelets, and is compatible with the Matlab wavelet toolbox. See 

https://terpconnect.umd.edu/~toh/spectrum/SmoothVsWaveletsDerivative2Segmented.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsWaveletsDerivative2Segmented.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsWaveletsDerivative2Segmented10Xnoise.png
https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparisonProportionalNoise.m
https://terpconnect.umd.edu/~toh/spectrum/WaveletsComparisonProportionalNoise.png
https://www.mathworks.com/help/wavelet/examples/denoising-signals-and-images.html#denoisingsignalsdemo-1
https://pywavelets.readthedocs.io/en/latest/


Page | 137  

also “A gentle introduction to wavelet for data analysis” for a graphics-intensive treatment that is based 

on Python. 

Integration and peak area measurement 
Symbolic integration of functions and calculation of definite integrals are topics that are introduced in 

elementary Calculus courses. The numerical integration of digitized signals is applied in analytical 

signal processing as a method for measuring the areas under the curves of peak-type signals.  

For example, peak area measurements are very important in chromatography, a class of chemical 

measurement techniques in which a mixture of components is made to flow through a chemically 

prepared tube or layer that allows some of the components in the mixture to travel faster than others, 

followed by a device called a detector that measures and records the components after separation. 

Ideally, the components are sufficiently separated so that 

each one forms a distinct peak in the detector signal. The 

magnitudes of the peaks are calibrated to the concentration 

of that component by measuring the peaks obtained from 

"standard solutions" of known concentration. In 

chromatography it is common to measure the area under 

the detector peaks rather than the height of the peaks 

because peak area is less sensitive to the influence of 

random noise and to peak broadening (dispersion) 

mechanisms that cause the molecules of a specific 

substance to be diluted and spread out rather than being 

concentrated on one "plug" of material as it travels down 

the tube or layer. These dispersion effects, which arise 

from many sources, cause chromatographic peaks to 

become shorter, broader, and in some cases more unsymmetrical, but they have little effect on the total 

area under the peak, if the total number of molecules remains the same. If the detector response is 

linear with respect to the concentration of the material, the peak area remains proportional to the total 

quantity of substance passing into the detector, even though the peak height is smaller. A graphical 

example is shown on the left (Matlab/Octave code), which plots detector signal vs time, where the blue 

curve represents the original signal and the red curve shows the effect of broadening by dispersion 

effects. The peak height is lower, and the width is greater, but the area under the curve is almost the 

same. If the extent of broadening changes between the time that the standards are run and the time that 

the unknown samples are run, then peak area measurements will be more accurate and reliable than 

peak height measurements. (Peak height will be proportional to the quantity of material only if the peak 

width and shape are constant). Here is another example with greater broadening: (script and graphic).  

Peak area measurements are occasionally used also in spectroscopy, for example in flow injection 

methods and in graphite furnace atomic absorption (reference 87). In that application, calibration 

curves based on area measurements are more linear than peak height measurements because most of 

the area of a peak is measured when the transient absorbance is less than maximum and where Beer’s 

Law is more strictly obeyed.  

https://www.kaggle.com/asauve/a-gentle-introduction-to-wavelet-for-data-analysis
https://en.wikipedia.org/wiki/Chromatography
http://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/spectrum/BroadenedPeak.m
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGauss.m
https://terpconnect.umd.edu/~toh/spectrum/LastPeakTwoGaussiansPlotpub.png
http://ww2.chemistry.gatech.edu/class/analyt/fia.pdf
https://pubs.acs.org/doi/abs/10.1021/ac60358a039
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/spectrum/EffectOfBroadening.png


Page | 138  

Conversely, peak height measurements are simpler to make and are less prone to interference by 

neighboring, overlapping peaks. And a further disadvantage of peak area measurement is that the peak 

start and stop points must be determined, which may be difficult especially if the multiple peaks 

overlap. In principle, curve fitting can measure the areas of peaks even then they overlap, but that 

requires that the shapes of the peaks be known at least approximately (however, see 

PeakShapeAnalyticalCurve.m described on page 332).  

Chromatographic peaks are often described as a Gaussian function or as a convolution of a Gaussian 

with an exponential function. A detailed quantitative comparison of peak height and peak area 

measurement is given in on page 310: Why measure peak area rather than peak height? (In 

spectroscopy, there are other broadening mechanisms, such as Doppler broadening caused by thermal 

motion, which results in a Gaussian broadening function).  

Before computers, researchers used a variety of clever but archaic methods to compute peak areas:  
 

(a) plot the signal on a gridded paper chart, cut out the peak with scissors, then weigh the cutout 

piece on a micro-balance compared to a square section of a known area;  

(b) count the grid squares under a curve recorded on gridded graph paper; 

(c) use a mechanical ball-and-disk integrator; 

(d) use a straight-edge to construct a triangle with its sides tangent to the sides of the peak, and 

calculate the geometrical area of that triangle; 

(e) calculate the cumulative sum of the signal magnitude and measure the heights of the 

resulting steps, as in the figure below. (This is a method that was formerly used in proton NMR 

spectroscopy, where the area under each peak or group of peaks is proportional to the number of 

equivalent hydrogen atoms responsible for that peak). 
 

Now that computing power is built into or connected to 

almost every measuring instrument, more accurate and 

convenient digital methods can be employed. No matter 

how it is measured, the units of peak area are the product of 

the x and y units. Thus, in a chromato-gram where the x is 

time in minutes and y is volts, the area is in volts-minute. In 

absorption spectra where the x is nm (nanometers) and y is 

absorbance, the area is absorbance-nm. Because of this, the 

numerical magnitude of peak area will always be different 

from that of the peak height. If you are performing a 

quantitative analysis of unknown samples by means of a 

calibration curve, you must use the same method of 

measurement for both the standards and the samples, even if the measurements are inaccurate, as long 

as the error is the same for all standards and samples (which is why an approximate method like 

triangle construction works better than expected).  

The best method for calculating the area under a peak depends on whether the peak is isolated or 

overlapped with other peaks or superimposed on a non-zero baseline or not. For an isolated peak, Yuri 

Kalambet (reference 72) has shown that the trapezoidal rule area, such as calculated by Matlab’s 

“trapz.m” function, is an efficient estimate of the full peak area with extraordinary low error, even if 

there are only a few data points across the width of the peak, whereas Simpson's rule is less efficient in 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve.m
https://terpconnect.umd.edu/~toh/models/DiscreteEquilib.html
https://terpconnect.umd.edu/~toh/spectrum/Convolution.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#HeightWidth
http://www.phy.ohiou.edu/~mboett/astro401_fall12/broadening.pdf
https://en.wikipedia.org/wiki/Doppler_broadening
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Ball-and-disk_integrator
https://terpconnect.umd.edu/~toh/spectrum/triangulation.png
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/Simpson%27s_rule
https://terpconnect.umd.edu/~toh/spectrum/SignalIntegration.png


Page | 139  

full area integration. For a Gaussian peak, the trapezoidal rule requires only 0.62 points per standard 

deviation (2.5 points within the 4*sigma basewidth) to achieve an integration error of only 0.1%. A 

digital simulation supports this result. For asymmetrical peaks, however, more data points are required.   

Dealing with overlapping peaks 

The classical way to handle the overlapping peak problem is to draw two vertical lines from the left and 

right bounds of the peak down to the x-axis and then to measure the total area bounded by the signal 

curve, the x-axis (y=0 line), and the two vertical lines, shown the shaded area in the figure on the left.  

 
Peak area measurement for overlapping Gaussian peaks, using the perpendicular drop method (left, shaded 

area) and tangent skim method (right, shaded area). 
 

This is often called the perpendicular drop method; it is a bit tedious to do by hand but is an easy task 

for a computer. The left and right bounds of each peak are either taken as (a) the valleys (minima) 

between the peaks or (b) as the point half-way between the adjacent peak centers. The half-way point 

method has the advantage that the SNR at a signal maximum is generally better than at a minimum, so 

it's likely that maxima can be more precisely located than minima. The basic assumption of the 

perpendicular drop method is that the area missed by cutting off the feet of one peak is made up for by 

including the feet of the adjacent peak. This works well enough if the peaks are Gaussian, symmetrical, 

not too overlapped, and not too different in height. In addition, the baseline must be zero; any 

extraneous background signal must be subtracted before measurement. Using this method, it is possible 

to estimate the area of the second peak in the example above to an accuracy of about 0.3%. The last 

two peaks, however, give errors greater than 4%, and that is only because the two peaks in this example 

have the same height and width; more generally, the error is much more if two peaks overlap this much. 

As a rough rule, the valley between the peaks must be quite low, perhaps a quarter or a fifth of the 

lower adjacent peak height, for this method to be acceptable. Other geometrical methods exist that can 

reduce such errors in many cases. Sharpening peaks by area-conserving methods such as self-

deconvolution (page 111) or by derivative-based methods (page 77) reduces the degree of overlap and 

can greatly reduce the peak area measurement errors made by the perpendicular drop method, for  

example as in the Excel/OpenOffice Calc PeakSharpeningAreaMeasurementDemo.xlsm (screen image). 

Moreover, asymmetrical peaks that are the result of exponential broadening can be symmetrized by the 

weighted addition of its first derivative, making the perpendicular drop areas more accurate (page 141). 

In both cases, it may be necessary to set the strength of sharpening higher than previously 

https://terpconnect.umd.edu/~toh/spectrum/IntegrationTest.m
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo.png
https://pubs.acs.org/doi/abs/10.1021/ac50011a017
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemoEMG3.png
https://terpconnect.umd.edu/~toh/spectrum/Integration2.gif
https://terpconnect.umd.edu/~toh/spectrum/Integration.gif


Page | 140  

recommended, if it that is the only way to form a valley between peaks whose areas you want to 

measure. In the case where a single peak is superimposed on a straight or broadly curved baseline, you 

might use the tangent skim method, which measures the area between the curve and a linear baseline 

drawn across the bottom of the peak (e.g., the shaded area in the figure on the right, above). In general, 

the hardest part of the problem and the greatest source of uncertainty is determining the shape of the 

baseline under the peaks and determining when each peak begins and ends. Once those are determined, 

you subtract the baseline from each point between the start and endpoints, add them up, and multiply 

by the x-axis interval. Incidentally, smoothing a noisy signal does not change the areas under the peaks, 

but it may make the peak start and stop points easier to determine. The downside of smoothing is that 

increases peak width and the overlap between adjacent peaks. Numerical methods of peak sharpening, 

for example, derivative sharpening and Fourier deconvolution, can help with the problem of peak 

overlap, and both of these techniques have the useful property that they do not change the total area 

under the peaks. See 3peaks.pdf for a series of examples (Matlab script GLSDPerpDropDemo16.m). 

Also see the appendix on page 369 for another example. 
 

Other methods. Although the perpendicular drop method remains the standard, here are two other 

possible geometrical methods that can work better in 

some cases. The "equalization" method, illustrated in the 

figure on the left, uses another method of locating the 

perpendicular drop point. A set of three straight-line 

segments is constructed that touches the estimated 

maxima of the two peaks, shown by the dotted red 

line labeled "cline" in the figure on the left. The quotient 

of the original signal, in blue, divided by this line, 

results in a temporarily normalized signal (the yellow 

line) that has more nearly equal peak heights. The effect 

of this treatment is to deepen the valley between the 

peaks, so that it remains distinct for lower values of the 

second peak height. This is used only for the purpose of determining the separation point between the 

peaks, shown as a vertical black line, and then is discarded. The perpendicular drop areas are then 

calculated on the original observed signal (blue line). Note that this new separation point is not quite 

the same as the valley of the original signal, nor is it exactly the half-way point between the two peak 

positions. This operation would be difficult to do by hand, but software can do it easily, given only an 

initial estimate for the two peak positions based on the observed signal. 

The "reflection/subtraction" method, shown on the right, is simpler, but it requires that the larger peak 

be perfectly symmetrical.  An estimate of the isolated larger peak is constructed by reflecting its left-

hand half and using it to replace the right-hand half, resulting in the red dotted line in the figure. Then 

that estimated peak is simply subtracted from the entire signal to reveal the isolated second peak 

(dotted yellow line). The two areas are then separately calculated by the "trapz" function. This process 

is also easily automated, given only the peak position of the first peak. It works perfectly only if the 

larger peak is symmetrical and if the peak separation is sufficient so that the left-hand tail of the smaller 

peak does not significantly increase the height of the first peak.  
 

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/3peaks.pdf
https://terpconnect.umd.edu/~toh/spectrum/GLSDPerpDropDemo16.m
https://terpconnect.umd.edu/~toh/spectrum/GeometricalHeightEqualization2.png
https://terpconnect.umd.edu/~toh/spectrum/GeometricalHeightEqualization2.png
https://terpconnect.umd.edu/~toh/spectrum/GeometricalHeightEqualization.png


Page | 141  

If the shape of peaks is known, a good way to measure the areas of overlapping peaks is to use least-

squares curve fitting, as is discussed starting on page 170. If the peak positions, widths, and amplitudes 

are unknown, and only the fundamental peak shapes are known, then the iterative least-squares method 

can be employed. In some cases, even the background can be accounted for by curve fitting.  

For gas chromatography and mass 

spectrometry specifically, Philip 

Wenig's OpenChrom is an open-

source data system that can import 

binary and textual chromatographic data 

files directly. It includes methods to 

detect baselines and to measure peak 

areas in a chromatogram. 

Extensive documentation is available. It 

is available for Windows, Linux, Solaris, 

and Mac OS X. A screenshot is shown 

on the right (click to enlarge). The author 

has regularly updated the program and 

its documentation.  Another freely-

available open-source program for mass 

spectroscopy is "Skyline" from MacCoss Lab Software, which is specifically aimed at reaction 

monitoring. Tutorials and videos are available. There is also commercial software, such as 

Ampersand’s Chrom&Spec software and Shimadzu’s LabSolutions, which perform sophisticated factor 

analysis, peak deconvolution, etc. 

Peak area measurement in spreadsheets. 
EffectOfDx.xlsx (screen image) demonstrates that the simple equation sum(y)*dx accurately measures 

the peak area of an isolated Gaussian peak if there are at least 4 or 5 points visibly above the baseline 

and as long as you include the points out to plus and minus at least 2 or 3 standard deviations of the 

Gaussian. It also shows that an exponentially broadened Gaussian needs to include more points on the 

tailing (right-hand, in this case) side to achieve the best accuracy. EffectOfNoiseAndBaseline.xlsx 

(screen image) demonstrates the effect of random noise and non-zero baseline, showing that the area is 

more sensitive to a non-zero baseline than the same amount of random noise. CumulativeSum.xls 

(screen image) illustrates the integration of a peak-type signal by normalized cumulative sum; you can 

paste your own data into columns A and B. CumulativeSumExample.xls is an example with data. 
 

The Excel and Calc spreadsheets PeakDetectionAndMeasurement and CurveFitter can measure the 

areas under partly overlapping Gaussian peaks in time-series data, using the findpeaks algorithm 

and iterative non-linear curve fitting techniques, respectively. But neither is as versatile as using a 

dedicated chromatography program such as OpenChrom. 

Using sharpening for overlapping peak area measurements.  

I have created a set of spreadsheet templates for perpendicular drop area measurements of overlapping 

peaks using even derivative sharpening. There is an empty template you can Copy/Paste your data into 

https://terpconnect.umd.edu/~toh/spectrum/OpenChrom.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
http://www.openchrom.net/main/content/index.php
http://www.openchrom.net/main/content/index.php
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
https://skyline.ms/project/home/software/Skyline/begin.view
https://skyline.ms/
http://www.chromandspec.com/products/features/
https://www.ssi.shimadzu.com/products/informatics/index.html
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/EffectOFDx.png
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/EffectOfNoiseAndBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/CumulativeSum.xls
https://terpconnect.umd.edu/~toh/spectrum/CumulativeSum.png
https://terpconnect.umd.edu/~toh/spectrum/CumulativeSumExample.xls
https://terpconnect.umd.edu/~toh/spectrum/https:/terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Fitting_peaks
http://www.openchrom.net/main/content/index.php
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html


Page | 142  

(PeakSharpeningAreaMeasurementTemplate.xlsm), an example version with some typical sample data 

and settings already entered (PeakSharpeningArea-MeasurementExample.xlsm), and a "demo" that 

creates and measures simulated data with known areas (PeakSharpeningAreaMeasurementDemo.xlsm) 

so you can see how sharpening effects area measurement accuracy. There are very brief instructions in 

row 2 of each of these. In addition, there are mouse-over pop-up notes on many of the cells (indicated 

by a red marker in the upper right corner of the cell). All three have clickable ActiveX buttons for 

convenient interactive adjustment of the K2 and K4 factors by 1% or by 10% for each click. Of course, 

the problem is knowing what values of the 2nd and 4th derivative weighting factors (K1 and K2) to use. 

Those values depend on the peak separation, peak width, and the relative peak height of the two peaks, 

and you must determine them experimentally based on your preferred trade-off between extent of 

sharpening and extent of baseline upset. A good place to start for Gaussian peaks is (sigma^2)/30 for 

the 2nd derivative factor and (sigma^4)/200 for the 4th derivative factor, where sigma is the standard 

deviation of the Gaussian, then adjust to give the narrowest peaks without significant negative dips. Do 

not assume that increasing the Ks until baseline resolution is achieved will always give the best area 

accuracy. The optimum values depend on the ratio of peak heights: at 1:1, with equal widths and shapes, 

the perpendicular drop method (page 139) works perfectly with no sharpening, but if there is inequality 

in shapes, heights, or widths, increased K values give lower errors, but overdoing the sharpening can 

sacrifice accuracy. The two-screen images screen1 and screen2, which use the same K values, show 

that it is possible to find K values that give excellent accuracy for peak 2 over a range of relative peak 

heights, even when the smaller peak is quite small. Without sharpening, accurate perpendicular drop 

area measurements are impossible because there is no valley between the peaks. 
 

The template PeakSymmetrizationTemplate.xlsm (graphic) performs the symmetrization of 

exponentially broadened peaks by the weighted addition of the first derivative. See page 80. 

PeakSymmetrizationExample.xlsm is an example application with sample data already typed in. The 

procedure here is first to adjust k1 to get the most symmetrical peak shapes (judged by equal but 

opposite slopes on the leading and trailing edges), then enter the start time, valley time, and end time 

from the graph for the pair of peaks you want to measure into cells B4, B5, and B6, and finally 

(optionally) adjust the second derivative sharpening factor k2. The perpendicular drop areas of those 

two peaks are reported in the table in columns F and G. These spreadsheets have Active-X clickable 

buttons to adjust the first derivative weighting factor (k1) in cell J4 and the second derivative 

sharpening factor k2 (cell J5). There is also a demo version that allows you to determine the accuracy 

of perpendicular drop peak areas under different conditions by internally generating overlapping peaks 

of known peak areas, with specified asymmetry (B6), relative peak height (B3), width (B4), and noise 

(B5): PeakSymmetrizationDemo.xlsm (graphic).  

  

https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementExample.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo1.png
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo2.png
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationExample.png
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemoEMG3.png


Page | 143  

Peak area measurement using Matlab and Octave 
Matlab and Octave have built-in commands for the sum of elements (“sum”, and the cumulative sum 

“cumsum”) and the trapezoidal numerical integration (“trapz”). For example, consider these three 

Matlab commands. 
 

>> x=-5:.1:5;  

>> y=exp(-(x).^2); 

>> trapz(x,y)  

These lines accurately compute the numerical value of the area under the curve of x,y, in this case an 

isolated Gaussian, whose area can be shown to be the square root of pi, which is equal to 1.7725: 

 ∫ 𝑒−𝑥
2
𝑑𝑥

∞

−∞
= [∫ 𝑒−𝑥

2
𝑑𝑥

∞

−∞ ∫ 𝑒−𝑦
2
𝑑𝑦

∞

−∞
]
1/2

= [∫ ∫ 𝑒−𝑟
2
𝑟 𝑑𝑟 𝑑𝜃

∞

0

2𝜋

0
]
1/2

= [𝜋 ∫ 𝑒−𝑢𝑑𝑢
∞

0
]
1/2

= √𝜋 

If the interval between x values, dx, is constant, then the area is simply yi=sum(y).*dx. Alternatively, 

the signal can be integrated using yi=cumsum(y).*dx, then the area of the peak will be equal to 

the height of the resulting step, max(yi)-min(yi)=1.7725.  
 

The area of a peak is proportional to the product of its height and its width, but the proportionality 

constant depends on the peak shape. A pure Gaussian peak with a peak height h and full-width at half-

maximum w has a total area of 1.064467*h*w. A pure Lorentzian peak has a total area of (pi/2)*h*w. A 

Gaussian-Lorentzian blend with p percent Gaussian character has an area of ((100- p)/100) * ((pi/2) 

*w*h) + (p /100)*(1.064467*w*h). The graphic LorentzianVsGaussian.png compares Gaussian and 

Lorentzian peaks of the same height and width. The Lorentzian has more area in the outer wings, you 

must measure over a very wide range on both sides of the peak. To get an area within 1%, you need to 

expand that to 64 times the FWHM! (See LorentzianAreaProblem.m, graphic). Some real signals in 

practice have difficult peak shapes (Lorentzian or Gaussian/Lorentzian blends) that are too close 

together to allow the theoretical areas to be measured directly by integration. Possible solution include 

peak sharpening (page 141), iterative curve fitting (page 149), or even measuring the height and width 

and then calculating the area analytically using the above analytical expressions.  
 

The peaks in real signals have some other complications: (a) The shapes of the peaks might not be 

known; (b) they may be superimposed on a variable baseline; and (c) they may be overlapped with 

other peaks; (d) there is always some random noise. You can use signal simulation to test the influence 

of those complications. For example, the Matlab/Octave script AreasOfIsolatedPeaks.m creates a 

simulated multi-peak signal and then tests the peak area measurement accuracy of that signal with a 

specified integration window width and baseline correction range. (In that case, noise is the culprit). 
 

Computer code for the perpendicular drop method. The following Matlab/Octave code measures 

the areas of two overlapping symmetrical peaks in the data vectors x,y by the perpendicular drop 

method. Variables m1 and m2 are the estimated x=axis positions of the two peaks, which are typically 

determined by some peak finding algorithm based on the first derivative. The "val2ind" function 

returns the index number of the value in a vector that value matches the specified value. The third line 

finds the half-way point between the two peaks. The last two lines use Matlab’s “trapz” function to 

measure the areas before and after the valley point. 
 

index1=val2ind(x,m1); 

index2=val2ind(x,m2); 

https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/iSignalArea1.png
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://terpconnect.umd.edu/~toh/spectrum/LorentzianVsGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/LorentzianAreaProblem.m
https://terpconnect.umd.edu/~toh/spectrum/LorentzianAreaProblem.png
https://terpconnect.umd.edu/~toh/spectrum/AreasOfIsolatedPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m


Page | 144  

valleyindex=val2ind(x,(m1+m2)/2), 

PDMeasArea1=trapz(x(1:valleyindex),y(1:valleyindex)); 

PDMeasArea2=trapz(x(valleyindex:length(x)),y(valleyindex:length(x)); 
 

Alternatively, you could replace “valleyindex” with valleyy=min(y(index1:index2)); 

valleyindex=val2ind(y,valleyy); which uses the minimum between the peaks rather than the 

half-way point. But the half-way point method has the advantage that the SNR at a peak maximum is 

usually better than at a peak minimum, and moreover it works even when there is not a discernible 

minimum between the peaks. My function PerpDropAreas.m uses the half-way point method to 

measure the areas of any number of overlapping peaks, given a list of their peak maxima positions. 

These methods work best if the peak widths are equal or nearly so. Alternative methods include 

EqualPerpDrop.m, which performs area measurements by the “equalization” method, and 

EqualPerpDropTest.m, which demonstrates the use of the function applied to the measurement of two 

simulated overlapping EMG (exponentially modified Gaussian) peaks. Matlab/Octave code for all 

these methods is contained in the script "OverlapAreaComparison.m". For the case of Gaussian peak 

with a resolution of 0.7 and a height ratio of 1 to 0.5, the relative percent errors of the peak areas are: 
 

                                   Peak 1   Peak 2 

Perpendicular drop, valley point:  -6.44%  12.89% 

Perpendicular drop, half-way point: 3.91%  -7.83% 

Equalization method:                1.27%  -2.54% 

Subtraction method:                -2.12%   4.25% 
 

You can change the parameters in lines 5 through 10 to test with other peak separations and relative 

peak heights. The equalization method is often, but not always, the most accurate method. (Note: the 

script requires my val2ind.m, halfwidth.m, ExpBroaden.m, and plotit.m functions to be in the path). 

A more thorough investigation of these methods 

demonstrates the effect of changing the peak resolu-

tion, shown on the left (script, graphic) and of chang-

ing the height of the smaller peak, shown on the right 

below (script, graphic). These scripts include the ef-

fect of random noise in the signal, because noise can 

influence the location of peak maxima and the sepa-

ration point between the peaks, whether they are de-

termined manually or by a computer algorithm (as it 

is here); the random noise is set by the variable 

"noise", which is the fractional random white noise 

added to the signal. In addition, these scripts include 

the effect of asymmetry of the peak shapes, which 

can cause errors in area measurement by all these methods. After all, the very reason for measuring 

peak area rather than peak heights is to reduce the effect of uncontrolled variations in peak broaden-

ing. The asymmetry is set by the variable "TimeConstant", which is the time constant of the exponen-

tial convolution applied to the signal that reduces the height and stretches out the right-hand half. Both 

of those are zero in the above figures for simplicity and to show the best possible accuracy. For exam-

ple, with a resolution of 1.0, a tau of 2, and noise set to 0.01 (1%), the valley perpendicular drop and 

the equalization method outperform the other methods (graphic). Things are much easier and more for-

https://terpconnect.umd.edu/~toh/spectrum/PerpDropAreas.m
https://terpconnect.umd.edu/~toh/spectrum/EqualPerpDrop.m
https://terpconnect.umd.edu/~toh/spectrum/EqualPerpDropTest.m
https://terpconnect.umd.edu/~toh/spectrum/OverlapAreaComparison.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/EffectOfPeakPesolutionOnOverlappingPeakAreaMeasurement1.m
https://terpconnect.umd.edu/~toh/spectrum/EffectOfResolutionOnOverlappingPeakAreaMeasurement.png
https://terpconnect.umd.edu/~toh/spectrum/EffectOfPeakHeightOnOverlappingPeakAreaMeasurement.m
https://terpconnect.umd.edu/~toh/spectrum/EffectOfPeakHeightR09T2N01t.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#HeightWidth
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#HeightWidth
https://terpconnect.umd.edu/~toh/spectrum/EffectOfPeakHeightR10T2N01t.png
https://terpconnect.umd.edu/~toh/spectrum/EffectOfResolutionOnOverlappingPeakAreaMeasurement.png


Page | 145  

giving in quantitative analysis using a calibration curve, because in that case absolute area accuracy is 

not really necessary. Rather, it is really the reproducibility of the areas that is key. Systematic errors in 

the area measurement simply change the slope of the calibration curve, and if the conditions are the 

same between calibration and analysis (always a requirement in any case), the error will cancel out ex-

actly. For example, if you run the above scripts with very asymmetrical peaks (TimeConstant=3), poor 

resolution (resolution =0.68), and visible amounts of random noise=5%, the systematic area measure-

ment errors are quite large (5%-15%), but nevertheless good linear calibration curves are produced by 

both the halfway point perpendicular drop and the equalization method, over the range of relative peak 

heights of 0.1 to 0.99, with correlation coefficients of 0.999. The calibration curve compensates for the 

systematic error and the area measurement integrates multiple data points over the peak. 
 

All of these methods can produce significant errors if the peaks are highly overlapped or asymmetrical. 

However, asymmetry that is the result of exponential broadening can be symmetrized before compu-

ting the areas using the first derivative addition method, which sharpens the peaks and removes the 

asymmetry without changing the peak areas. Other methods of peak sharpening, especially self-

deconvolution (page 111) could also be used when the peak to be measured is too weak or too poorly 

resolved to allow easy measurement. Ultimately, in the most difficult cases, you may have to consider 

the use of iterative curve fitting, though it is admittedly more complex mathematically and is subject to 

its own limitations.  

Automatic multiple peak detection 

Measurepeaks.m (The syntax is M=measurepeaks (x,y,SlopeThreshold,AmpThreshold, 

SmoothWidth,FitWidth,plots)) is a function that quickly and automatically detects peaks in a 

signal, using the derivative zero-crossing method 

described previously, and measures their areas using the 

perpendicular drop and tangent skim methods. It shares 

the first 6 input arguments with findpeaksG. It returns a 

table containing the peak number, peak position, absolute 

peak height, peak-valley difference, perpendicular drop 

area, and the tangent skim area of each peak it detects. If 

the last input argument ('plots') is set to 1, it plots the 

signal with numbered peaks (shown on the left) and also 

plots the individual peaks (in blue) with the maximum (red 

circles), valley points (magenta), and tangent lines (cyan) 

marked as shown on the right. The peak heights and x-

positions are indicated by the red circles, the perpendicular drop area is the total area measured 

between the two magenta vertical lines down to zero, and the tangent skim area is the area between the 

cyan baseline and the blue peak (which compensates for a linear local baseline). Type “help 

measurepeaks” and try the seven examples there, or run HeightAndArea.m to test the accuracy of peak 

height and area measurement with signals that have multiple peaks with noise, background, and some 

peak overlap. Generally, the values for absolute peak height and perpendicular drop area are best for 

peaks that have no background, even if they are slightly overlapped, whereas the values for peak-valley 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Calibration
https://terpconnect.umd.edu/~toh/spectrum/EffectOfPeakHeightR068T3N05tx.png
https://terpconnect.umd.edu/~toh/spectrum/HPDR07T3N05t.png
https://terpconnect.umd.edu/~toh/spectrum/EPDR07T3N05t.png
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#broadening
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#curvefitting
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#PeakDetection
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.txt
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndArea.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaErrors.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaErrors.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png


Page | 146  

difference and for tangential skim area are better for isolated peaks on a straight or slightly curved 

background. Note: this function uses smoothing (specified by the SmoothWidth input argument) only 

for peak detection; it performs measurements on the raw unsmoothed y data. If the raw data are noisy, 

the location of the valleys may be uncertain, in which case it may be beneficial to smooth the y data 

yourself before calling measurepeaks.m, using any smooth function of your choice. (Smoothing does 

not change the peak area of an isolated peak). 

[M,A]=autopeaks.m is 

basically a combination 

of autofindpeaks.m and 

measurepeaks.m. It has a 

similar syntax to 

measurepeaks.m, except 

that the peak detection 

parameters 

(SlopeThreshold, 

AmpThreshold, 

smoothwidth, peakgroup, 

and smoothtype) can be 

omitted and the function 

will calculate trial values in the manner of autofindpeaks.m. Using the simple 

syntax [M,A]=autopeaks(x, y) works well in some cases, but if not try [M,A]=autopeaks(x, y, n), using 

different values of n (roughly the number of peaks that would fit into the signal record) until it detects 

the peaks that you want to measure. Just like measurepeaks.m, it returns a table M containing the peak 

number, peak position, absolute peak height, peak-valley difference, perpendicular drop area, and 

tangent skim area of each peak it detects, but is also can optionally return a vector A containing the 

peak detection parameters that it calculates (for use by other peak detection and fitting functions). For 

the most precise control over peak detection, you can specify all the peak detection parameters by 

typing M=autopeaks (x, y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup). The function 

autopeaksplot.m is the same but it also plots the signal and the individual peaks in the manner of 

measurepeaks.m (shown above). The script testautopeaks.m runs all the examples in the autopeaks help 

file, with a 1-second pause between each one, printing out results in the command window and 

additionally plotting and numbering the peaks (Figure window 1) and each individual peak (Figure 

window 2); it requires gaussian.m and fastsmooth.m in the Matlab path. Autopeaks.m and 

autopeaksplot.m returns a matrix, M, which lists each peak detected in the rows and has the following 

peak measurements in the columns: 

Peak     Position    PeakMax    Peak-valley    Perp drop   Tan skim 

1        6.0000      1.3112     1.2987         1.7541      1.7121 

2        . . . etc. 

For determining the effect of smoothing, peak sharpening, deconvolution, or other signal enhancement 

methods on the areas of overlapping peaks measured by the perpendicular drop method, the Matlab/ 

Octave function ComparePDAreas.m uses autopeaks.m to measure the peak areas of original and 

processed signals, "orig" and "processed", and displays a scatter plot of original vs processed areas for 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/testautopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/ComparePDAreas.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png


Page | 147  

each peak and returns the peak tables, P1 and P2 respectively, and the slope, intercept, and R2 values, 

which should ideally be 1,0, and 1, if the processing has had no effect at all on peak area.  

The related functions wmeasurepeaks.m and testwmeasurepeaks.m utilize wavelet denoising (page 133) 

rather than smoothing, but that makes little difference, because the peak parameter measurements are 

based on least-squares fitting to the raw data, not the smoothed data, so the usual wavelet denoising 

advantage of avoiding smoothing distortion does not apply here. 
 

The Matlab/Octave automatic peak-finding function findpeaksG.m computes peak area assuming that 

the peak shape is Gaussian (or Lorentzian, for 

the variant findpeaksL.m). The related function 

findpeaksT.m uses the triangle construction 

method to compute the peak parameters. Even 

for well-separated Gaussian peaks, the area 

measure-ments by the triangle construction 

method are not very accurate; the results are 

about 3% below the correct values. (However, 

this method does perform better than 

findpeaksG.m when the peaks are noticeably 

asymmetric; see triangulationdemo for some 

examples). In contrast, measurepeaks.m makes 

no assumptions about the shape of the peak.  

Peak sharpening (page 76) can often help in the measurement of the areas of overlapping peaks, by 

creating (or deepening) the valleys between peaks that are needed by the perpendicular drop method. 

SharpenedOverlapDemo.m is a script that automatically determines the optimum degree of even-

derivative sharpening that minimizes the errors of measuring peak areas of two overlapping Gaussians 

by the perpendicular drop method using the autopeaks.m function. It does this by applying different 

degrees of sharpening 

and plotting the area 

errors (percent 

difference between the 

true and measured  

errors) vs the 

sharpening weighting 

factor, as shown on the 

right. It also shows the 

height of the valley 

between the peaks 

(yellow line). This 

demonstrates that: 

(1) the optimum 

sharpening factor 

depends upon the 

https://terpconnect.umd.edu/~toh/spectrum/wmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testwmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/findpeaksL.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#triangle
https://terpconnect.umd.edu/~toh/spectrum/triangulationdemo.m
https://terpconnect.umd.edu/~toh/spectrum/TriangulationComparison.png
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapDemo.png
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
file:///C:/Users/Tom/Dropbox/SPECTRUM/SharpenedOverlapDemo.png
file:///C:/Users/Tom/Dropbox/SPECTRUM/SharpenedOverlapDemo2.png


Page | 148  

width and separation of the two peaks and on  their height ratio,  

(2) the degree of sharpening is not overly critical, often exhibiting a broad optimum region,  

(3) the optimum for the two peaks is not necessarily the same, and  

(4) the optimum for area measurement usually does not occur at the point where the valley is zero. (To 

run this script you must have gaussian.m, derivxy.m, autopeaks.m, val2ind.m, and halfwidth.m in the 

Matlab search path. Download these from https://terpconnect.umd.edu/~toh/spectrum/). 
 

The script SharpenedOverlapCalibrationCurve.m simulates the construction and use of calibration 

curves of three overlapping Gaussian peaks (the blue lines in the signal plots on the next page). Even-

derivative sharpening (the red line in the signal plots) is used to improve the resolution of the peaks to 

allow perpendicular drop area measurement. A straight line is fit to the calibration curve and the R2 is 

calculated, to demonstrate (1) the linearity of the response, and (2) in independence of the overlapping 

adjacent peaks. You can change the following parameters: 
 

1. The resolution, Rs, by changing the peak width w in line 15. Initially w=2, which makes Rs=0.55. 

2. The peak height ratios, by changing the minimum and maximum peaks in lines 21 and 22. (Default 

is 0.2 and 1.0, a 1:5 ratio range). Naturally, if peak 2 is too small there won’t be a valley between peaks.  

3. The number of standards in the calibration curves, in line 24. Larger numbers give better results.  

4. The number of simulated samples, in line 25. Larger numbers give more reliable average errors. 
 

SymmetrizedOverlapCalibrationCurve.m does the same thing for symmetrization of overlapping 

exponentially modified Gaussian peaks by first-derivative addition. The critical variable is "factor" in 

line 27, which for best results should match or slightly exceed "tau", the exponential time constant in 

line 19. You must have gaussian.m, derivxy.m, autopeaks.m, val2ind.m, halfwidth.m, fastsmooth.m, 

and plotit.m in the Matlab search path.  

iSignal (page 371) is a downloadable interactive Matlab function that performs various signal 

processsing functions described in this tutorial, including measurement of peak area using Simpson's 

Rule and the perpendicular drop method. Click to view or right-click > Save link as... here, or you can 

download the ZIP file with sample data for testing. It is shown below applying the perpendicular drop 

method to a series of four peaks of equal 

area. Look at the bottom panel to see 

how the measurement intervals, marked 

by the vertical dotted magenta lines, are 

positioned at the valley minimum on 

either side of each of the four peaks. You 

can see this animation on the page if you 

view it in Microsoft Word 365, otherwise 

click this link. 

The following lines of Matlab/ Octave 

code create four computer-synthesized 

Gaussian peaks that all have the same 

height (1.000), width (1.665), and area 

(1.772) but with different degrees of peak 

https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/SymmetrizedOverlapCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal7.zip
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaAnimation.gif


Page | 149  

overlap, as in the figure on the right. 

x=[0:.01:18]; 

y=exp(-(x-4).^2) + exp(-(x-9).^2) + exp(-(x-12).^2) + exp(-(x-13.7).^2); 

isignal(x,y);  

To use iSignal to measure the areas of each of these peaks by the perpendicular drop method, use the 

pan and zoom keys to position the two outer cursor lines (dotted magenta lines) in the valley on either 

side of the peak. The total of each peak area will be displayed below the upper window.  

Peak #   Position       Height     Width      Area 

   1       4.00         1.00       1.661      1.7725 

   2       9.001        1.0003     1.6673     1.77 

   3      12.16         1.068      2.3        1.78 

   4      13.55         1.0685     2.21       1.79 

 The area results are reasonably accurate in this example only because the perpendicular drop method 

roughly compensates for partial overlap between peaks, but only if the peaks are symmetrical, about 

equal in height, and have zero background.  

iSignal includes an additional command (J key) that calls the autopeaksplot function, which 

automatically detects the peaks in the signal and measures their peak position, absolute peak height, 

peak-valley difference, perpendicular drop area, and tangent skim area. It asks you to type in the peak 

density (roughly the number of peaks that would fit into the signal record); the greater this number, the 

more sensitive it is to narrow peaks. It displays the measured peaks just as does the measurepeaks 

function described above. (To return to iSignal, press any cursor arrow key). 

Area measurement by iterative curve fitting 

In general, the most flexible peak area 

measurements for overlapping peaks, assuming that 

the basic shape of the peaks is known or can be 

guessed, are made with iterative least-squares peak 

fitting, for example using peakfit.m, shown below 

(for Matlab and Octave). This function can fit any 

number of overlapping peaks with model shapes 

selected from a list of different types. It uses the 

"trapz" function to calculate the area of each of the 

component model peaks. For example, using the 

peakfit function on the same data set as above, the 

results are much more accurate: 

>>peakfit([x;y],9,18,4,1,0,10,0,0,0) 

          Peak #    Position      Height       Width        Area 

            1            4            1       1.6651       1.7725 

            2            9            1       1.6651       1.7725 

            3           12            1       1.6651       1.7725 

            4         13.7            1       1.6651       1.7725 

The interactive function iPeak (page 248), can also be used to estimate peak areas. It has the advantage 

https://terpconnect.umd.edu/~toh/spectrum/PeakfitArea.png
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm


Page | 150  

that it can detect and measure all the peaks in a signal in one operation. The default area measurement 

method in iPeak is Gaussian estimation, by assuming that the peaks are Gaussian and fitting the top 

part of the peak. For example (using the same x and y vectors defined on the previous page):  

>> ipeak([x,y],10) 

         Peak #    Position      Height       Width        Area 

            1            4            1       1.6651       1.7727 

            2       9.0005       1.0001       1.6674       1.7754 

            3        12.16       1.0684       2.2546       2.5644 

            4        13.54       1.0684       2.2521       2.5615 

Peaks 1 and 2 are measured accurately by iPeak, but the peak widths and areas for peaks 3 and 4 are 

not accurate because of the peak overlap. Fortunately, iPeak has a built-in "peakfit" function (activated 

by the N key) that uses these peak position and width estimates as its first guesses, resulting in good 

accuracy for all four peaks. 
 

Fitting Error 0.0002165%           
         Peak#     Position      Height      Width         Area   

            1            4            1       1.6651       1.7724 

            2            9            1       1.6651       1.7725 

            3           12            1       1.6651       1.7725 

            4         13.7      0.99999       1.6651       1.7724 
 

So, in this artificially ideal situation, the results are in perfect agreement with expectations. 

Correction for background/baseline 
The presence of a baseline or background signal, on which the peaks are superimposed, will greatly 

influence the measured peak area if not corrected or compensated. iSignal, iPeak, measurepeaks, 

and peakfit all have several different baseline correction modes, for flat, tilted linear, and curved 

baselines, and iSignal and iPeak additionally have a multipoint piece-wise linear baseline subtraction 

function allows the manually estimated background to be subtracted from the entire signal. If the 

baseline is caused by the edges of a strong overlapping adjacent peak, then it is possible to include that 

peak in the curve-fitting operation, as see in Example 22 on page 403.  

The script AreasOfIsolatedPeaks2.m demonstrates the use of peakfit.m for a simulated experimental 

signal consisting of several isolated peaks on a straight tilted baseline. In this example, the positions of 

the peaks are assumed to be reproducible enough that a pre-determined set of measurement segments 

can be used to fit each peak separately and determine its exact position, height, width, and area. 

The following line of Matlab/Octave creates a simulated signal that consists of two noiseless, slightly 

overlapping Gaussian peaks with theoretical peak heights of 2.00 and 1.00 and areas of 191.63 and 

95.81 units, respectively. The baseline is tilted and linear, and slightly greater in magnitude than the 

peak heights themselves, but the most serious problem is that the signal never returns to the 

baseline long enough to make it easy to distinguish the signal from the baseline.  

>> x=400:1:800;y=2.*gaussian(x,500,90)+1.*gaussian(x,700,90)+2.*(x./400);  

A straightforward application of iSignal, using baseline mode 1 and the perpendicular drop method, 

seriously underestimates both peak areas (168.6 and 81.78), because baseline mode 1 only works when 

the signal returns completely to the local baseline at the edges of the fitted range, which is not the case 

here. 

https://terpconnect.umd.edu/~toh/spectrum/Integration.html#measurepeaks
https://terpconnect.umd.edu/~toh/spectrum/AreasOfIsolatedPeaks2.m


Page | 151  

 
An automated tangent skim measurement by measurepeaks is not accurate in this case because the 

peaks do not go all the way down to the baseline at the edges of the signal and because of the slight 

overlap:  
 

>> measurepeaks(x,y,.0001,.8,2,5,1) 

    Position  PeakMax  Peak-valley  Perp drop  Tan skim 

1   503.67    4.5091     1.895       672.29     171.44 

2   707.44    4.5184    0.8857       761.65     76.685 

An attempt to use curve fitting with peakfit.m in the flat baseline correction mode 3 

(peakfit([x;y],0,0,2,1,0,1,0,3), above, top left-most figure) fails because the actual 

baseline is tilted, not flat. The linear baseline mode, peakfit([x;y],0,0,2,1,0,1,0,1),  top right 

figure) is not much better in this case (page 215). A more accurate approach is set the baseline mode to 

zero and to include a third peak in the model to fit the baseline, for example with either a Lorentzian 

model - peakfit([x;y],0,0,3,[1 1 2]), bottom left figure - or with a "slope" model - shape 

26 in peakfit version 6, bottom right figure. The latter method gives both the lowest fitting error (less 

than 0.01%) and the most accurate peak areas (less than ½% error in peak area):  

https://terpconnect.umd.edu/~toh/spectrum/Integration.html#measurepeaks
https://terpconnect.umd.edu/~toh/spectrum/Autozero3.png
https://terpconnect.umd.edu/~toh/spectrum/Autozero1.png
https://terpconnect.umd.edu/~toh/spectrum/3peakLorentzian.png
https://terpconnect.umd.edu/~toh/spectrum/3peakVariablelinear.png


Page | 152  

>> [FitResults,FitError]=peakfit([x;y],0,0,3,[1 1 26]) 

         Peak#     Position      Height       Width      Area             

            1          500       2.0001       90.005       190.77     

            2          700      0.99999       89.998       95.373 

            3       5740.2  8.7115e-007            1       1200.1 
 

FitError =0.0085798 

Note that in this last case the number of peaks is 3 and the shape argument is a vector [1 1 26] 

specifying two Gaussian components plus the "linear slope" shape 26. If the baseline seems to be non-

linear, you might prefer to model it using a quadratic (shape 46; see example 38 on page 406). If the 

baseline seems to be different on either side of the peak, try modeling the baseline with an S-shape 

(sigmoid), either an up-sigmoid, shape 10 (click for graphic), peakfit([x;y],0,0,2,[1 10],[0 

0]), or a down-sigmoid, shape 23 (click for graphic), peakfit([x;y],0,0,2,[1 23],[0 0]), in 

these examples leaving the peak modeled as a Gaussian. 

Asymmetrical peaks and peak broadening: perpendicular drop vs curve fitting 
AsymmetricalAreaTest.m is a Matlab/Octave script that compares the accuracy of peak area 

measurement methods for a single noisy asymmetrical peak measured by different methods: (A) 

Gaussian estimation, (B) triangulation, (C) perpendicular drop method, and curve fitting by (D) 

exponentially broadened Gaussian, and (E) two overlapping Gaussians. AsymmetricalAreaTest2.m is 

similar except that it compares the precision 

(standard deviation) of the areas. For a single peak 

with a baseline of zero, the perpendicular drop and 

curve fitting methods work equally well, both 

considerably better than Gaussian estimation or 

triangulation. The advantage of the curve fitting 

methods is that they can deal more accurately with 

peaks that overlap or that are superimposed on a 

baseline.  

Here's a Matlab/Octave experiment that creates a 

signal containing five Gaussian peaks with the 

same initial peak height (1.0) and width (3.0) but 

which are subsequently broadened by increasing 

degrees of exponential broadening, similar to the 

broadening of peaks commonly encountered in chromatography:  
 

>> x=5:.1:65; 

>> y=modelpeaks2(x, [1 5 5 5 5], [1 1 1 1 1], [10 20 30 40 50], [3 3 3 3 

3], [0 -5 -10 -15 -20]); 

>> isignal(x,y) ; 
 

The theoretical area under these Gaussians is all the same: 1.0645*Height*Width = 1*3*1.0645 = 

3.1938. A perfect area-measuring algorithm would return this number for all five peaks.  

As the broadening is increased from left to right, the peak height decreases (by about 35%) and peak 

width increases (by about 32%). Because the area under the peak is proportional to the product of the 

https://terpconnect.umd.edu/~toh/spectrum/UpSigmoidBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/DownSigmoidBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalAreaTest.m
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalAreaTest2.m


Page | 153  

peak height and the peak width, these two changes approximately cancel each other out and the result 

is that the peak area is nearly independent of peak broadening (see the summary of results in 

5ExponentialBroadenedGaussianFit.xlsx). The perpendicular drop method (page 143), PerpDropAreas 

(x, y, min(x), max(x), positions), where “positions” are the x-axis positions of the original peaks, gives 

the areas [3.1933 3.1926 3.1738 3.1006 3.3045], an average errors of 1.4%, which is not quite perfect. 

The Matlab/Octave peak-finding function findpeaksG.m, finds all five peaks and measures their areas 

assuming a Gaussian shape; this works well for the unbroadened peak 1 (script), but it underestimates 

the areas as the broadening increases in peaks 2-5:  

    Peak   Position    Height     Width     Area 

    1       10.0000    1.0000    3.0000    3.1938 

    2       20.4112    0.9393    3.1819    3.1819 

    3       30.7471    0.8359    3.4910    3.1066 

    4       40.9924    0.7426    3.7786    2.9872 

    5       51.1759    0.6657    4.0791    2.8910 

The triangle construction method (using findpeaksT.m) underestimates even the area of the 

unbroadened peak 1 and is less accurate for the broadened peaks (script; graphic):  

Peak      Position    Height     Width     Area 

    1       10.0000    1.1615    2.6607    3.0905 

    2       20.3889    1.0958    2.8108    3.0802 

    3       30.6655    0.9676    3.1223    3.0210 

    4       40.8463    0.8530    3.4438    2.9376 

    5       50.9784    0.7563    3.8072    2.8795 
 

The automated function measurepeaks.m gives better results using the perpendicular drop method     

(5th column of the table). 

 

 >> M=measurepeaks(x,y,0.0011074,0.10041,3,3,1) 

 
  Peak  Position  PeakMax   Peak-val.  Perp drop  Tan skim 

   1     10         1        .99047     3.1871     3.1123 

   2     20.4       .94018   .92897     3.1839     3.0905   

   3     30.709     .83756   .81805     3.1597     2.9794 

   4     40.93      .74379   .70762     3.1188     2.7634 

   5     51.095     .66748   .61043     3.0835     2.5151 
 

Using iSignal (page 371) and the manual peak-by-peak perpendicular drop method yields areas of 

3.193, 3.194, 3.187, 3.178, and 3.231, a mean of  3.1966 (close to the theoretical value of 3.1938) and 

standard deviation of only 0.02 (0.63%). Alternatively, integrating the signal, cumsum(y).*dx), 

where dx is the difference between adjacent x-axis values (0.1 in this case), and then measuring the 

heights of the resulting steps, gives similar results: 3.19, 3.19, 3.18, 3.17, 3.23. By either method, the 

peak areas are not quite equal as they should be.  
 

But we can obtain a more accurate automated measurement of all five peaks, using peakfit.m with 

multiple shapes, one Gaussian and four exponentially modified Gaussians (shape 5) with different 

exponential factors (extra vector): 
 

https://terpconnect.umd.edu/~toh/spectrum/5ExponentialBroadenedGaussianFit.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/triangulationExp.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#triangle
https://terpconnect.umd.edu/~toh/spectrum/triangulationExp.m
https://terpconnect.umd.edu/~toh/spectrum/triangulationExp.png
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/iSignalArea2.png
https://terpconnect.umd.edu/~toh/spectrum/iSignalArea2.png


Page | 154  

>> [FitResults,FittingError]=peakfit([x;y],30,54,5,[1 5 5 5 5], 

[0  -5 -10 -15 -20],10, 0, 0) 

 

          Peak#   Position       Height       Width         Area 

            1        9.9933     0.98051       3.1181       3.2541 

            2       20.002      1.0316        2.8348       3.1128 

            3       29.985      0.95265       3.233        3.2784 

            4       40.022      0.9495        3.2186       3.2531 

            5       49.979      0.83202       3.8244       3.2974 

FittingError = 2.184% 
 

The fitting error is not much better than the simple Gaussian fit. Better results can be had using 

preliminary position and width results obtained from the findpeaks function or by curve fitting with a 

simple Gaussian fit and using those results as the "start" vector (eight input argument): 
 

>> [FitResults,FittingError]=peakfit([x;y],30,54,5, [1 5 5 5 5], [0  -5 -10 

-15 -20], 10, [10 3.5 20 3.5 31 3.5 41 3.5 51 3.5], 0) 

 

         Peak#   Position       Height       Width         Area 

            1        9.9999     0.99995      3.0005       3.1936 

            2       20          0.99998      3.001        3.1944 

            3       30.001      1.0002       3.0006       3.1948 

            4       40          0.99982      2.9996       3.1924 

            5       49.999      1.0001       3.003        3.1243 

FittingError = 0.02% 
 

Even more accurate results for area are obtained using peakfit with one Gaussian and four equal-

width exponentially modified Gaussians (shape 8): 
 

>> [FitResults,FittingError]=peakfit([x;y],30,54,5, [1 8 8 8 8], [0  -5 -10 

-15 -20],10, [10 3.5 20 3.5 31 3.5 41 3.5 51 3.5],0) 

         Peak#  Position   Height         Width           Area 

            1    10        1.0001         2.9995        3.1929 

            2    20        0.99998        3.0005        3.1939 

            3    30        0.99987        3.0008        3.1939 

            4    40        0.99987        2.9997        3.1926 

            5    50        1.0006         2.9978        3.1207 

FittingError = 0.008% 
 

The latter approach works because, although the broadened peaks clearly have different widths (as 

shown in the simple Gaussian fit), the underlying pre-broadening peaks have all the same width. In 

general, if you expect that the peaks should have equal widths or fixed widths, then it is better to use 

a constrained model that fits that knowledge; you'll get better estimates of the measured unknown 

properties, even though the fitting error will be higher than for an unconstrained model.  
 

The disadvantages of the exponentially broadened model are that: 
 

(a) it may not be a perfect match to the actual physical broadening process;  

(b) it is slower than a simple Gaussian fit, and  

(c) it sometimes needs help, in the form of a start vector or equal-widths constraints, as seen 

above, to get the best results.  

Alternatively, if the objective is only to measure the peak areas, and not the peak positions and widths, 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Peak_width_constraints


Page | 155  

then it is not even necessary to model the physical peak-broadening of each peak. You can simply aim 

for a good fit using two (or more) closely spaced simple Gaussians for each peak and simply add up the 

areas of the best-fit model. For example, the 5th peak in the above example (which is the most 

asymmetrical) can be fit very well with two overlapping Gaussians, resulting in a total area of  1.9983 

+ 1.1948 = 3.1931, very close to the theoretical area of 3.1938. Even more overlapping Gaussians can 

be used if the peak shape is more complex. This is called the "sum rule" in integral calculus: the 

integral of a sum of two functions is equal to the sum of their integrals. As a demonstration, the script 

SumOfAreas.m shows that even drastically non-Gaussian peaks can be fitted with multiple Gaussian 

components and that the total area of the components approaches the area under the non-Gaussian peak 

as the number of components increases (graphic). When using this technique, it is best to set 

the number of trials (NumTrials, the 7th input argument of the peakfit.m function) to 10 or more; 

additionally, if the peak of interest is on a baseline, you must add up the areas of only those peak that 

contribute to fitting the peak itself and not those that are fitting the baseline. 
 

An alternative to curve fitting with an exponentially broadened model is to use symmetrize.m or 

iSignal.m on each peak to convert them into symmetrical peaks and then to fit them with an appropriate 

symmetrical model (in this case a Gaussian). See page 80. 
 

By making the peaks closer together, we can create a tougher and more realistic challenge.  
 

>> y=modelpeaks2(x,[1 5 5 5 5],[1 1 1 1 1],[20 25 30 35 40],[3 3 3 3 3],[0 

-5 -10 -15 -20]); 
 

In this case, the triangle construction 

method gives areas of  3.1294, 3.202 3.3958, 

4.1563, and 4.4039, seriously over-

estimating the areas of the last two peaks, 

and measurepeaks.m using the 

perpendicular drop method (page 143) gives 

areas of 3.233, 3.2108, 3.0884, 3.0647 

3.3602, compared to the theoretical value of 

3.1938, better but not perfect. The 

integration-step height method is almost 

useless because the steps are no longer 

clearly distinct.  
 

The peakfit function does better, again 

using the approximate result of 

findpeaksG.m as the 'start' value (8th input argument) for peakfit. 

>>[FitResults,FittingError]=peakfit([x;y],30,54,5,[1 8 8 8 8],[0  -5 -10 -

15 -20],10, [20 3.5 25 3.5 31 3.5 36 3.5 41 3.5],0) 
 

         Peak#  Position   Height     Width        Area 
            1       20       0.99999      3.0002       3.1935 

            2       25       0.99988      3.0014       3.1945... 

            3       30       1.0004       2.9971       3.1918 

            4       35       0.9992       3.0043       3.1955 

            5      40.001    1.0001       2.9981       3.1915 

https://terpconnect.umd.edu/~toh/spectrum/LastPeakTwoGaussians.png
https://en.wikipedia.org/wiki/Sum_rule_in_integration
https://en.wikipedia.org/wiki/Sum_rule_in_integration
https://terpconnect.umd.edu/~toh/spectrum/SumOfAreas.m
https://terpconnect.umd.edu/~toh/spectrum/SumOfAreas.png
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/triangulationExp2.png
https://terpconnect.umd.edu/~toh/spectrum/triangulationExp2.png


Page | 156  

FittingError = 0.01%  
 

Next, we make an even tougher challenge with different peak heights (1, 2, 3, 4 and 5, respectively) 

and a bit of added random noise. The theoretical areas (Height*Width*1.0645) are 3.1938, 6.3876, 

9.5814, 12.775, and 15.969.  

 

>> y=modelpeaks2(x,[1 5 5 5 5],[1 2 3 4 5], [20 25 30 35 40], [3 3 3 3 3], 

[0 -5 -10 -15 -20])+.01*randn(size(x)); 
 

>> [FitResults,FittingError]=peakfit([x;y],30,54,5, [1 8 8 8 8], [0  -5 -10 

-15 -20] ,20, [20 3.5 25 3.5 31 3.5 36 3.5 41 3.5],0) 

 

         Peak#     Position      Height        Width        Area 

            1       19.999       1.0015       2.9978       3.1958 

            2       25.001       1.9942       3.0165       6.4034 

            3       30           3.0056       2.9851       9.5507 

            4       34.997       3.9918       3.0076      12.78 

            5       40.001       4.9965       3.0021      15.966 

FittingError = 0.2755 
 

The measured areas in this case (last column) are very close to the theoretical values, whereas all the 

other methods give substantially poorer accuracy. The more overlap between peaks, and the more 

unequal are the peak heights, the poorer the accuracy of the perpendicular drop and triangle 

construction methods. If the peaks are so overlapped that separate maxima are not visible, both 

https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaTougher.png
https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaTougher.png
https://terpconnect.umd.edu/~toh/spectrum/5ebgwm.png


Page | 157  

methods fail completely, whereas curve fitting can often retrieve a reasonable result, but only if you can 

provide approximate first-guess value.  

 

Although curve fitting is generally the most powerful method for dealing with the combined effects of 

overlapping asymmetrical peaks superimposed on an irrelevant background, the simpler and 

computationally faster technique of first derivative sharpening (page 80) can be useful as a method to 

reduce or eliminate the effects of 

exponential broadening, resulting in 

a simpler shape that is easier and 

faster to fit. As is the case with 

curve fitting, it is most effective if 

there is an isolated peak with the 

same exponential broadening 

because that peak can be used to 

determine more easily the best 

value of the first derivative 

weighting factor. 

SymmetizedOverlapDemo.m, 

illustrated on the left, demonstrates 

the optimization of the first 

derivative symmetrization for the 

measurement of the areas of two overlapping exponentially broadened Gaussians. It plots and compares 

the original (blue) and sharpened peaks (red), then tries first-derivative weighting factors from +10% to 

-10% of the correct tau value in line 14 and plots absolute peak area errors vs factor values. You can 

change the resolution by changing either the peak positions in lines 17 and 18 or the peak width in line 

13. Change the height in line 16. You must 

have derivxy.m, autopeaks.m, and 

halfwidth.m in the Matlab search path. This 

method also easily deals with double 

exponential broadening, page 88, which is 

not so easily handled by curve fitting alone. 
 

Peak area measurements by multiple 

methods is a part of the Live Script Peak 

detection tool PeakDetection.mlx described 

on page 248 and illustrated on the left. This 

interactive tool allows optional first-

derivative symmetrization of skewed peaks, 

as well as symmetrical sharpening by Fourier 

self-deconvolution, to enhance the resolution 

of overlapping peaks and improve the 

accuracy of peak are measurement. 
 

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Assymetrical
https://terpconnect.umd.edu/~toh/spectrum/SymmetizedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#DoubleExpSymm
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#DoubleExpSymm
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.mlx
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html


Page | 158  

Curve fitting A: Linear Least-squares 

The objective of curve fitting is to find the parameters of a mathematical model that describes a set of 

(often noisy) data in a way that minimizes the difference between the model and the data. The most 

common approach is the "linear least-squares" method, also called "polynomial least-squares", a well-

known mathematical procedure for finding the coefficients of polynomial equations that are a "best fit" 

to a set of X,Y data. A polynomial equation expresses the dependent variable Y as a weighted sum of a 

series of single-valued functions of the independent variable X, most commonly as a straight line (Y 

= a + bX, where a is the intercept and b is the slope), or a quadratic (Y = a + bX + cX2), or a cubic (Y 

= a + bX + cX2 + dX3), and so on to higher-order polynomials. Those coefficients (a, b, c, etc.) can be 

used to predict values of Y for each X. In all these cases, Y is a linear function of the parameters a, b, c, 

and/or d. This is the reason we call it a "linear" least-squares fit, not because the plot of X vs Y is 

linear. Only for the first-order polynomial Y = a + bX is the plot of X vs Y linear. And if the model 

cannot be described by a weighted sum of single-valued functions, then a different, more 

computationally laborious, "non-linear" least-squares method may be used, introduced on page 195.  

“Best fit” simply means that the differences between the actual measured Y values and the Y values 

predicted by the model equation are minimized. It does not mean a "perfect" fit; in most cases, a least-

squares best fit does not go through all the points in the data set. Above all, a least-squares fit must 

conform to the selected model - for example, a straight line or a quadratic parabola - and there will 

almost always be some data points that do not fall exactly on the best-fit line, either because of random 

error in the data or because the model is not capable of describing the data exactly.  

Another thing: it is not correct to say "fit data to ..." a straight line or to some other model; it is the 

other way around: you are fitting a model to the data. The data are not being modified in any way; it is 

the model that is being adjusted to fit the data. (Actually, in some special cases it can be useful to 

transform the data before curve fitting; see page 168). 

Least-squares best fits can be calculated by some hand-held calculators, spreadsheets, and dedicated 

computer programs (see Math Details below). Although it is possible to estimate the best-fit straight 

line by visual estimation and a straightedge, the least-square method is more objective and easier to 

automate. (If you were to give a plot of X, Y data to five different people and ask them to estimate the 

best-fit line visually, you would get five slightly different answers, but if you gave the data set to five 

different computer programs, you would get the exact same answer every time). 

Examples of polynomial fits 
Here is a very simple example: the historical prices of different sizes of SD memory cards advertised in 

the February 19, 2012, issue of the New York Times. (Yes, I know, the prices are much lower now, but 

these really were the prices in a big-box store back in 2012). 

  Memory Capacity (GBytes)            Price in US dollars 

  2        $9.99 

  4        $10.99 

  8        $19.99 

  16        $29.99 

http://en.wikipedia.org/wiki/Polynomial
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#MathDetails


Page | 159  

What is the relationship between memory capacity and cost? Naturally, we expect that the larger-

capacity cards should cost more than the smaller-capacity ones, and if we plot cost vs capacity (graph 

on the next page), we can see a rough straight-line relationship. A least-squares algorithm can compute 

the values of “a” (intercept) and “b” (slope) of the straight line that is a "best fit" to the data points. 

Using a linear least-squares calculation, where X = capacity and Y = cost, the straight-line 

mathematical equation that most simply describes these data (rounding to the nearest penny) is:  

Cost = $6.56 + Capacity * $1.49 

So, $1.49 is the slope and $6.56 is the intercept. 

(The equation is plotted as the solid line that 

passes among the data points in the figure). 

Basically, this is saying that the cost of a memory 

card consists of a fixed cost of $6.56 plus $1.49 

for each GBytes of capacity. How can we interpret 

this? The $6.56 represents the costs that are the 

same regardless of the memory capacity: a 

reasonable guess is that it includes things like 

packaging (the different cards are the same 

physical size and are packaged the same way), 

shipping, marketing, advertising, and retail shop 

shelf space. The $1.49 (1.49 dollars/Gbyte) 

represents the increasing retail price of the larger chips inside the larger capacity cards, mainly because 

they have more value for the consumer but also probably cost more to make because they use more 

silicon, are more complex, or maybe have a higher chip-testing rejection rate in the production line. So, 

in this case, the slope and intercept have real physical and economic meanings. 

What can we do with this information?  First, we can see how closely the actual prices conform to this 

equation: approximately but not perfectly. The line of the equation passes among the data points but 

does not go exactly through each one. That's because actual retail prices are also influenced by several 

factors that are unpredictable and random: local competition, supply, demand, and even rounding of 

prices to the nearest "neat" number; all those factors constitute the "noise" in these data. The least-

squares procedure also calculates R2, called the coefficient of determination or the correlation 

coefficient, which is an indicator of the "goodness of fit". R2 is exactly 1.0000 when the fit is perfect, 

less than that when the fit is imperfect. The closer to 1.0000 the better. An R2 value of 0.99 usually 

means a “good” fit; 0.999 is a “very good” fit. (The R2 value is calculated as shown on page 173). 

The second way we can use these data is to predict the likely prices of other card capacities, if they 

were available, by putting in the memory capacity into the equation and evaluating the cost. For 

example, a 12 Gbyte card would be expected to cost $24.44 according to this model. And a 32 Gbyte 

card would be predicted to cost $54.29, but that would be predicting beyond the range of the available 

data - it is called “extrapolation”- and it is very risky because you do not really know what other factors 

may influence the data beyond the last data point. (You could also solve the equation for capacity as a 

function of cost and use it to predict how much capacity could be expected to be bought for a given 

amount of money if such a product were available). 

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://terpconnect.umd.edu/~toh/spectrum/SDcards.gif


Page | 160  

As I said, these were the prices back in 2012. 

Why not do a little “homework”? Look up and try 

fitting the current prices and see how they 

compare. Did you get a lower slope, lower 

intercept, or both? 
 

Here's another related example: the historical 

prices of standard high definition (not UHD) flat-

screen LCD TVs as a function of screen size, as 

advertised on the Web in the spring of 2012. The 

prices of five selected models, similar except for 

screen size, are plotted against the screen size in 

inches in the figure on the left and are fit to a first 

order (straight-line) model. As for the previous 

example, the fit is not perfect. The equation of the 

best-fit model is shown at the top of the graph, 

along with the R2 value (0.9549) indicating that 

the fit is not very good. And you can see from the best-fit line that a 40-inch set would be predicted to 

have a negative cost! That is crazy. Would they pay you to take these sets?  I think not. Clearly, 

something is wrong here.  

The goodness of fit is shown even more clearly in the little graph at the bottom of the figure, with the 

red dots. This shows the "residuals", the differences between each data point and the least-squares fit at 

that point. You can see that the deviations from zero are large (±10%), but more importantly, they are 

not completely random; they form a clearly visible 

U-shaped curve. This is a tip-off that the straight-

line model we have used here may not be ideal 

and that we might get a better fit with another 

model. (Or it might be just chance: the first and 

last points might be higher than expected because 

those were unusually expensive TVs for those 

sizes. How would you really know unless your 

data collection were very careful?)  

Least-squares calculations can fit not only 

straight-line data, but any set of data that can be 

described by a polynomial, for example a second 

order (quadratic) equation (Y = a + bX + cX2). 

Applying a second order fit to these data, we get 

the graph on the right. Now the R2 value is higher, 0.9985, indicating that the fit is better (but again not 

really perfect), and the residuals (the red dots at the bottom) are smaller and more random. This should 

not really be a surprise, because of the nature of these data. The size of a TV screen is always quoted as 

the length of the diagonal, from one corner of the screen to its opposite corner, but the quantity of 

material, the difficulty of manufacture, the weight, and the power supply requirements of the screen 

https://terpconnect.umd.edu/~toh/spectrum/R2%209549.jpg
https://terpconnect.umd.edu/~toh/spectrum/R2%209549.jpg


Page | 161  

should all scale with the screen area. Area is proportional to the square of the linear measure, so the 

inclusion of an X2 term in the model is quite reasonable in this case. Applying a quadratic fit, which has 

an X2 term, the 40-inch set would be predicted to cost under $500, which is more sensible than the 

linear fit. (The actual interpretation of the meaning of the best-fit coefficients a, b, and c is, however, 

impossible unless we know much more about the manufacture and marketing of TVs). The least-

squares procedure allows us to model the data with a more-or-less simple polynomial equation. The 

point here is that a quadratic model is justified not just because it fits the data better, but in this case, it 

is justified because it is expected in principle based on the relationship between length and area. 

(Incidentally, as you might expect, prices have dropped considerably since 2012; in 2024, a Vizio 65" 

4K set was available at Sam’s Club for under $380, far cheaper than the prediction from this fit).  

In general, fitting any set of data with a higher order polynomial, like a quadratic, cubic or higher, will 

reduce the fitting error and make the R2 values closer to 1.000. That is because a higher-order model 

has more variable coefficients that the program can adjust to fit the data. For example, we could fit the 

SD card price data to a quadratic (graphic), but there is no reason to do so and the fit would only be 

slightly better. The danger is that you could be "fitting the noise", that is, adjusting to the random noise 

in that data set, whereas another measurement with different random noise might give markedly 

different results. In fact, if you use a polynomial order that is one less than the number of data points, 

the fit will be perfect and R2=1.000. For example, the SD card data have only 4 data points, and if you 

fit those data to a 3rd order (cubic) polynomial, you'll get a mathematically perfect fit (graphic), but one 

that makes no sense in the real world (the price turns back down above x=14 Gbytes). It is meaningless 

and misleading - any 4-point data would have fit a cubic model perfectly, even pure random noise! The 

only justification for using a higher-order polynomial is if you have reason to believe, or have observed, 

that there is a consistent non-linearity in the data set, as in the TV price example above.  

The graph here shows a third example, taken from 

the field of analytical chemistry: it is a straight-line 

calibration data set where X = concentration and Y 

= the reading of some instrument that is supposed to 

be linearly proportional to the concentration X (in 

other words, Y = a + bX). If you are reading this 

online, you can click to download that data set. The 

blue dots are the data points. They do not all fall in a 

perfect straight line because of random noise and 

measurement error in the instrument readings and   

possibly also volumetric errors in the concentrations 

of the standards (which are usually prepared in the 

laboratory by diluting a stock solution). For this set of data, the measured slope b is 9.7926 and the 

intercept c is 0.199. In analytical chemistry, the slope of the calibration curve is often called the 

"sensitivity". The intercept indicates the instrument reading that would be expected if the concentration 

were zero. Ordinarily, instruments are adjusted ("zeroed") by the operator to give a reading of zero for a 

concentration of zero, but random noise and instrument drift can cause the intercept to be non-zero for 

any calibration set. In this case, the data are in fact computer-generated, and the "true" value of the 

slope was exactly 10 and of the intercept was exactly zero before noise was added, and the noise was 

https://terpconnect.umd.edu/~toh/spectrum/SDcardQuadratic.png
https://terpconnect.umd.edu/~toh/spectrum/SDcardCubic.png
https://terpconnect.umd.edu/~toh/spectrum/DataExample.txt
https://terpconnect.umd.edu/~toh/spectrum/LinearFit.GIF


Page | 162  

added by a zero-centered normally-distributed random-number generator. The presence of the noise 

caused this measurement of the slope to be off by about 2%. (Had there been a larger number of points 

in this data set, the calculated values of slope and intercept would almost certainly have been better. On 

average, the accuracy of measurements of slope and intercept improve with the square root of the 

number of points in the data set). With this many data points, it is mathematically possible to use an 

even higher polynomial degree, up to one less than the number of data points, but it is not physically 

reasonable in most cases; for example, you could fit a 9th-degree polynomial perfectly to these data, but 

the result is pretty wild (graphic link). No analytical instrument has a calibration curve that behaves 

like that!  
 

A plot of the residuals for the 

calibration data (right) raises a 

question. Except for the 6th data point 

(at a concentration of 0.6), the other 

points seem to form a rough U-shaped 

curve, indicating that a quadratic equation might be a better model for those points than a straight line. 

Can we reject the 6th point as being an “outlier”, perhaps caused by a mistake in preparing that solution 

standard or in reading the instrument for that point? Discarding that point would improve the quality of 

fit (R2=0.992 instead of 0.986) especially if a quadratic fit were used (R2=0.998). The only way to 

know for sure is to repeat that standard solution preparation and calibration and see if that U shape 

persists in the residuals. Many instruments do give a very linear calibration response, while others may 

show a slightly non-linear response under some circumstances (for example). But in fact, the 

calibration data used for this example were computer-generated to be perfectly linear, with normally-

distributed random numbers added to simulate noise. So that 6th point is not an outlier and the 

underlying data are not really curved, but you would not know that in a real application. It would have 

been a mistake to discard that 6th point and use a quadratic fit in this case. Moral: do not throw out data 

points just because they seem a little off, unless you have a good reason, and do not use higher-order 

polynomial fits just to get better fits if the instrument is known to give linear response under those 

circumstances. Even perfectly normally-distributed random errors can occasionally give individual 

deviations that are quite far from the average and might tempt you into thinking that they are outliers. 

Do not be fooled. (Full disclosure: I obtained the above example by “cherry-picking” from among 

dozens of randomly generated linear data sets with added random noise, in order to find one that, 

although actually random, seemed to have an outlier).  

Solving the calibration equation for concentration. Once the calibration curve is established, it can 

be used to determine the concentrations of unknown samples that are measured on the same instrument, 

for example by solving the equation for concentration as a function of instrument reading. The result 

for the linear case is that the concentration of the sample Cx is given by Cx = (Sx - intercept)/slope, 

where Sx is the signal given by the sample solution, and "slope" and "intercept" are the results of the 

least-squares fit. If a quadratic fit is used, then you must use the more complex "quadratic equation" to 

solve for concentration (see QuadraticEquation.m), but the problem of solving the calibration equation 

for concentration becomes forbiddingly complex for higher-order polynomial fits. (Note: The concen-

https://terpconnect.umd.edu/~toh/spectrum/PolynomialDegree9.png
https://terpconnect.umd.edu/~toh/spectrum/PolynomialDegree9.png
https://terpconnect.umd.edu/~toh/spectrum/LLSErrorExample2.png
https://terpconnect.umd.edu/~toh/spectrum/LLSErrorExample2.png
https://terpconnect.umd.edu/~toh/spectrum/QLSErrorExample2.png
https://terpconnect.umd.edu/~toh/models/BeersLawCurveFit.html
https://en.wikipedia.org/wiki/Cherry_picking_%28fallacy%29
https://en.wikipedia.org/wiki/Quadratic_equation
https://terpconnect.umd.edu/~toh/spectrum/QuadraticEquation.m
https://math.vanderbilt.edu/schectex/courses/cubic/


Page | 163  

tration and the instrument readings can be recorded in any convenient units if the same units are used 

for calibration and for the measurement of unknowns).  

Reliability of curve fitting results  

How reliable are the slope, intercept and other polynomial coefficients obtained from least-squares 

calculations on experimental data? The single most important factor is the appropriateness of the model 

chosen; it is critical that the model (e.g., linear, quadratic, gaussian, etc.) be a good match to the actual 

underlying shape of the data. You can do that either by choosing a model based on the known and 

expected behavior of that system (like using a linear calibration model for an instrument that is known 

to give linear response under those conditions) or by choosing a model that always gives randomly 

scattered residuals that do not exhibit a regular shape. But even with a perfect model, the least-squares 

procedure applied to repetitive sets of measurements will not give the same results every time because 

of random error (noise) in the data. If you were to repeat the entire set of measurements many times 

and do least-squares calculations on each data set, the standard deviations of the coefficients would 

vary directly with the standard deviation of the noise and inversely with the square root of the number 

of data points in each fit, all else being equal. The problem, obviously, is that it is not always possible 

to repeat the entire set of measurements many times. You may have only one set of measurements, and 

each experiment may be very expensive to repeat. So, it would be great if we had a short-cut method 

that would let us predict the standard deviations of the coefficients from a single measurement of the 

signal, without repeating the measurements.  

Here I will describe three general ways to predict the standard deviations of the polynomial coeffi-

cients: algebraic propagation of errors, Monte Carlo simulation, and the bootstrap sampling method. 

Algebraic Propagation of errors  

The classical way is based on the rules for mathematical error propagation. The propagation of errors of 

the entire curve-fitting method can be described in closed-form algebra by breaking down the method 

into a series of simple differences, sums, products, and ratios, and applying the rules for error 

propagation to each step. The results of this procedure for a first order (straight line) least-squares fit 

are shown in the last three lines of the set of equations in Math Details, on page 173. Essentially, these 

equations make use of the deviations from the least-squares line (the "residuals") to estimate the 

standard deviations of the slope and intercept, based on the assumption that the noise in that single data 

set is random and is 

representative of the 

noise that would be 

obtained upon 

repeated measure-

ments. Because 

these predictions are 

based only on a 

single data set, they 

are good only 

insofar as that data 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Algebraic
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Monte
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
http://www.chem.hope.edu/~polik/Chem345-2000/errorpropagation.htm
https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf


Page | 164  

set is typical of others that might be obtained in repeated measurements. If your random errors happen 

to be small when you acquire your data set, you will get a deceptively good-looking fit, but then your 

estimates of the standard deviation of the slope and intercept will be too low, on average. If your 

random errors happen to be large in that data set, you will get a deceptively bad-looking fit, but then 

your estimates of the standard deviation will be too high, on average. This problem becomes worse 

when the number of data points is small. This is not to say that it is not worth the trouble to calculate 

the predicted standard deviations of slope and intercept, but keep in mind that these predictions are 

accurate only if the number of data points is large (and only if the noise is random and normally-

distributed). Beware: if the deviations from linearity in your data set are systematic and not random - 

for example, if try to fit a straight line to a smooth curved data set (previous page, left), then the 

estimates the standard deviations of the slope and intercept by these last two equations will be too high, 

because they assume the deviations are caused by random noise that varies from measurement to 

measurement, whereas in fact a smooth curved data set without random noise (previous page, right) 

will give the same slope and intercept from measurement to measurement. 

In the application to analytical calibration, the concentration of the sample Cx is given by Cx = (Sx -

 intercept)/slope, where Sx is the signal given by the sample solution. The uncertainty of all three terms 

contributes to the uncertainty of Cx. The standard deviation of Cx can be estimated from the standard 

deviations of the slope, intercept, and Sx using the rules for mathematical error propagation. But the 

problem is that, in analytical chemistry, the labor and cost of preparing and running large numbers of 

standards solution often limits the number of standards to a rather small set, by statistical standards, so 

these estimates of standard deviation are often poor.  

A spreadsheet that performs 

these error-propagation calcu-

lations for your own first-order 

(linear) analytical calibration 

data can be downloaded from 

http://terpconnect.umd.edu/~to

h/models/CalibrationLinear.xls. 

For example, the linear calibra-

tion example just given in the 

previous section, where the 

"true" value of the slope was 

10 and the intercept was zero, 

this spreadsheet (whose screen-

shot shown on the right) pre-

dicts that the slope is 9.8 with a standard deviation 0.407 (4.2%) and that the intercept is 0.197 with a 

standard deviation 0.25 (128%), both well within two standard deviations of the true values. This 

spreadsheet also performs the propagation of error calculations for the calculated concentrations of 

each unknown in the last two columns on the right. In the example in this figure, the instrument read-

ings of the standards are taken as the unknowns, showing that the predicted percent concentration er-

rors range from about 5% to 19% of the true values of those standards. (Note that the standard devia-

tion of the concentration is greater at high concentrations than the standard deviation of the slope, and 

https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/spectrum/CalibrationLinear.xls
https://terpconnect.umd.edu/~toh/spectrum/CalibrationLinear.xls
https://terpconnect.umd.edu/~toh/spectrum/LLSErrorExample.png


Page | 165  

considerably greater at low concentrations because of the greater influence of the uncertainty in the in-

tercept). For further discussion and some examples, see "The Calibration Curve Method with Linear 

Curve Fit". My Matlab/Octave plotit.m function uses the algebraic method to compute the standard de-

viations of least-squares coefficients for any polynomial order. 

Monte Carlo simulation 
The second way of estimating the standard deviations of the least-squares coefficients is to perform a 

random-number simulation (a type of Monte Carlo simulation). This requires that you know (by previ-

ous measurements) the average standard deviation of the random noise in the data. Using a computer, 

you construct a model of your data over the normal range of X and Y values (e.g. Y = intercept + 

slope*X + noise, where noise is the vector of noise in the data), compute the slope and intercept of 

each simulated noisy data set, then repeat that process many times (usually a few thousand) with differ-

ent sets of random noise, and finally compute the standard deviation of all the resulting slopes and in-

tercepts. This is ordinarily done with normally-distributed random noise (e.g., the RAND or RANDN 

functions that many programming languages have). These random number generators produce "white" 

noise, but other noise colors can be derived. If the model is good and the noise in the data is well-

characterized in terms of frequency distribution and signal amplitude dependence, the results will be a 

very good estimate of the expected standard deviations of the least-squares coefficients. (If the noise is 

not constant, but rather varies with the X or Y values, or if the noise is not white or is not normally-

distributed, then that behavior must be included in the simulation).  

An animated example is shown on the right (which 

you can see if you view it in Microsoft Word 365, 

otherwise click this link), for the case of a 100-

point straight-line data set with slope=1, 

intercept=0, and standard deviation of the added 

noise equal to 5% of the maximum value of y. For 

each repeated set of simulated data, the fit 

coefficients (least-squares measured slope and 

intercept) are slightly different because of the noise.  

Obviously, this method involves programming a 

computer to compute the model and is not as 

convenient as evaluating a simple algebraic 

expression. But there are two important advantages 

to this method: (1) is has great generality; it can be 

applied to curve fitting methods that are too complicated for the classical closed-form algebraic 

propagation-of-error calculations, even iterative non-linear methods; and (2) its predictions are based 

on the average noise in the data, not the noise in just a single data set. For that reason, it gives more 

reliable estimations, particularly when the number of data points in each data set is small. Nevertheless, 

you cannot always apply this method because you do not always know the average standard deviation 

of the random noise in the data. You can do this type of computation easily in Matlab/Octave and in 

spreadsheets (page 173).  

https://terpconnect.umd.edu/~toh/models/Bracket.html#Cal_curve_linear
https://terpconnect.umd.edu/~toh/models/Bracket.html#Cal_curve_linear
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#plotit
http://en.wikipedia.org/wiki/Monte_Carlo_method
https://terpconnect.umd.edu/~toh/spectrum/functions.html#Signal_processing
https://terpconnect.umd.edu/~toh/spectrum/MonteCarloDemo.m
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/MonteCarloAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/MonteCarloAnimation.gif


Page | 166  

You can download a Matlab/Octave script that compares the Monte Carlo simulation to the algebraic 

method above from http://terpconnect.umd.edu/~toh/spectrum/LinearFiMC.m. By running this script 

with different sizes of data sets ("NumPoints" in line 10), you can see that the standard deviation pre-

dicted by the algebraic method fluctuates a lot from run to run when NumPoints is small (e.g., 10), but 

the Monte Carlo predictions are much steadier. When NumPoints is large (e.g., 1000), both methods 

agree very well. 

The Bootstrap method 

The third method is the "bootstrap" method, a procedure that involves choosing random sub-samples 

with replacement from a single data set and analyzing each sample the same way (e.g. by a least-

squares fit). Every sample is returned to the data set after sampling, so that (a) a particular data point 

from the original data set could appear multiple times in each sample, and (b) the number of elements 

in each bootstrap sub-sample equals the number of elements in the original data set. This is best 

explained by a simple example. Consider a data set with 10 x,y pairs assigned the letters a through 

j. The original data set is represented as [a b c d e f g h i j], and some typical bootstrap sub-samples 

might be [a b b d e f f h i i] or [a a c c e f g g i j]. Each bootstrap sample contains 10 data points, but 

with about a third of the data pairs skipped, a third duplicated, and a third unchanged. (This is 

equivalent to weighting a third of the data pairs by a factor of 2, a third by 0, and leaving a third 

unweighted). You would use a computer to generate hundreds of bootstrap samples like that and to 

apply the calculation procedure under investigation (in this case a linear least-squares) to each set.  

If there were no noise in the data set, and if the model were properly chosen, then all the points in the 

original data set and in each the bootstrap sub-sample would fall exactly on the model line, with the 

result that the least-squares results would be the same for every subsample.  

However, if there is noise in the data, each 

bootstrap sub-sample would give a slightly 

different result (e.g., the least-squares 

polynomial coefficients), because each sub-

sample has a different subset of the random 

noise. This is illustrated by the animation on 

the right (which you can view if download the 

Microsoft Word 365 version, otherwise click 

this link), for the same 100-point straight-line 

data set used above. You can see that the 

variation in the best-fit coefficients between 

sub-samples is very close to the Monte Carlo 

simulation above. The greater the amount of 

random noise in the data set, the greater 

would be the range of results from sample to 

sample in the bootstrap set. This enables you to estimate the uncertainty of the quantity you are 

estimating, just as in the Monte-Carlo method above. The difference is that the Monte-Carlo method 

assumes that the noise is known, random, and can be accurately simulated by a random number 

generator on a computer, whereas the bootstrap method uses the actual noise in the data set at hand, 

https://terpconnect.umd.edu/~toh/spectrum/LinearFiMC.m
http://www.stat.rutgers.edu/home/mxie/RCPapers/bootstrap.pdf
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/BootStrap.gif
https://terpconnect.umd.edu/~toh/spectrum/BootStrap.gif


Page | 167  

like the algebraic method, except that it does not need an algebraic solution of error propagation. The 

bootstrap method thus shares its generality with the Monte Carlo approach but is limited by the 

assumption that the noise in that (possibly small) single data set is representative of the noise that 

would be obtained upon repeated measurements. The bootstrap method cannot, however, correctly 

estimate the parameter errors resulting from poor model selection. The method is examined in detail in 

its extensive literature. This type of bootstrap computation is easily done in Matlab/Octave and can 

even be done (with somewhat greater difficulty) in spreadsheets. 

Comparison of error prediction methods. 
The Matlab/Octave script TestLinearFit.m compares all three of these methods (Monte Carlo simula-

tion, the algebraic method, and the bootstrap method) for a 100-point first-order linear least-squares fit. 

Each method is repeated on different data sets with the same average slope, intercept, and random 

noise, then the standard deviation (SD) of the slopes (SDslope) and intercepts (SDint) were compiled 

and are tabulated below.  

NumPoints = 100  SD of the Noise = 9.236 x-range = 30 

             Simulation     Algebraic equation   Bootstrap method 

            SDslope SDint     SDslope SDint       SDslope SDint 

Mean SD:    0.1140  4.1158    0.1133  4.4821      0.1096  4.0203 

 (You can download this script from http://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m). On 

average, the mean standard deviations ("Mean SD") of the three methods agree very well, but the 

algebraic and bootstrap methods fluctuate more than the Monte Carlo simulation each time this script is 

run, because they are based on the noise in one single 100-point data set, whereas the Monte Carlo 

simulation reports the average of many data sets. Naturally, the algebraic method is simpler and faster 

to compute than the other methods. However, an algebraic propagation of error solution is not always 

possible to obtain, whereas the Monte Carlo and bootstrap methods do not depend on an algebraic 

solution and can be applied readily to more complicated curve-fitting situations, such as non-linear 

iterative least-squares, as will be seen later. 

Effect of the number of data points on least-squares fit precision 
The spreadsheets EffectOfSampleSize.ods or EffectOfSampleSize.xlsx, which collect the results of 

many runs of TestLinearFit.m with different numbers of data points ("NumPoints"), demonstrates that 

the standard deviation of the slope and the intercept decrease if the number of data points is increased; 

on average, the standard deviations are inversely proportional to the square root of the number of data 

points, which is consistent with the observation that the slope of a log-log plot is roughly 1/2.  

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#accuracy
http://scholar.google.com/scholar?hl=en&as_sdt=0,21&q=bootstrap+statistics
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Matlab_Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/CalibrationQuadraticB.xlsx
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/EffectOfSampleSize.ods
https://terpconnect.umd.edu/~toh/spectrum/EffectOfSampleSize.xlsx
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m


Page | 168  

These plots really dramatize the problem of small sample sizes, but this must be balanced against the 

cost of obtaining more data points. For example, in analytical chemistry calibration, a larger number of 

calibration points could be obtained either by preparing and measuring more standard solutions or by 

reading each of a smaller number of standards repeatedly. The former approach accounts for both the 

volumetric errors in 

preparing solutions and the 

random noise in the 

instrument readings, but the 

labor and cost of preparing 

and running large numbers 

of standard solutions, and 

safely disposing of them 

afterward, is limiting. The 

latter approach is less 

expensive but is less reliable 

because it accounts only for 

the random noise in the instrument readings. Overall, it is better to refine the laboratory techniques and 

instrument settings to minimize error than to attempt to compensate by taking lots of readings.  

To smooth or not to smooth? It is usually best that a noisy signal not be smoothed before the least-

squares calculations, because doing so will not improve the reliability of the least-squares results, but it 

will cause both the algebraic propagation-of-errors and the bootstrap calculations to seriously 

underestimate the standard deviation of the least-squares results. You can demonstrate using the script 

TestLinearFit.m by setting SmoothWidth in line 10 to something higher than 1, which will smooth the 

data before the least-squares calculations. This has no significant effect on the actual standard deviation 

as calculated by the Monte Carlo method, but it does significantly reduce the predicted standard 

deviation calculated by the algebraic propagation-of-errors and (especially) the bootstrap method. For 

similar reasons, if the noise is pink rather than white, the bootstrap error estimates will also be too 

low. Conversely, if the noise is blue, as occurs in processed signals that have been subjected to some 

sort of differentiation process or that have been deconvoluted from some blurring process, then the 

errors predicted by the algebraic propagation-of-errors and the bootstrap methods will be high. (You 

can prove this to yourself by running TestLinearFit.m with pink and blue noise modes selected in lines 

23 and 24). Bottom line: error prediction works best for white noise.  

Transforming non-linear relationships  
In some cases, a fundamentally non-linear relationship can be transformed into a form that is amenable 

to polynomial curve fitting by means of a coordinate transformation (e.g., taking the log or the 

reciprocal of the data), and then the least-squares method can be applied to the resulting linear equation. 

For example, the signal in the figure below is from a simulation of exponential decay that has the 

mathematical form Y = a exp(bX), where X=time, Y=signal intensity, a is the Y-value at X=0 and b is 

the decay constant. This is a fundamentally non-linear problem because Y is a non-linear function of 

the parameter b. However, by taking the natural log of both sides of the equation, we obtain ln(Y)=ln(a) 

+ bX. In this equation, Y is a linear function of both parameters ln(a) and b, so it can be fit by the least-

https://terpconnect.umd.edu/~toh/spectrum/EffectOfNumberOfPoints.jpg
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#NOT_smooth
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m


Page | 169  

squares method to estimate ln(a) and b, from which you get a by computing exp(ln(a)). In this example, 

the "true" values of the coefficients are a =1 and b = -0.9, but random noise has been added to each 

data point, with a standard deviation equal to 10% of the value of that data point, to simulate a typical 

experimental measurement in the laboratory. An estimate of the values of ln(a) and b, given only the 

noisy data points, can be determined by the least-squares curve fitting of ln(Y) vs X.  

 
An exponential least-squares fit (solid line) applied to a noisy data set (points)  

to estimate the decay constant. 
 

The best-fit equation, shown by the green solid line in the figure, is Y =0.959 exp(- 0.905 X), that 

is, a = 0.959 and b = -0.905, which are reasonably close to the expected values of 1 and -0.9, 

respectively. Thus, even in the presence of substantial random noise (10% relative standard deviation), 

it is possible to get reasonable estimates of the parameters of the underlying equation (to within about 

4%). The most important requirement is that the model must be good, that is, that the equation selected 

for the model accurately describes the underlying behavior of the system (except for noise). Often that 

is the most difficult aspect because the underlying models are not always known with certainty. In 

Matlab and Octave, is fit can be performed in a single line of code: polyfit(x,log(y),1), which 

returns [b log(a)]. (In Matlab and Octave, "log" is the natural log, "log10" is the base-10 log). 

Another example of the linearization of an exponential relationship is explored on page 322: Signal and 

Noise in the Stock Market.  

Other examples of non-linear relationships that can be linearized by coordinate transformation include 

the logarithmic (Y = a ln(bX)) and power (Y=aXb) relationships. Methods of this type used to be very 

common back in the days before computers, when fitting anything but a straight line was difficult. It is 

still used today to extend the range of functional relationships that can be handled by common linear 

least-squares routines available in spreadsheets and hand-held calculators. (My Matlab/Octave 

function trydatatrans.m tries eight different simple data transformations on any given x,y data set and 

fits the transformed data to a straight line or polynomial). Only a few non-linear relationships can be 

handled by simple data transformation, however. To fit any arbitrary custom function, you may have to 

resort to the iterative curve fitting method, which will be treated in Curve Fitting C.  

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#StockMarket
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#StockMarket
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/expexample.png


Page | 170  

Simple fitting of Gaussian and Lorentzian peaks by data transformation 
An interesting example of the use of transformation to convert a non-linear relationship into a form that 

is amenable to polynomial curve fitting is the use of the natural log (ln) transformation to convert a 

positive Gaussian peak, which has the fundamental functional form exp(-x2), into a parabola of the 

form -x2, which can be fit with a second-order polynomial (quadratic) function (y = a + bx + cx2). The 

equation for a Gaussian peak is y = h*exp(-((x-p)./(1/(2*sqrt(ln(2)))*w)) ^2)), where h is the peak 

height, p is the x-axis location of the peak maximum, w is the full width of the peak at half-maximum. 

The natural log of y can be shown to be log(h)-(4 p^2 log(2))/w^2+(8 p x log(2))/w^2-(4 x^2 

log(2))/w^2, which is a quadratic form in the independent variable x because it is the sum of x2, x, and 

constant terms. Expressing each of the peak parameters h, p, and w in terms of the three quadratic coef-

ficients, a little algebra (courtesy of Wolfram Alpha) will show that all three parameters of the peak 

(height, maximum position, and width) can be calculated from the three quadratic coefficients a, b, 

and c. The peak height is given by exp(a-c*(b/(2*c))^2), the peak position by -b/(2*c), and the peak 

half-width by 2.35482/(sqrt(2)*sqrt(-c)). This is called "Caruana's Algorithm", named after Rich Ca-

ruana, an American computer scientist and researcher. The area under the Gaussian peak can also be 

calculated and is approximately 1.064467*h*w.  

One advantage of this type of Gaussian curve fitting, as opposed to simple visual estimation, is 

illustrated in the figure below. The signal is a synthesized Gaussian peak with a true peak height of 

exactly 100 units, a true peak position of 100 units, and a true half-width of 100 units, but it is sparsely 

sampled only every 31 units on the x-axis. The resulting data set, shown by the red points in the upper 

left, has only 6 data points on the peak itself. If we were to take the maximum of those 6 points (the 3rd 

point from the left, with x=87, y=95) as the peak maximum, we would get only a rough approximation 

to the true values of peak position (100) and height (100). If we were to take the distance between the 

2nd the 5th data points as the peak width, we would get only 3*31=93, compared to the true value of 100. 

If we were to attempt to calculate the area under the peak from those measurements, we would get 

1.064467*95*93=9404.6, much lower than the theoretical width of 1.064467*height*width=10644.67. 

http://en.wikipedia.org/wiki/Gaussian_function
http://www.wolframalpha.com/input/?i=expand+log%28+h*exp%28-%28%28x-p%29%2F%281%2F%282*sqrt%28ln%282%29%29%29*w%29%29%5E2%29%29
http://www.wolframalpha.com/input/?i=solve+a%3Dlog%28h%29-%284*log%282%29p%5E2%29%2Fw%5E2%2Cb%3D%288*log%282%29*p%29%2Fw%5E2%2C+c%3D-%284*log%282%29%29%2Fw%5E2+for+h%2Cp%2Cw
http://www.wolframalpha.com/about.html
https://terpconnect.umd.edu/~toh/spectrum/ResultiingDataSet.txt
https://terpconnect.umd.edu/~toh/spectrum/QuadFitToGaussian.png


Page | 171  

These are all very poor estimates. However, taking the natural log of the data (upper right) produces 

a parabola that can be fitted with a quadratic least-squares fit (shown by the blue line in the lower left). 

From the three coefficients of the quadratic fit, we can calculate much more accurate values of the 

Gaussian peak parameters, shown at the bottom of the figure: height=100.93; position=99.11; 

width=99.25; area= 10663. The plot in the lower right shows the resulting Gaussian fit (in blue) 

displayed with the original data (red points). The accuracy of those peak parameters (about 1% in this 

example) is limited only by the noise in the data; much more accurate, at little computational cost. 

The figure above was created in Matlab (or Octave), using this script. (The Matlab/Octave function 

gaussfit.m performs the calculation for an x,y data set. You can also download a spreadsheet that does 

the same calculation; it is available in OpenOffice Calc (Download link, Screenshot) and Excel 

formats). The method is simple and very fast, but for this method to work properly, the data set must 

not contain any zeros or negative points; if the signal-to-noise ratio is very poor, it may be useful to 

skip those points or to pre-smooth the data slightly to reduce this problem. Moreover, the original 

Gaussian peak signal must be a single isolated peak with a zero baseline, that is, must tend to zero far 

from the peak center. In practice, this means that any non-zero baseline must be subtracted from the 

data set before applying this method. (A more general but slower approach to fitting Gaussian peaks, 

which works for data sets with zeros and negative numbers and also for data with multiple overlapping 

peaks, is the non-linear iterative curve fitting method, which will be treated later, on page 195).  

A similar method can be derived for a Lorentzian peak, which has the fundamental form y=h/(1+((x-

p)/(0.5*w))^2), by fitting a quadratic to the reciprocal of y. As for the Gaussian peak, all three 

parameters of the peak (height h, maximum position p, and width w) can be calculated from the three 

quadratic coefficients a, b, and c of the quadratic fit: h=4*a/((4*a*c)-b^2), p= -b/(2*a), and w= 

sqrt(((4*a*c)-b^2)/a)/sqrt(a). Just as for the Gaussian case, the data set must not contain any zero or 

negative y values. The Matlab/Octave function lorentzfit.m performs the calculation for an x,y data set, 

and the Calc and Excel spreadsheets LorentzianLeastSquares.ods and LorentzianLeastSquares.xls 

perform the same calculation (illustrated below).  

 

https://terpconnect.umd.edu/~toh/spectrum/QuadFitToGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.ods
https://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.GIF
https://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
http://en.wikipedia.org/wiki/Cauchy_distribution
http://www.wolframalpha.com/input/?i=expand+%281%2B%28%28x-p%29%2F%280.5*w%29%29%5E2%29%2Fh
https://terpconnect.umd.edu/~toh/spectrum/lorentzfit.m
https://terpconnect.umd.edu/~toh/spectrum/LorentzianLeastSquares.ods
https://terpconnect.umd.edu/~toh/spectrum/LorentzianLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/LorentzianLeastSquares.gif


Page | 172  

(By the way, a quick way to test either of the above methods is to use this minimal peak data set: x=5, 

20, 35 and y=5, 10, 5, which has a height, position, and width equal to 10, 20, and 30, respectively, for 

a single isolated symmetrical peak of any shape, assuming only a baseline of zero). Try it. 

To apply the above methods to signals containing two or more Gaussian or Lorentzian peaks, it is 

necessary to locate all the peak maxima first, so that the proper groups of points centered on each peak 

can be processed with the algorithms just discussed. That is discussed on page 229. 

However, there is a downside to using coordinate transformation methods to convert non-linear 

relationships into simple polynomial form, and that is that the noise is also affected by the 

transformation, with the result that the propagation of error from the original data to the final results is 

often difficult to predict. For example, in the method just described for measuring the peak height, 

position, and width of Gaussian or Lorentzian peaks, the results depend not only on the amplitude of 

noise in the signal, but also on how many points across the peak are taken for fitting. As you take more 

points far from the peak center, where the y-values approach zero, the natural log of those points 

approaches negative infinity as y approaches zero. The result is that the noise of those low-magnitude 

points is unduly magnified and has a disproportional effect on the curve fitting. This runs counter the 

usual expectation that the quality of the parameters derived from curve fitting improves with the square 

root of the number of data points (page 217). A reasonable compromise in this case is to take only the 

points in the top half of the peak, with Y-values down to one-half of the peak maximum. If you do that, 

the error propagation (predicted by a Monte Carlo simulation with constant normally-distributed 

random noise) shows that the relative standard deviations of the measured peak parameters are directly 

proportional to the noise in the data and inversely proportional to the square root of the number of data 

points (as expected), but that the proportionality constants differ:  

(a) the relative standard deviation of the peak height = 1.73*noise/sqrt(N),  

(b) the relative standard deviation of the peak position = noise/sqrt(N),  

(c) the relative standard deviation of the peak width = 3.62*noise/sqrt(N),  

where noise is the standard deviation of the noise in the data and N is the number of data points taken 

http://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://terpconnect.umd.edu/CurveFittingC.html#Noise
http://en.wikipedia.org/wiki/Monte_Carlo_method
https://terpconnect.umd.edu/~toh/spectrum/MonteCarlo.gif


Page | 173  

for the least-squares fit. You can see from these results that the measurement of peak position is most 

precise, followed by the peak height, with the peak width being the least precise. If one were to include 

points far from the peak maximum, where the signal-to-noise ratio is very low, the results would be 

poorer than predicted. These predictions depend on knowledge of the noise in the signal; if only a 

single sample of that noise is available for measurement, there is no guarantee that sample is a 

representative sample, especially if the total number of points in the measured signal is small; the 

standard deviation of small samples is notoriously variable. Moreover, these predictions are based on a 

simulation with constant normally-distributed white noise; had the actual noise varied with signal level 

or with x-axis value, or if the probability distribution had been something other than normal, those 

predictions would not necessarily have been accurate. In such cases, the bootstrap method (page 166) 

has the advantage that it samples the actual noise in the signal.  

You can download the Matlab/Octave code for this Monte Carlo simulation from 

http://terpconnect.umd.edu/~toh/spectrum/GaussFitMC.m; view screen capture. A similar simulation 

(http://terpconnect.umd.edu/~toh/spectrum/GaussFitMC2.m, view screen capture) compares this 

method to fitting the entire Gaussian peak with the iterative method in Curve Fitting 3, finding that the 

precision of the results is only slightly better with the (slower) iterative method. 

Note 1: If you are reading this online, you can right-click on any of the m-file links above and 

select “Save Link As...” to download them to your computer for use within Matlab/Octave.  

Note 2: In the curve fitting techniques described here and in the next two chapters, there is no 

requirement that the x-axis interval between data points be uniform, as is the assumption in many of the 

other signal processing techniques previously covered. Curve fitting algorithms typically accept a set of 

arbitrarily spaced x-axis values and a corresponding set of y-axis values. 

Math and software details for linear least squares  

The least-squares best fit for an x,y data set can be computed using only basic arithmetic. Here are the 

relevant equations for computing the slope and intercept of the first order best-fit equation, y 

= intercept + slope*x, as well as the predicted standard deviation of the slope and intercept, and the co-

efficient of determination, R2, which is an indicator of the "goodness of fit". (R2 is 1.0000 if the fit is 

perfect and less than that if the fit is imperfect). 

n = number of x,y data points     
sumx = Σx     

sumy = Σy     

sumxy = Σx*y     

sumx2 = Σx*x     

meanx = sumx / n     

meany = sumy / n     

slope = (n*sumxy - sumx*sumy) / (n*sumx2 - sumx*sumx)     

intercept = meany-(slope*meanx)     

ssy = Σ(y-meany)^2     

ssr = Σ(y-intercept-slope*x)^2     

R2 = 1-(ssr/ssy) 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
http://terpconnect.umd.edu/~toh/spectrum/GaussFitMC.m
https://terpconnect.umd.edu/~toh/spectrum/MonteCarlo.gif
http://terpconnect.umd.edu/~toh/spectrum/GaussFitMC2.m
https://terpconnect.umd.edu/~toh/spectrum/GaussFitMC2.gif
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html


Page | 174  

Standard deviation of the slope = SQRT(ssr/(n-2))*SQRT(n/(n*sumx2 - sumx*sumx)) 

Standard deviation of the intercept = SQRT(ssr/(n-2))*SQRT(sumx2/(n*sumx2 - sumx*sumx)) 

 

(In these equations, Σ represents summation; for example, Σx means the sum of all the x values, and 

Σx*y means the sum of all the x*y products, etc.) 

The last two lines predict the standard deviation of the slope and the intercept, based only on that data 

sample, assuming that the deviations from the line are random and normally-distributed. These are 

estimates of the variability of slopes and intercepts you are likely to get if you repeated the data 

measurements over and over multiple times under the same conditions, assuming that the deviations 

from the straight line are due to random variability and not a systematic error caused by non-linearity. 

If the deviations are random, they will be slightly different from time to time, causing the slope and 

intercept to vary from measurement to measurement, with a standard deviation predicted by these last 

two equations. However, if the deviations are caused by systematic non-linearity, they will be the same 

from measurement to measurement, in which case the prediction of these last two equations will not be 

relevant, and you might be better off using a polynomial fit such as a quadratic or cubic.  

The reliability of these standard deviation estimates depends on the assumption of random deviations 

and on the number of data points in the curve fit; they improve with the square root of the number of 

points. A slightly more complex set of equations can be written to fit a second-order (quadratic or 

parabolic) equations to a set of data; instead of a slope and intercept, three coefficients are 

calculated, a, b, and c, representing the coefficients of the quadratic equation ax2+bx+c.  
 

These calculations could be performed step-by-step by hand, with the aid of a calculator or a 

spreadsheet, with a program written in any programming language, such as a Matlab or Octave script.  

Web sites: Wolfram Alpha includes some capabilities for least-squares regression analysis, including 

linear, polynomial, exponential, and logarithmic fits. Statpages.org can perform a huge range of 

statistical calculations and tests, and there are several Web sites that specialize in plotting and data 

visualization that have curve-fitting capabilities, including most notably Plotly and MyCurveFit. Web 

sites such as these can be very handy when working from a smartphone, tablet, or a computer that does 

not have suitable computational software. If you are reading this online, you can Ctrl-Click on these 

links to open them in your browser. 

Spreadsheets for linear least squares 
Spreadsheets can perform the math described above easily. The spreadsheets pictured below 

(LeastSquares.xls and LeastSquares.odt for linear fits and QuadraticLeastSquares.xls and Quadrati-

cLeastSquares.ods for quadratic fits), utilize the expressions given above to compute and plot linear 

and quadratic (parabolic) least-squares fit, respectively. (Viewed in Word 365 or on the web, these an-

imations show the result of entering a small set of data point by point). The advantage of spreadsheets 

is that they are highly customizable for your application and can be deployed on mobile devices such as 

tablets or smartphones. For straight-line fits, you can use the convenient built-in func-

tions slope and intercept. 

https://terpconnect.umd.edu/~toh/models/CalibrationQuadraticEquations.txt
https://terpconnect.umd.edu/~toh/spectrum/LeastSquaresCode.txt
https://terpconnect.umd.edu/~toh/spectrum/LeastSquaresMatlab.txt
http://www.wolframalpha.com/
http://www.wolframalpha.com/examples/RegressionAnalysis.html
http://statpages.org/index.html
https://plotly.com/matlab/
https://mycurvefit.com/
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.odt
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.ods
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.ods


Page | 175  

 

 

 

 

Animation of spreadsheet template data entry for first order (linear) least-squares fit 

(https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.GIF) 

  

Animation of spreadsheet template data entry for second order (quadratic) least-squares fit. 

( https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.GIF) 

  

The LINEST function. Modern spreadsheets also have built-in facilities for computing polynomial 

https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.GIF
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.GIF
https://terpconnect.umd.edu/~toh/spectrum/SimpleLeastSquares.GIF
https://terpconnect.umd.edu/~toh/spectrum/SimpleLeastSquares.GIF
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.GIF


Page | 176  

least-squares curve fits of any order. For example, the LINEST function in both Excel and OpenOffice 

Calc can be used to compute polynomial and other curvilinear least-squares fits. In addition to the best-

fit polynomial coefficients, the LINEST function also calculates at the same time the standard error 

values, the determination coefficient (R2), the standard error value for the y estimate, the F statistic, the 

number of degrees of freedom, the regression sum of squares, and the residual sum of squares. A 

significant inconvenience of LINEST, compared to working out the math using the series of 

mathematical expressions described above, is that it is more difficult to adjust to a variable number of 

data points and to remove suspect data points or to change the order of the polynomial. LINEST is an 

array function, which means that when you enter the formula in one cell, multiple cells will be used for 

the output of the function. You cannot edit a LINEST function just like any other spreadsheet 

function. To specify that LINEST is an array function, do the following. Highlight the entire formula, 

including the “=” sign. On a Macintosh, hold down the “apple” key and press “Enter.” On a PC hold 

down the “Ctrl” and “Shift” keys and press “Enter.” Excel adds "{ }" brackets around the formula, to 

show that it is an array. Note that you cannot type in the "{ }" characters yourself; if you do Excel will 

treat the cell contents as characters and not a formula. Highlighting the full formula and typing the 

“apple” key or “Ctrl”,” Shift” and "return" is the only way to enter an array formula. This instruction 

sheet from Colby College may help: http://www.colby.edu/chemistry/PChem/notes/linest.pdf.  
 

Practical Note: If you are working with a template that uses the LINEST function, and you wish to 

change the number of data points, the easiest way to do that is to select the rows or columns containing 

the data, right-click on the row or column heading (1,2,3 or, A, B, C, etc.) and use the Insert or Delete 

in the right-click menu. If you do it that way, the LINEST function referring to those rows or columns 

will be adjusted automatically. That is easier than trying to edit the LINEST function directly. (If you 

are inserting rows or columns, you must drag-copy the formulas from the older rows or columns into 

the newly inserted empty ones). See CalibrationCubic5Points.xls for an example.  

Application to analytical calibration and measurement 
There are specific versions of these spreadsheets that apply curve fitting to calibration curves (plots of 

signal measurements vs standards of known concentration) and which also calculate the concentrations 

of unknown sample (download complete set as CalibrationSpreadsheets.zip). Of course, these 

spreadsheets can be used for just about any measurement calibration application; just change the labels 

of the columns and axes to suit your application. A typical application of these spreadsheet templates to 

XRF (X-ray fluorescence) analysis is shown in this YouTube 

video: https://www.youtube.com/watch?v=U3kzgVz4HgQ 

Another set of spreadsheets is used to perform Monte Carlo simulations of the calibration and 

measurement process using several widely-used analytical calibration methods, including first-order 

(straight line) and second-order (curved line) least-squares fits. Typical systematic and random errors in 

both signal and in volumetric measurements are included, for the purpose of demonstrating how non-

linearity, interferences, and random errors combine to influence the result (the so-called "propagation 

of errors"). 

For fitting peaks, GaussianLeastSquares.odt, is an OpenOffice spreadsheet that fits a quadratic function 

to the natural log of y(x) and computes the height, position, and width of the Gaussian that is the best 

http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fwww.colby.edu%2Fchemistry%2FPChem%2Fnotes%2Flinest.pdf&ei=DTl_SMnUDIye8gTV-vjTCw&usg=AFQjCNGNAoinemLK1XD9VxkN0SlQvlseFg&sig2=cxJZu6DsHOSjcBWjaSbsiw
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_LINEST_function
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_LINEST_function
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_RSQ_function
http://www.colby.edu/chemistry/PChem/notes/linest.pdf
https://terpconnect.umd.edu/CalibrationSpreadsheets%20/CalibrationCubic5Points.xls
http://terpconnect.umd.edu/~toh/models/CalibrationSpreadsheets.zip
https://www.youtube.com/watch?v=U3kzgVz4HgQ
http://terpconnect.umd.edu/~toh/models/Bracket.html
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.ods
http://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.ods


Page | 177  

fit to y(x). There is also an Excel version (GaussianLeastSquares.xls). LorentzianLeastSquares.ods and 

LorentzianLeastSquares.xls fits a quadratic function to the reciprocal of y(x) and computes the height, 

position, and width of the Lorentzian that is a best fit to y(x). Note that for either of these fits, the data 

may not contain zeros or negative points, and the baseline (the value that y approaches far from the 

peak center) must be zero. See Fitting Peaks, above. 

Matlab and Octave 
Matlab and Octave have simple built-in functions for least-squares curve fitting: polyfit and polyval. 

For example, if you have a set of x,y data points in the vectors "x" and "y", then the coefficients for the 

least-squares fit are given by coef=polyfit(x,y,n), where "n" is the order of the polynomial fit: 

n = 1 for a straight-line fit, 2 for a quadratic (parabola) fit, etc. The polynomial coefficients 'coef" are 

given in decreasing powers of x. For a straight-line fit (n=1), coef(1) is the slope ("b") and coef(2) 

is the intercept ("a"). For a quadratic fit (n=2), coef(1) is the x2 term ("c"), coef(2) is the x term 

("b") and coef(3) is the constant term ("a").  

The fit equation can be evaluated using the function polyval, for example, fity=polyval(coef,x). 

This works for any order of polynomial fit ("n"). You can plot the data and the fitted equation together 

using the plot function: plot(x,y,'ob',x,polyval(coef,x),'-r'), which plots the data as 

blue circles and the fitted equation as a red line. You can plot the residuals by writing plot(x,y-

polyval(coef,x)).  

When the number of data points is small, you might notice that the fitted curve is displayed as a series 

of straight-line segments, which can look ugly. You can get a smoother plot of the fitted equation, 

evaluated at more finely divided values of x, by defining xx=linspace(min(x),max(x)); and 

then using xx rather than x to evaluate and plot the fit: 

plot(x,y,'ob',xx,polyval(coef,xx),'-r').  

[coef,S] = polyfit(x,y,n) returns the polynomial coefficients coef and a structure 'S' used to 

obtain error estimates.  

>> [coef,S]=polyfit(x,y,1) 

coef = 

    1.4913    6.5552 

S =  

        R: [2x2 double] 

       df: 2 

    normr: 2.2341 

>> S.R 

ans = 

  -18.4391   -1.6270 

         0   -1.1632 

The vector of standard deviations of the coefficients can be computed from S by the expression 

sqrt(diag(inv(S.R)*inv(S.R')).*S.normr.^2./S.df)', in the same order as the 

coefficients.  

Matrix Method 

Alternatively, you may perform the polynomial least-squares calculations for the row vectors x,y 

without using the Matlab/Octave built-in polyfit function by using the matrix method with the Matlab 

"/" symbol, meaning "right matrix divide". The coefficients of a first-order fit are given by 

https://terpconnect.umd.edu/~toh/spectrum/GaussianLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/LorentzianLeastSquares.ods
https://terpconnect.umd.edu/~toh/spectrum/LorentzianLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
http://en.wikipedia.org/wiki/MATLAB
https://terpconnect.umd.edu/~toh/spectrum/polyfit.txt
https://terpconnect.umd.edu/~toh/spectrum/polyval.txt
https://terpconnect.umd.edu/~toh/spectrum/polyval.txt
https://terpconnect.umd.edu/~toh/spectrum/linspace.txt
http://www.mathworks.com/help/matlab/structures.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Algebraic
http://www.mathworks.com/matlabcentral/newsreader/view_thread/103667
https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29


Page | 178  

y/[x;ones(size(y))] and a second-order (quadratic) fit by y/[x.^2;x;ones(size(y))] . For 

higher-order polynomials, just add another row to the denominator matrix, for example, a third-order fit 

would be y/[x.^3;x.^2;x;ones(size(y))] and so on. The coefficients are returned in the same 

order as polyfit, in decreasing powers of x (e.g., for a first-order fit, slope first (the x^1 term) 

then intercept (the x^0 term). Using the example of the first-order fit to the SD memory card prices: 
 

>>x=[2 4 8 16]; 

>> y=[9.99 10.99 19.99 29.99]; 

>> polyfit(x,y,1) 

ans = 

    1.4913    6.5552 

>> y/[x;ones(size(y))] 

ans = 

    1.4913    6.5552 

This shows that the slope and intercept results for the polyfit function and for the matrix method are the 

same. (The slope and intercept results may be the same, but the polyfit function has the advantage that 

it also can compute the error estimates with little extra effort, as described above, page 163).  

  



Page | 179  

The plotit.m function 

The graph below was generated by my Matlab/Octave function plotit.m, in the form plotit(data) or 

plotit(data,polyorder). This function uses all 

the techniques mentioned in the previous 

paragraph. It accepts 'data' in the form of a 

single vector, or a pair of vectors "x" and 

"y", or a 2xn or nx2 matrix with x in the 

first row or column and y in the second and 

plots the data points as red dots. If the 

optional input argument "polyorder" is 

provided, plotit fits a polynomial of order 

"polyorder" to the data and plots the fit as a 

blue line and displays the fit coefficients 

and the goodness-of-fit measure R2 in the 

upper left corner of the graph. 
 

On the next page is a Matlab/Octave example of the use of plotit.m to perform the coordinate 

transformation described, on page 168, to fit an exponential relationship, showing both the original 

exponential data and the transformed data with a linear fit in the figure(2) and figure(1) windows, 

respectively. If you are reading this online, click to download.  

 

x=1:.1:2.6;  

a=1; 

b=-.9; 

y=a.*exp(b.*x); 

y=y+y.*.1.*rand(size(x));  

figure(1) 

[coeff,R2]=plotit(x,log(y),1); 

ylabel('ln(y)'); 

title('Plot of x vs the natural log (ln) of y') 

aa=exp(coeff(2)); 

bb=coeff(1); 

yy= aa.*exp(bb.*x); 

figure(2) 

plot(x,y,'r.',x,yy,'g') 

xlabel('x'); 

ylabel('y'); 

title(['y = a*exp(b*x)     a = ' num2str(aa)  '     b = ' 

num2str(bb)  '    R2 =  ' num2str(R2) ] ) ; 
 

In version 5 or 6 the syntax of plotit can be [coef, RSquared, StdDevs] =plotit(x,y,n). It 

returns the best-fit coefficients 'coeff', in decreasing powers of x, the standard deviations of those 

coefficients 'StdDevs' in the same order, and the R-squared value. To compute the relative standard 

deviations, just type StdDevs./coef. For example, the following script computes a straight line with 

five data points and a slope of 10, an intercept of zero, and noise equal to 1.0. It then uses plotit.m to 

plot and fit the data to a first-order linear model (straight line) and compute the estimated standard 

deviation of the slope and intercept, if you run this repeatedly, you will observe that the measured slope 

https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/CoordinateTransformation2.png
https://terpconnect.umd.edu/~toh/spectrum/CoordinateTransformation1.png
https://terpconnect.umd.edu/~toh/spectrum/expexample.m
https://terpconnect.umd.edu/~toh/spectrum/polyfitdemo.GIF


Page | 180  

and intercept are usually within two standard deviations of 10 and zero respectively. Try it with 

different values of “Noise”.  

NumPoints=5; 

slope=10; 

Noise=1; 

x=round(10.*rand(size(1:NumPoints))); 

y=slope*x+Noise.*randn(size(x)); 

[coef,RSquared,StdDevs]=plotit(x,y,1)  

Comparing two data sets. Plotit can also be used to compare to two different dependent variable 

vectors (e.g., y1 and y2) if they share the same independent variables x, for example to determine the 

similarity of two different spectra measured over the same wavelengths as was done on page 13: 

[coeff,R2]=plotit(y1,y2,1);  

R2 is a measure of similarity. The closer R2 is to 1.000, the more similar they are. If y1 and y2 are two 

measurements of the same signal with different random noise, the plot will show a random scatter of 

points along a straight line with a slope, coeff(1), of 1.00. If the y1 and y2 are the same signal with 

different amplitudes, the slope of the line will equal their average ratio. If the data points are curved 

and loop around, the difference between the two y vectors is greater than the random noise. 

The syntax can be optionally plotit(x,y,n,datastyle,fitstyle), where datastyle 

and fitstyle are optional strings specifying the line and symbol style and color, in standard Matlab 

convention. The strings, in single quotes, are made from one element from any or all the following 3 

columns: 

b   blue        .   point             -    solid 

g   green       o   circle            :    dotted 

r   red         x   x-mark            -.   dashdot  

c   cyan        +   plus              --   dashed    

m   magenta     *   star            (none) no line 

y   yellow      s   square 

k   black       d   diamond 

w   white       v   triangle (down) 

                ^   triangle (up) 

                <   triangle (left) 

                >   triangle (right) 

                p   pentagram 
                h   hexagram 

For example, plotit(x,y,3,'or','-g') plots the data as red circles and the fit as a green solid 

line (the default is red dots and a blue line, respectively).  
 

You can use plotit.m in Matlab to linearize and plot other nonlinear relationships, such as:  

y = a exp(bx) : [coeff,R2]=plotit(x,log(y),1); f=exp(coeff(2)); b=coeff(1);  

y = a ln(bx) : [coeff,R2]=plotit(log(x),y,1); a=coeff(1); b=log(coeff(2)); 

y=axb : [coeff,R2]=plotit(log(x),log(y),1); a=exp(coeff(2)); b=coeff(1); 

y=start(1+rate)x: [coeff,R2]=plotit(x,log(y),1); start=exp(coeff(2)); 

rate=exp(coeff(1))-1;  

This last one is the expression for compound interest, covered on page 322: Signal and Noise in the 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Transforming
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#StockMarket


Page | 181  

Stock Market.  

Do not forget that in Matlab/Octave, "log" means natural log; the base-10 log is denoted by "log10". 
 

Estimating the coefficient errors. The plotit function also has a built-in bootstrap routine that 

computes coefficient error estimates by the bootstrap method (Standard deviation STD and relative 

standard deviation RSD) and returns the results in the matrix "BootResults" (of size 5 x polyorder+1). 

You can change the number of bootstrap samples in line 101. The calculation is triggered by including 

a 4th output argument, e.g.  
 

[coef,RSquared,StdDevs, BootResults] = plotit(x,y,polyorder).  
 

This works for any polynomial order. For example: 
 

>> x=0:100; 

>> y=100+(x*100)+100.*randn(size(x)); 

>> [FitResults, GOF, baseline, coeff, residual, xi, yi, BootResults] = 

plotit(x,y,1);  

The above statements compute a straight line with an intercept and slope of 100, plus random noise 

with a standard deviation of 100, then fits a straight line to the data and prints out a table of bootstrap 

error estimates, with the slope in the first column and the intercept in the second column:  

 

 

 

Bootstrap Results 

Mean:        100.359      88.01638 

STD:         0.204564      15.4803 

STD (IQR):   0.291484      20.5882 

% RSD:       0.203832      17.5879 

% RSD (IQR): 0.290441      23.3914 

 

 

 

The variation plotfita animates the bootstrap 

process for instructional purposes, as shown in 

the animation on the right for a quadratic fit. 

You must include the output arguments, for 

example: 

 

 

 
 

[coef, RSquared, BootResults] = plotfita([1 2 3 4 5 6],[1 3 4 3 2 1],2); 

 

The variation logplotfit plots and fits log(x) vs log(y), for data that follows a power-law relationship or 

that covers a very wide numerical range.  
 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#StockMarket
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/plotfita.m
https://terpconnect.umd.edu/~toh/spectrum/BootStrapQuadratic.gif
https://terpconnect.umd.edu/~toh/spectrum/BootStrapQuadratic.gif
https://terpconnect.umd.edu/~toh/spectrum/logplotfit.m
http://en.wikipedia.org/wiki/Power_law


Page | 182  

Comparing polynomial orders. My function trypoly(x,y) fits the data in x,y with a series of 

polynomials of degree 1 through length(x)-1 and returns the coefficients of determination (R2) of each 

fit as a vector, showing that, for any data, the 

coefficient of determination R2 approaches 1 as 

the polynomial order approaches length(x)-1. 

The variant trypolyplot(x,y) creates a bar graph 

such as shown on the left. 
 

Comparing data transformations. The 

function trydatatrans(x, y, polyorder) tries 8 

different simple data transformations on the data 

x,y, fits the transformed data to a polynomial of 

order 'polyorder', displays results graphically in 

3 x 3 array of small plots and returns the R2 

values in a vector. In the example below, for 

polyorder=1, it is the 5th one that is best, namely 

x vs ln(y). An example is shown on the next 

page. 

 

Fitting Single Gaussian and Lorentzian peaks 
A simple user-defined Matlab/Octave function that fits a single Gaussian function to an x,y signal 

is gaussfit.m, which implements the x vs ln(y) quadratic fitting method described above. It takes the 

form [Height,Position,Width]=gaussfit(x,y).  

For example,  

https://terpconnect.umd.edu/~toh/spectrum/trypoly.m
https://terpconnect.umd.edu/~toh/spectrum/trypolyplot%28x,y%29.m
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.m
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.png
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.png
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks


Page | 183  

>> x=50:150; 

>> y=100.*gaussian(x,100,100)+10.*randn(size(x)); 

>> [Height,Position,Width]=gaussfit(x,y)   
 

returns [Height,Position,Width] clustered around 100,100,100. A similar function for Lorentzian peaks 

is lorentzfit.m, which takes the form  
 

[Height,Position,Width]=lorentzfit(x,y). 
 

An expanded variant of the gaussfit.m function is bootgaussfit.m, which does the same thing but also 

optionally plots the data and the fit and computes estimates of the random error in the height, width, 

and position of the fitted Gaussian function by the bootstrap sampling method. For example: 
 

>> x=50:150; 

>> y=100.*gaussian(x,100,100)+10.*randn(size(x)); 

>> [Height, Position, Width, BootResults]=bootgaussfit(x,y,1); 

This does the same as the previous example but also displays error estimates in a table (next page) and 

returns the 3x5 matrix BootResults. Type "help bootgaussfit" for help. 

           

                Height     Position     Width  

Bootstrap Mean: 100.84     101.325      98.341 

Bootstrap STD:  1.3458     0.63091      2.0686 

Bootstrap IQR:  1.7692     0.86874      2.9735 

Percent RSD:    1.3346     0.62266      2.1035 

Percent IQR:    1.7543     0.85737      3.0237 

It is important that the noisy signal not be smoothed if the bootstrap error predictions are to be accu-

rate. Smoothing causes the bootstrap method to seriously underestimate the precision of the results. 
 

The gaussfit.m and lorentzfit.m functions are simple and easy, but they do not work well with very 

noisy peaks or for multiple overlapping peaks. As a demonstration, OverlappingPeaks.m is a script that 

shows how to use gaussfit.m to measure two overlapping partially Gaussian peaks. It requires careful 

selection of the optimum data regions around the top of each peak. Try changing the relative position 

and height of the second peak or adding noise (line 3) and see how it affects the accuracy. This function 

needs the gaussian.m, gaussfit.m, and peakfit.m functions in the Matlab search path. The script also 

performs measurements by the iterative method (page 195) using peakfit.m, which is more accu-

rate but takes about times longer to compute. 
 

My Matlab-only functions iSignal.m (page 371) and ipf.m (page 411), whose principal functions are 

fitting peaks, also have a function for fitting polynomials of any order (Shift-o). 
 

Recent versions of Matlab have a convenient tool for interactive manually-controlled (rather than pro-

grammed) polynomial curve fitting in the Figure window. If you are reading this online, click for a vid-

eo example: (external link to YouTube). 

The Matlab Statistics Toolbox includes two types of bootstrap functions, "bootstrp" and "jackknife". To 

open the reference page in Matlab's help browser, type "doc bootstrp" or "doc jackknife".

 

https://terpconnect.umd.edu/~toh/spectrum/lorentzfit.m
https://terpconnect.umd.edu/~toh/spectrum/bootgaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#NOT_smooth
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.txt
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.txt
https://terpconnect.umd.edu/~toh/spectrum/isignal.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
http://www.youtube.com/watch?v=EypwejBhN34
https://terpconnect.umd.edu/~toh/spectrum/bootstrp.txt
https://terpconnect.umd.edu/~toh/spectrum/jackknife.txt


Page | 184  

Curve fitting B: Multicomponent Spectroscopy 
The spectroscopic analysis of mixtures, when the spectrum of the mixture is the simple sum of the 

spectra of known components that may overlap but are not identical, can be performed using special 

calibration methods based on a type of linear least-squares called multiple linear regression. This 

method is widely used in modern spectrometers such as diode-array, Fourier transform, and digitally 

controlled scanning spectrometers (because perfect wavelength reproducibility is a key requirement). 

To understand the required math, it is helpful to do a little basic matrix algebra (a.k.a., linear algebra), 

which is just a shorthand notation for dealing with signals expressed as equations with one term for 

each point. Because that area of math may not be a part of everyone's math background, I will do some 

elementary matrix math derivations in this section.  

Definitions:  

n = number of distinct chemical components in the mixture 

s = number of samples 

s1, s2 = sample 1, sample 2, etc. 

c = molar concentration 

c1, c2 = component 1, component 2, etc. 

w = number of wavelengths at which signal is measured 

w1, w2 = wavelength 1, wavelength 2, etc. 

Ɛ = analytical sensitivity (slope of a plot of A vs c) 

A = analytical signal 

MT = matrix transpose of matrix M (rows and columns switched). 

M-1 = matrix inverse of matrix M. 
 

Assumptions:  

The analytical signal, A (such as absorbance in absorption spectroscopy, fluorescence intensity in 

fluorescence spectroscopy, and reflectance in reflectance spectroscopy) is directly proportional to 

concentration, c. The proportionality constant, which is the slope of a plot of A vs c, is Ɛ. 
 

A = Ɛc 
 

The total signal is the sum of the signals for each component in a mixture:  

Atotal = Ac1 + Ac2 + ... for all n components. 

Classical Least-squares (CLS) multivariate calibration  
This method is commonly applied to the quantitative spectroscopic analysis of a mixture of 

components, provided that (a) you can measure the spectra of the individual components and (b) the 

total signal of the mixture is simply the sum of the signals for each component in the mixture. 

Measurement of the spectra of known concentrations of the separate components allows their analytical 

sensitivity Ɛ at each wavelength to be determined. Then it follows that: 
 

Aw1=Ɛc1,w1 cc1 + Ɛc2,w1 cc2 + Ɛc3,w1 cc3 + ... for all n components. 

Aw2=Ɛc1,w2 cc1 + Ɛc2,w2 cc2 + Ɛc3,w2 cc3 + ... 

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://mathworld.wolfram.com/MatrixInverse.html


Page | 185  

and so on for all wavelengths - w3, w4, etc. It is impractical to write out all these individual terms, 

especially because there may be hundreds of wavelengths in modern array-detector spectrometers. 

Moreover, despite the mass of raw data, these are just nothing more than linear equations; the 

calculations required here are rather simple and certainly very easy for a computer to do. So, we really 

need a correspondingly simple notation that is more compact. To do this, it is conventional to use bold-

face letters to represent a vector (like a column or row of numbers in a spreadsheet) or a matrix (like a 

block of numbers in a spreadsheet). For example, A could represent the list of absorbances at each 

wavelength in an absorption spectrum. So, this big set of linear equations above can be written: 
 

                                                                       A = ƐC 

where A is the w-length vector of measured signals (i.e., the signal spectrum) of the mixture, Ɛ is the 

n × w rectangular matrix of the known Ɛ-values for each of the n components at each of the 

w wavelengths, and C is the n-length vector of concentrations of all the components. ƐC means 

that Ɛ “pre-multiplies” C; that is, each column of matrix Ɛ is multiplied point-by-point by the vector C.  

If you have a sample solution containing unknown amounts of components those n components, you 

measure its spectrum A and seek to calculate the concentration vector of concentrations C. To solve the 

above matrix equation for C, the number of wavelengths w must be equal to or greater than the number 

of components n. If w = n, then we have a system of n equations in n unknowns which can be solved by 

pre-multiplying both sides of the equation by Ɛ-1, the matrix inverse of Ɛ, and using the property that 

any matrix times its inverse is unity: 
 

 C = Ɛ−A  

Because real experimental spectra are subject to random noise (e.g., photon noise and detector noise), 

the solution will be more precise if the signals at a larger number of wavelengths are used, i.e., if w > n. 

This is easily done with no increase in labor by using a modern array-detector spectrophotometer. But 

then the equation cannot be solved by simple matrix inversion, because the Ɛ matrix is a w × n matrix 

and a matrix inverse exists only for square matrices. However, a solution can be obtained in this case 

by pre-multiplying both sides of the equation by the expression (ƐTƐ)-1ƐT, assuming that Ɛ is not zero: 

(ƐTƐ)-1ƐTA = (ƐTƐ)-1ƐTƐC = (ƐTƐ)-1(ƐTƐ)C 

where ƐT is the transpose of Ɛ (rows and columns switched). But the quantity (ƐTƐ)-1(ƐTƐ) is a matrix 

multiplied by its inverse and is therefore unity. Thus, we can simplify the result to: 

C = (ƐTƐ)-1ƐTA 

This is often called the “normal equation”. In this expression, ƐTƐ is a square matrix of order n, the 

number of components. In most practical spectroscopic applications, the number of chemical 

components, n, is relatively small, perhaps only 2 to 5. Vector A is of length w, the number of 

wavelengths. That can be quite large, perhaps several hundred in a diode-array spectrometer. The more 

wavelengths are used, the more effectively the random noise will be averaged out (although it will not 

help to use wavelengths in spectral regions where none of the components produce analytical signals). 

The determination of the optimum wavelength region must usually be determined empirically. All 

components that contribute to the spectrum must be accounted for and included in the Ɛ matrix. This 

computational method is called “Classical Least Squares” or simply “CLS”, so-called because it is a 

http://mathworld.wolfram.com/MatrixInverse.html
https://www.google.com/search?ei=RR_2W_jwPKSu5wK8h7f4AQ&q=array-detector+spectrophotometer&oq=array-detector+spectrophotometer&gs_l=psy-ab.3..0i22i30.10797559.10797559..10798015...0.0..0.53.53.1......0....1j2..gws-wiz.......0i71._4UZ6NMhc_Q
https://towardsdatascience.com/performing-linear-regression-using-the-normal-equation-6372ed3c57


Page | 186  

rather old method introduced long before computers made it practical. 

Three extensions of the CLS method are commonly made: 
 

(a) If you have s multiple unknown samples to measure, you can compute them all at once using 

the same notation as above, by combining their spectra into a w × s matrix A, which will result 

in an n × s matrix C. (This capability is used in the Appendix: "Spectroscopy and 

chromatography combined: time-resolved Classical Least-squares" on page 357).  

(b)  To account for the baseline shift caused by drift, background, and light scattering, a column of 

1s is added to the Ɛ matrix. This has the effect of introducing into the solution an additional 

component with a flat spectrum; this is referred to as “background correction”.  

(c)  To account for the fact that the precision of measurement may vary with wavelength, it is 

common to perform a weighted least-squares solution that de-emphasizes wavelength regions 

where precision is poor: 

                                                 C = (ƐT Ɛ-1Ɛ)-1 ƐT V-1 A 

where V is a w × w diagonal matrix of variances at each wavelength. In absorption spectroscopy, 

where the precision of measurement is poor in spectral regions where the absorbance is very high 

(and the light level and signal-to-noise ratio therefore low), it is common to use the transmittance T 

or its square T2 as weighting factors.  

The CLS method is in principle applicable to any number of overlapping components. Its accuracy is 

limited by how accurately the spectra of the individual components are known, the amount of noise in 

the signal, the extent of overlap of the spectra, and the linearity of the analytical curves of each 

component (the extent to which the signal amplitudes are proportional to concentration). In practice, 

the method does not work well with old-style instruments with mechanical wavelength control, because 

of insufficient wavelength reproducibility. This is because many of the data points end up being on the 

sides of spectral bands, where even small failures in the reproducibility of wavelength settings between 

measurements would result in large intensity changes. However, it is especially well suited to diode-

array and Fourier transform instruments, which have extremely good wavelength reproducibility. The 

method also depends on the linearity of analytical signal with respect to concentration. In absorption 

spectrophotometry specifically, there are well-known instrumental deviations from analytical curve 

linearity that set a limit to the performance to this method, but that problem can be avoided by applying 

iterative curve fitting (page 195) and Fourier convolution (page 106) to the transmission spectra, an 

idea that will be developed later, on page 271. 

Inverse Least-squares (ILS) calibration 
ILS is a method that can be used to measure the concentration of an analyte in samples in which the 

spectrum of the analyte in the sample is not known beforehand. Whereas the classical least-squares 

(CLS) method models the signal at each wavelength as the sum of the concentrations of the analyte 

times the analytical sensitivity, the inverse least-squares (ILS) methods use the inverse approach and 

models the analyte concentration c in each sample as the sum of the signals A at each wavelength times 

calibration coefficients m that express how the concentration of that component is related to the signal 

at each wavelength: 

              

http://terpconnect.umd.edu/~toh/models/BeersLaw.html
http://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/Convolution.html
https://terpconnect.umd.edu/~toh/spectrum/TFit.html


Page | 187  

cs1 = mw1As1,w1 + mw2As1,w2+ mw3As1,w3 + ... for all w wavelengths. 

cs2 = mw1As2,w1 + mw2As2,w2 + mw3As2,w3 + ... 
 

and so on for all s samples. In matrix form 

C = AM 

where C is the s-length vector of concentrations of the analyte in the s samples, A is the w × s matrix of 

measured signals at the w wavelengths in the s samples, and M is the w-length vector of calibration 

coefficients.  
 

Now, suppose that you have a set of s standard samples that are typical of the type of sample that you 

wish to be able to measure and which contain a range of analyte concentrations that span the range of 

concentrations expected to be found in other samples of that type. This will serve as the calibration set. 

You measure the spectrum of each of the samples in this calibration set and put these data into 

a w × s matrix of measured signals A. You then measure the analyte concentrations in each of the 

samples by some reliable and independent analytical method and put those data into a s-length vector 

of concentrations C. Together these data allow you to calculate the calibration vector M by solving the 

above equation. If the number of samples in the calibration set is greater than the number of 

wavelengths, the least-squares solution is: 
 

M = (AA)−AC  

(Note that ATA is a square matrix of size w, the number of wavelengths, which must be less than s). 

This calibration vector can be used to compute the analyte concentrations of other samples which are 

similar to those in the calibration set, from the measured spectra of the samples: 

C = AM 

Clearly, this will work well only if the analytical samples are similar in composition to the calibration 

set. The advantage of this method is that the spectrum of an unknown sample can be measured much 

more quickly and cheaply than the more laborious standard reference methods that are used to measure 

the calibration set, but if the unknowns are similar enough to the calibration set, the concentrations 

calculated by the above equation will be accurate enough for many purposes. 

Computer software for multiwavelength spectroscopy 

Spreadsheets 

Modern spreadsheets have basic matrix manipulation capabilities that can be used for multi-component 

calibration, for example Excel and OpenOffice Calc. The spreadsheets RegressionDemo.xls and 

RegressionDemo.ods (for Excel and Calc, respectively) demonstrate the classical least-squares 

procedure for a simulated spectrum of a 5-component mixture measured at 100 wavelengths. A 

screenshot is shown below. The matrix calculations described above that solves for the concentration of 

the components on the unknown mixture: 
 

C = (ƐTƐ)-1ƐTA 
 

http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat4.htm#operations
http://www.openofficetips.com/blog/archives/2004/10/array_formulas.html
https://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.ods


Page | 188  

are performed in these spreadsheets by the TRANSPOSE (matrix transpose), MMULT (matrix 

multiplication), and MINVERSE (matrix inverse) array functions, laid out step-by-step in rows 123 to 

158 of this spreadsheet. Alternatively, all these array operations may be combined into one big cell 

equation, although admittedly this is harder to read than separating the steps as I have done. 
 

C = MMULT (MMULT (MINVERSE (MMULT (TRANSPOSE (E);E)); TRANSPOSE (E));A) 
 

where C is the vector of the 5 concentrations of all the components in the mixture, E is the 5 × 100 

rectangular matrix of the known sensitivities (e.g., absorptivities) for each of the 5 components at each 

of the 100 wavelengths, and A is the vector of measured signals at each of the 100 wavelengths (i.e., 

the signal spectrum) of the unknown mixture. (Note: spreadsheet array functions like this must be 

entered by typing Ctrl-Shift-Enter, not just Enter as usual. See "Guidelines and examples of array 

formulas". 

 

. 

OpenOffice Calc spreadsheet demonstrating the CLS procedure for the measurement of a 5-component 

unknown mixture at 100 wavelengths. 
 

Alternatively, you can skip over all the details above and use the built-in LINEST function, in both 

Excel or OpenOffice Calc, which performs this type of calculation in a single function statement. This 

is illustrated in RegressionTemplate.xls, in cell Q23. (A slight modification of the function syntax, 

shown in cell Q32, performs a baseline-corrected calculation). A significant advantage of the LINEST 

function is that it can automatically compute the standard errors of the coefficients and the R2 value in 

the same operation; using Matlab or Octave, which would require some extra work. (LINEST is also an 

array function that must also be entered by typing Ctrl-Shift-Enter, not just Enter). Note that this is 

the same LINEST function that was previously used for polynomial least-squares (page 157) the 

difference is that in polynomial least-squares, the multiple columns of x values are computed, for 

example by taking the powers (squares, cubes, etc.) of the x's, whereas, in the multicomponent CLS 

method, the multiple columns of x values are experimental spectra of the different standard solutions. 

The math is the same, but the origin of the x data is very different.  
 

A template for performing a 5-component analysis on your own data, with step-by-step instructions, is 

available as RegressionTemplate.xls and RegressionTemplate.ods (Graphic on the next page) from the 

demo above). Paste your own data into columns B - G. You must adjust the formulas if your number of 

data points or of components is different from this example. The easiest way to add more wavelengths 

https://terpconnect.umd.edu/~toh/spectrum/RegressionSteps.jpg
https://terpconnect.umd.edu/~toh/spectrum/RegressionSteps.jpg
https://support.office.com/en-us/article/guidelines-and-examples-of-array-formulas-7d94a64e-3ff3-4686-9372-ecfd5caa57c7
https://support.office.com/en-us/article/guidelines-and-examples-of-array-formulas-7d94a64e-3ff3-4686-9372-ecfd5caa57c7
http://office.microsoft.com/en-001/excel-help/linest-HP005209155.aspx
https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_LINEST_function
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.ods
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.png
https://terpconnect.umd.edu/~toh/spectrum/RegressionDemoSpreadsheet.gif


Page | 189  

is to select an entire row anywhere between row 40 and the end, right-click on the row number on the 

left and select Insert. That will insert a new blank row and will automatically adjust all the cell 

formulas (including the LINEST function) and the graph to include the new row. Repeat that as many 

times as needed. Finally, select the entire row just before the insertion (that is, the last non-blank row) 

and drag-copy in down to fill in all the new blank rows. Changing the number of components is more 

difficult: it involves inserting or deleting columns between C and G and between H and L and adjusting 

the formulas in rows 15 and 16 and also in Q29-U29.  
 

Spreadsheets of this type, though easy to use once constructed, must be carefully modified for different 

applications that have different numbers of components or different numbers of wavelengths, which is 

inconvenient and can be error prone. However, it is possible to construct these spreadsheets in such a 

way that they automatically adjust to any number of components or wavelengths. This is done by using 

two new functions:  
 

(a) the COUNT function in cells B18 and F18, which counts the number of wavelengths in 

column A and the number of components in row Q22-U22, respectively, and  
 

(b) the INDIRECT function (see page 348) in cell Q23 and in rows 12 and 13, which allows the 

address of a cell or range of cells to be calculated within the spreadsheet (based on the number 

of wavelengths and components just counted) rather than using a fixed address range.  
 

This technique is used in RegressionTemplate2.xls and in two examples showing the same template 

with data entered for different numbers of wavelengths and for mixtures of 5 components at 100 

wavelengths (RegressionTemplate2Example.xls) and for 2 components at 59 wavelengths 

(RegressionTemplate3Example.xls). If you inspect the LINEST functions in cell Q23, you will see that 

it is the same in both of those two example templates, even though the number of wavelengths and the 

number of components is different. You will still have to adjust the graph, however, to cover the desired 

x-axis range. See page 348. 
 

 
Excel template applied to the measurement of a 5-component unknown mixture at 100 wavelengths.  

https://support.office.com/en-us/article/count-function-a59cd7fc-b623-4d93-87a4-d23bf411294c
https://support.office.com/en-us/article/indirect-function-474b3a3a-8a26-4f44-b491-92b6306fa261
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate2.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate2Example.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate3Example.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.gif


Page | 190  

Matlab/Octave and Python 

Matlab/Octave and Python are really the natural languages for multicomponent analysis because they 

handle all types of matrix math so easily, compactly, and quickly, and they readily adapt to any number 

of wavelengths or number of components without any special tricks. In Matlab/Octave, the notation is 

very compact: the transpose of matrix A is A', the inverse of A is inv(A), and matrix multiplication is 

designated by an asterisk (*). Thus, the solution to the Classical Least-Squares method above is written 

in Matlab/Octave notation as  
 

C = inv(E'*E)*E'*A 
 

where E is the rectangular matrix of sensitivities at each wavelength for each component and A is the 

observed spectrum of the mixture. Note that the Matlab/Octave notation is not only shorter than the 

spreadsheet notation, but also closer to the traditional mathematical notation. Even more compactly, 

you can write C = A/E, using the Matlab forward slash or "right divide" operator, which yields the 

same results but is more accurate with respect to the numerical precision of the computer (which in 

most applications is negligible compared to the noise in the signal; see page 335). 
 

The script RegressionDemo3.m (for Matlab or Octave) demonstrates the classical least-squares 

procedure for a simulated absorption spectrum of a 3-component mixture at 141 wavelengths, in which 

each of the 3 components has a spectrum consisting of 5 overlapping Gaussians. In the figure on the 

left, the colored bands represent the three components in the mixture, whose spectra are known but 

whose concentrations in the mixture are unknown. In the figure on the right, the red dots represent the 

observed spectrum of the mixture at about a 10-fold lower concentration (hence the visible noise). The 

blue line represents the "best fit" to the observed spectrum calculated by the program. Most of this 

script is just signal generation and plotting; the actual least-squares regression is performed in line 48: 
 

MeasuredAmp = ObservedSpectrum'/spectra; 
 

Here, the matrix "spectra" contains the spectra of each of the components in each of its rows. 

"ObservedSprectum" is the measured spectrum of the unknown mixture, including random noise. In 

this example, the concentrations of the three components are measured to an accuracy of about 1% 

relative, limited by the noise in the observed spectrum. In practice, the accuracy is more likely to be 

limited by chemical and physical factors, such as temperature, pH, volumetric errors, etc. 
 

http://matlab.izmiran.ru/help/techdoc/ref/mldivide.html
http://www.wam.umd.edu/~toh/spectrum/RegressionDemo3.m


Page | 191  

The CLS technique is fast enough (especially in Matlab) that it can be applied in real time to 2D 

chromatography with array detectors, where a complete spectrum is acquired multiple times per second 

over the entire chromatogram. See “Spectroscopy and chromatography combined: time-resolved 

Classical Least Squares” on page 358. 
 

Extensions: 

(a) The extension to multiple unknown samples, each with its own "ObservedSpectrum" is 

straightforward in Matlab/Octave. If you have "s" samples, just assemble their observed spectra 

onto a matrix with "s" rows and "w" columns ("w" is the number of wavelengths), then use the 

same formulation as before: 
 

MeasuredAmp = ObservedSpectrum*A'*inv(A*A') 
 

The resulting "MeasuredAmp" will be an "s" × "n" matrix rather than an n-length vector ("n" is 

the number of measured components). This is a great example of the convenience of the 

vector/matrix nature of this language. (RegressionDemoMultipleSamples.m demonstrates this). 
 

(b) The extension to "background correction" is easily accomplished in Matlab/Octave 

by adding a column of 1s to the A matrix containing the absorption spectrum of each of the 

components: 
 

background=ones(size(ObservedSpectrum)); 

A=[background A1 A2 A3];  
 

where A1, A2, A3... are the absorption spectra vectors of the individual components. 
 

(c) Performing a Transmission-weighted regression is also readily performed: 

MeasuredAmp=([T T] .* A)\(ObservedSpectrum .* T); 
 

where T is the transmission spectrum vector. Here, the matrix division backslash "\" is used as a 

short-cut to the classical least-squares matrix solution 

(c.f. http://www.mathworks.com/help/techdoc/ref/mldivide.html).  
 

The cls.m function: Ordinarily, the calibration matrix M is assembled from the experimentally 

measured signals (e.g. spectra) of the individual components of the mixture, but it is also possible to fit 

a computer-generated model of basic peak shapes (e.g. Gaussians, Lorentzians, etc.) to a signal to 

determine if that signal can be represented as the weighted sum of overlapping basic peak shapes. The 

function cls.m computes such a model consisting of the sum of any number of peaks of known shape, 

width, and position, but of unknown height, and fit it to noisy x,y data sets. The syntax is  
 

heights=cls(x, y, NumPeaks, PeakShape, Positions, Widths, extra) 
 

where x and y are the vectors of measured data (e.g. x might be wavelength and y might be the 

absorbance at each wavelength), 'NumPeaks' is the number of peaks, 'PeakShape' is the peak shape 

number (1=Gaussian, 2=Lorentzian, 3=logistic, 4=Pearson, 5=exponentially broadened Gaussian; 

6=equal-width Gaussians; 7=Equal-width Lorentzians; 8=exponentially broadened equal-width 

Gaussian, 9=exponential pulse, 10=sigmoid, 11=Fixed-width Gaussian, 12=Fixed-width Lorentzian; 

https://terpconnect.umd.edu/~toh/spectrum/RegressionDemoMultipleSamples.m
http://www.mathworks.com/help/techdoc/ref/mldivide.html
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m


Page | 192  

13=Gaussian/Lorentzian blend; 14=BiGaussian, 15=BiLorentzian), 'Positions' is the vector of peak 

positions on the x axis (one entry per peak), 'Widths' is the vector of peak widths in x units (one entry 

per peak), and 'extra' is the additional shape parameter required by the exponentially broadened, 

Pearson, Gaussian/Lorentzian blend, BiGaussian and BiLorentzian shapes. Cls.m returns a vector of 

measured peak heights for each peak.  
 

The cls2.m function is similar to cls.m, except that it also measures the baseline (assumed to be flat), 

using the extension to "background correction" described above, and returns a vector containing the 

background B and measured peak heights H for each peak 1,2,3, e.g., [B H1 H2 H3...]. 
 

The demonstration script 

clsdemo.m (on the right) creates 

some noisy model data, fits it with 

cls.m, computes the accuracy of the 

measured heights, then repeats the 

calculation by iterative non-linear 

least-squares peak fitting (“INLS”, 

covered on page 195) using my 

Matlab/ Octave function peakfit.m, 

making use of the known peak 

positions and widths only as starting 

guesses ("start"). You can see that 

CLS is 30 times faster and slightly 

more accurate, especially if the 

peaks are highly overlapped. (This 

script requires the functions cls.m, 

modelpeaks.m, and peakfit.m in the 

Matlab/Octave search path). A 

typical result is: 

 

Figure window(1): Classical Least-squares (multilinear regression) 

Elapsed time is 0.012 seconds. 

Average peak height accuracy = 0.9145% 
  

Figure window(2): Iterative non-linear peak fitting with peakfit.m 

Elapsed time is 0.39 seconds. 

Average peak height accuracy = 1.6215% 

 

On the other hand, INLS can be better than CLS if there are unsuspected shifts in peak position and/or 

peak width between calibration and measurement (for example caused by drifting spectrometer 

calibration or by changing temperature, pressure, or solution variables), because INLS can track and 

compensate for changes in peak position and width. You can test this by changing the variable 

"PeakShift" (line 16) to a non-zero value in clsdemo.m.  

 

  

https://terpconnect.umd.edu/~toh/spectrum/cls2.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/clsdemo.m
https://terpconnect.umd.edu/~toh/spectrum/CLSdemo.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/clsdemo.m


Page | 193  

Weighted linear regression: My Matlab/Octave function "tfit.m" simulates the measurement of the 

absorption spectrum of a mixture of three components by weighted and unweighted linear regression, 

demonstrates the effect of the amount of noise in the signal, the extent of overlap of the spectra, and the 

linearity of the analytical curves of each component. This function also compares the results to a more 

advanced method described later (line 66) that applies curve fitting to the transmission spectra rather 

than to the absorbance spectra (page 271), which improves the linearity and accuracy of the method.  
 

The Inverse Least-squares (ILS) technique is demonstrated in Matlab by this script and the graph in 

the right. The mathematics, described above on page 186, is similar to the Classical Least-squares 

method and can be done by any of the Matlab/ 

Octave, Python, or spreadsheet methods described 

in this section. This example is based on a real data 

set derived from the near-infrared (NIR) 

reflectance spectroscopy of agricultural wheat 

paste samples analyzed for protein content. There 

are 50 calibration samples measured at 6 

wavelengths. These calibration samples had 

already been analyzed for protein content by a 

reliable (but laborious and time-consuming) 

reference method. The purpose of this calibration is 

to establish whether the results of the quicker and 

easier near-infrared reflectance method correlates 

to the protein content determined by the reference 

method. These results indicate that it does, at least 

for this set of 50 wheat samples, and therefore it is likely that near-infrared spectroscopy should do a 

pretty good job of estimating the protein content of similar unknown samples. The key is that the 

unknown samples must be similar to the calibration samples (except of course for the protein content), 

but this is a very common analytical situation in industrial and agricultural quality control, where many 

samples of products or crops of a similar predictable type must be tested quickly and cheaply, often in 

the field using simple portable instruments. It may take a good bit of time and effort to calibrate the 

instrument initially, but once that is done, it can be applied quickly and cheaply to the type of sample 

for which it was calibrated. Near-infrared (NIR) reflectance spectroscopy, in conjunction with inverse 

least-squares or related more sophisticated mathematical methods, is very widely used in industry, 

agriculture, food science, and environmental applications. 
 

It is worth noting that the above method, specifically near infrared methods for agricultural samples, 

was pioneered in the 1950s and 1960s by Dr. Karl Norris at the Beltsville Agricultural Research Center 

in Maryland, just up the road from my home institution in College Park. The early history is reviewed 

by Dr. Norris himself in https://journals.sagepub.com/doi/10.1255/jnirs.941. 
 

Note: If you are reading this online, you can right-click on any of the m-file links above and 

select Save Link As... to download them to your computer for use within Matlab.  

https://terpconnect.umd.edu/~toh/spectrum/tfit.m
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/wheatILS.zip
http://en.wikipedia.org/wiki/Near-infrared_spectroscopy
http://en.wikipedia.org/wiki/Near-infrared_spectroscopy
http://people.umass.edu/~mcclemen/581Proteins.html
http://en.wikipedia.org/wiki/Kjeldahl_method
https://journals.sagepub.com/doi/10.1255/jnirs.941


Page | 194  

Classical Least Squares in Python 

The equivalent expression in Python for the “Normal Equation” is 
 

C = inv(E.T.dot(E)).dot(E.T).dot(A) 
 

where “inv()” means the matrix inverse, the expression “E.T” means the transpose of matrix E, and 

“.dot” means the dot product. This is arguably more explicit than the more compact Matlab version: 
 

C = inv(E'* E)*E'*A; 
 

Just remember that before doing this in Python you must do the following imports:  
 

numpy as np  

from numpy.linalg import inv 
 

The pair of matched scripts, NormalEquationDemo.py and NormalEquationDemo.m compare these 

aspects in Python and in Matlab. Both scripts use the same sequence of operations and the same 

variable names to create and plot a noisy simulated signal vector A that is the sum of three strongly 

overlapping peaks of known shape 

(G1, G2, and G3) but unknown 

amplitude, and then measure the 

amplitudes C in the noisy signal by 

Classical Least Squares. The percent 

error between the true and measured 

peak heights are printed next to each 

peak. The code similaries are striking, 

the results are the same,  and the 

execution times are similar  for the 

Matlab and Python version. The actual 

computation of concentrations C by 

CLS takes only one line in both 

languages: C = inv(E.T.dot(E)).dot(E.T).dot(A) in Python and C = inv(E'*E)*E'*A; 

in Matlab. 

  

https://terpconnect.umd.edu/~toh/spectrum/NormalEquationDemo.py
https://terpconnect.umd.edu/~toh/spectrum/NormalEquationDemo.m


Page | 195  

Curve fitting C: Non-linear Iterative Curve 

Fitting  
Least-squares curve fitting, described in "Curve Fitting A" on page 157, is simple and fast, but it is 

limited to situations where the dependent variable can be modeled as a polynomial with linear 

coefficients.  
 

The most general way of fitting any model to a set of data is the iterative method, which is a "trial and 

error" procedure in which the parameters of the model are adjusted in a systematic fashion until the 

equation fits the data as close as required. This sounds like a brute-force approach, and it is. In fact, in 

the days before computers, this method was not widely used. But its great generality, coupled with 

advances in computer speed and algorithm efficiency, means that iterative methods are more widely 

used now than ever before. There are extensive applications of this technique in the areas of  

biomedical research and pharmacology, environmental Science, physics and material Science, 

engineering and drug development, neuroscience and neuroimaging, and agronomy and biomedicine. 

But here I will focus on the application to peak fitting: that is, determining whether it is possible to 

model a complex signal shape as the sum of several simple components whose height, position, width, 

and shape are initially unknown.  
 

An iterative method proceeds in the following general way:  
 

(1) Select a model for the data, for example, in the example below, the sum of two Gaussian peaks;  
 

(2) Make first guesses of all the adjustable non-linear parameters; (i.e. for application to peak fitting, 

these would be the position and width of the peaks that are presumed to be in the data); 
 

(3) A computer program computes the model and compares it to the data set, calculating a fitting error;  
 

(4) The program systematically changes the parameters and loops back around to the previous step and 

repeats until the required fitting accuracy is achieved.  
 

One popular technique for doing this is the Nelder-Mead 

Modified Simplex. This is a way of organizing and optimizing 

the changes in parameters (step 4, above) to shorten the time 

required to fit the function to the required degree of accuracy. 

It might sound complicated, but with contemporary personal 

computers, the entire process typically takes only a fraction of 

a second to a few seconds, depending on the complexity of 

the model and the number of independently adjustable 

parameters in the model. The animation here (Matlab script) 

shows the working of the iterative process for a 2-peak 

unconstrained Gaussian fit to a small set of x,y data. This 

model has four nonlinear variables (the positions and width 

of the two Gaussians, which are determined by iteration) and two linear variables (the peak heights of 

the two Gaussians, which are determined directly by regression for each trial iteration). To allow the 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Nelder-Mead_method
http://en.wikipedia.org/wiki/Nelder-Mead_method
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animated.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html


Page | 196  

process to be observed in action, this animation is slowed down artificially by (a) plotting step-by-step, 

(b) making a bad initial guess, and (c) adding a "pause()" statement inside the iteration loop. Without 

all that slowing down, the entire process normally takes only about 0.05 seconds on a standard PC or 

laptop, depending mainly on the number of nonlinear variables that must be iterated. This even works 

if the peaks are so overlapped that they bend into a single peak, as shown by the script 

Demofitgauss2AnimatedBlended.m, and the corresponding animation, but it takes more iterations and 

it is more sensitive to any random noise in the data (added in line 13). 
 

Note: the script that created this animation, Demofitgauss2animated.m, requires the gaussian.m, 

fitgauss2animated.m, and fminsearch.m functions to be in the Matlab/Octave path. As an instructional 

aid, a modified version of this script, Demofitgauss2animatedError.m, plots the fitting error vs iteration 

number, showing that a poor initial guess (start value) can be detrimental, requiring many more 

iterations (and more time) to find a good fit, which is not very efficient from the point of view of a 

human observer like yourself who can visually estimate the peak parameters much more intelligently. A 

good guess requires fewer iterations. One way to get very good start values for peak-type signals is to 

precede the curve fitting with a fast, single-pass peak detector algorithm to determine the number of 

peaks and their approximate positions and widths (as will be covered in a later section), but that will 

only work when the peaks to be fit have distinct maxima and are not blended into a single peak. As you 

might expect, a 3-peak fit, with six non-linear parameters to optimize, will require more iterations. 
 

The main difficulty of the iterative methods is that they sometimes fail to converge at an overall 

optimum solution in difficult cases, especially if given a bad initial starting guess. To understand how 

that could happen, think of a physical analogy: you deposit a blind robot on a hilly landscape and 

program it to walk to the highest peak, given only a long stick to probe the immediate surroundings to 

test if the ground is higher or lower on each side. If it is higher, it walks there and probes around that 

area. It stops when all the areas around it are lower than where it is. This works well if there is a single 

smooth hill. But what if there are multiple small hills, or if the ground is rocky and uneven?  The robot 

is very likely to stop at one of the smaller hills, not seeing that there might be an even higher hill 

nearby. To walk the entire landscape in a grid to probe for all the hills would take a lot of time. 
 

The standard approach to handle this is to restart the process with random variations of the first guesses, 

repeat several times, and take the one with the lowest fitting error. That entire process is automated in 

the peak fitting functions described on page 391. If that is not enough, we can make our own starting 

guesses. With all this, it is no surprise that iterative curve fitting takes longer than linear regression - 

with typical personal computers, an iterative fit might take fractions of a second where a regression 

would take fractions of a millisecond. Still, that’s fast enough for many purposes. 
 

The precision of the model parameters measured by iterative fitting (page 206), like classical least-

squares fitting, depends strongly on a good model, accurate compensation for the background/baseline, 

the signal-to-noise ratio, and the number of data points across the feature that you wish to measure. It is 

not practical to predict the standard deviations of the measured model parameters using the algebraic 

approach, but both the Monte Carlo simulation and bootstrap methods (page 166) are applicable. 

Note: the term “spectral deconvolution” or “band deconvolution” is often used to refer to this technique, 

but in this book, “deconvolution” specifically means Fourier deconvolution, an independent concept 

https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2AnimatedBlended.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animated.gif
https://terpconnect.umd.edu/~toh/spectrum/FittingAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animated.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2animated.m
https://terpconnect.umd.edu/~toh/spectrum/FMINSEARCH.txt
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animatedError.m
https://terpconnect.umd.edu/~toh/spectrum/Bad%20guess.png
https://terpconnect.umd.edu/~toh/spectrum/Bad%20guess.png
https://terpconnect.umd.edu/~toh/spectrum/Good%20guess.png
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb
https://terpconnect.umd.edu/~toh/spectrum/BlendedPeak.png
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss3animatedError.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss3animatedError.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Interactive_Peak_Fitter_
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability


Page | 197  

that is treated elsewhere. In Fourier deconvolution, the underlying peak shape is unknown, but the 

broadening function is assumed to be known; whereas, in iterative least-squares curve fitting, it is just 

the reverse: the peak shape must be known but the width of the broadening process, which determines 

the width and shape of the peaks in the recorded data, is unknown. Thus, the term “spectral 

deconvolution” is ambiguous: it might mean the Fourier deconvolution of a response function from a 

spectrum, or it might mean the decomposing of a spectrum into its separate additive peak components. 

These are different processes; do not get them confused. See page 302. 

Spreadsheets and stand-alone programs 
Both Excel and OpenOffice Calc have a "Solver" capability that will change specified cells in an 

attempt to produce a specified goal; this can be used in peak fitting to minimize the fitting error 

between a set of data and a proposed calculated model, such as a set of overlapping Gaussian 

bands. The latest version includes three different solving methods. This Excel spreadsheet example 

(screenshot) demonstrates how this is used to fit four Gaussian components to a sample set of x,y 

data that has already been entered into columns A and B, rows 22 to 101 (you could type or paste in 

your own data there).  
 

After entering the data, you do a visual estimate of how many Gaussian peaks it might take to represent 

the data, and their locations and widths, and type those estimated values into the 'Proposed model' table. 

The spreadsheet calculates the best-fit values for the peak heights by multilinear regression (page 184) 

in the 'Calculated amplitudes' table and plots the data and the fit. It also plots the "residuals", which are 

the point-by-point differences between the data and the model; ideally, the residuals would be zero, or 

at least small. (Adjust the x-axis scale of these graphs to fit your data). 

 
The next step is to use Solver function to "fine-tune" the position and width of each component to 

minimize the % fitting error (in red) and to make the residuals plot as random as possible: click Data in 

the top menu bar, click Solver (upper right) to open the Solver box, into which you type "C12" into 

http://www.excel-easy.com/data-analysis/solver.html
http://blogs.office.com/2009/09/21/new-and-improved-solver/
https://terpconnect.umd.edu/~toh/spectrum/CurveFitterStart4x100.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter4componentsStart.png
http://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html#cls
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingStart.png


Page | 198  

"Set Objective", click "min", select the cells in the "Proposed Model" that you want to optimize, add 

any desired constraints in the "Subject to the Constraints" box, and click the Solve button. Solver 

automatically optimizes the position, width, and amplitude of all the components and best fit is 

displayed. (You can see that the Solver has changed the selected entries in the proposed model table, 

reduced the fitting error (cell C12, in red), and made the residuals smaller and more random). If the fit 

fails, change the starting values, click Solver, and click the Solve button. You can automate the above 

process and reduce it to a single function-key press by using macros, as described on page 311. 
 

So, how many Gaussian components does it take to fit the data? One way to tell is to look at the plot of 

the residuals (which shows the point-by-point difference between the data and the fitted model), and 

add components until the residuals are random, not wavy, but this works only if the data are not 

smoothed before fitting. Here's an example - a set of real data that are fitted with an increasing 

sequence of two Gaussians, three Gaussians, four Gaussians, and five Gaussians. As you look at this 

sequence of screenshots, you will see the percent fitting error decrease, the R2 value becomes closer to 

1.000, and the residuals become smaller and more random. (Note that in the 5-component fit, the first 

and last components are not peaks within the 250-600 x-range of the data, but rather they account for 

the background). There is no need to try a 6-component fit because the residuals are already random at 

5 components and more components than that would just "fit the noise" and would likely be unstable 

and give a very different result with another sample of that signal with different noise.  
 

If you use a spreadsheet for this type of curve fitting, you need to build a custom spreadsheet for each 

problem, with the right number of rows for the data and with the desired number of components. For 

example, my CurveFitter.xlsx template is only for a 100-point signal and a 5-component Gaussian 

model. It is easy to extend to a larger number of data points by inserting rows between 22 and 100, 

columns A through N, and drag-copying the formulas down into the new cells (e.g. CurveFitter2.xlsx is 

extended to 256 points). To handle other numbers of components or model shapes you would have to 

insert or delete columns between C and G and between Q and U and edit the formulas, as has been 

done in this set of templates for 2 Gaussians, 3 Gaussians, 4 Gaussians, 5 Gaussians, and 6 Gaussians.  
 

If your peaks are superimposed on a baseline, you can include a model for the baseline as one of the 

components. For instance, if you wish to fit 2 Gaussian peaks on a linear tilted slope baseline, select 

a 3-component spreadsheet template and change one of the Gaussian components to the equation for a 

straight line (y=mx+b, where m is the slope and b is the intercept). A template for that particular case is 

CurveFitter2GaussianBaseline.xlsx (graphic); do not click "Make Unconstrained Variables Non-

Negative" in this case, because the baseline model may well need negative variables, as it does in this 

particular example. If you want to use another peak shape or another baseline shape, you'd have to 

modify the equation in row 22 of the corresponding columns C through G and drag-copy the modified 

cell down to the last row, as was done to change the Gaussian peak shape into a Lorentzian shape in 

CurveFitter6Lorentzian.xlsx. Or you could make columns C through G contain equations for different 

peak or baseline shapes. For exponentially broadened Gaussian peak shapes, you can use 

CurveFitter2ExpGaussianTemplate.xlsx for two overlapping peaks (screen graphic). In this case, each 

peak has four parameters: height, position, width, and lambda (which determines the asymmetry - the 

extent of exponential broadening). 

Using a spreadsheet has one big advantage: it is easy to add constraints to the variables determined by 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitter4componentsDone.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter4componentsDone.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit2components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit3components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit4components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit5components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter6componentsDone.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter5components.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter3Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter4Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit5components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter5Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter6Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2GaussianBaseline.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2GaussiansPlusBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter6Lorentzian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2ExpGaussianTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2ExpGaussianExample.png


Page | 199  

iteration, for example, to constrain them to be greater than zero or to fall between two limits, or to be 

equal, etc. Doing so will force the solutions to adhere to known expectations and avoid nonphysical 

solutions. This is especially important for complex shapes such as the exponentially broadened 

Gaussian just discussed in the previous paragraph. You can do this by adding those constraints using 

the "Subject to the Constraints:" box in the center of the "Solver Parameters" box (see the graphic on 

the previous page). For details, see https://www.solver.com/excel-solver-add-change-or-delete-

constraint? 
 

The point of all this is that you can do - in fact, you must do - a lot of custom editing to get a 

spreadsheet template that fits your data. In contrast, my Matlab/Octave peakfit.m function (page 

392) automatically adapts to any number of data points and is easily set to over 40 different model peak 

shapes (graphic on page 419) and any number of peaks simply by changing the input arguments. Using 

my Interactive Peak Fitter function ipf.m in Matlab (page 411), you can press a single keystroke to 

instantly change the peak shape, the number of peaks, the baseline mode (page 215), or to re-calculate 

the fit with a different start value or with a bootstrap subset of the data (to estimate the peak parameters 

errors). That is far quicker and easier than the spreadsheet. But conversely, a real advantage of 

spreadsheets in this application is that it is relatively easy to add your own custom shape functions and 

constraints, even complicated ones, using standard spreadsheet cell formula construction. And if you 

are hiring help, it is probably easier to find an experienced spreadsheet programmer than a Matlab 

programmer. So, if you are not sure which to use, my advice is to try both methods and decide for 

yourself.  
 

For Python programmers, there are the scipy.optimize.minimize and LMFit packages, an extension of 

the Levenberg-Marquardt method. See page 441 for a Matlab/Python comparison of iterative fitting. 
 

There are a number of downloadable non-linear iterative curve fitting add-ons and macros for Excel 

and OpenOffice. For example, Dr. Roger Nix of Queen Mary University of London has developed a 

very nice Excel/VBA spreadsheet for curve fitting X-ray photoelectron spectroscopy (XPS) data, but it 

could be used to fit other types of spectroscopic data. A 4-page instruction sheet is also provided.  
 

There are also many examples of stand-alone programs, both freeware and commercial, including 

PeakFit, Data Master 2003, MyCurveFit, Curve Expert, Origin, ndcurvemaster, and the R language. 

Matlab and Octave  
Matlab and Octave have a convenient and efficient function called "fminsearch" that uses the Nelder-

Mead method. It was originally designed for finding the minimum values of functions, but it can be 

applied to least-squares curve fitting by creating a so-called anonymous function (a.k.a. "lambda" 

function) that computes the model, compares it to the data, and returns the fitting error. For example, 

writing parameters = fminsearch(@(lambda)(fitfunction(lambda, x, y)), start) 

performs an iterative fit of the data in the vectors x,y to a model described in a previously-created 

function called fitfunction, using the first guesses in the vector "start". The parameters of the best-

fit model are returned in the vector "parameters", in the same order that they appear in "start".  
 

Note: for Octave users, the fminsearch function is contained in the "Optim" add-on package (use the 

latest version 1.2.2 or later), downloadable from Octave Forge. It is a good idea to install all these add-

https://www.solver.com/excel-solver-add-change-or-delete-constraint?
https://www.solver.com/excel-solver-add-change-or-delete-constraint?
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://chrisostrouchov.com/post/peak_fit_xrd_python/
https://lmfit.github.io/lmfit-py/
https://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://www.google.com/search?q=nelder+mead+simplex+excel&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a
http://www.google.com/search?q=nelder+mead+simplex+%22open+office%22&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a
http://www.chem.qmul.ac.uk/staff/nix/
http://www.chem.qmul.ac.uk/software/eXPFit.htm
http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla%3Aen-US%3Aofficial&q=nelder+mead+simplex+freeware&btnG=Search
http://www.sigmaplot.co.uk/products/peakfit/peakfit.php
http://www.datamaster2003.com/
https://www.mycurvefit.com/
http://www.curveexpert.net/
http://www.originlab.com/
https://www.ndcurvemaster.com/
https://cran.r-project.org/
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
http://www.mathworks.com/help/techdoc/ref/fminsearch.html
http://en.wikipedia.org/wiki/Anonymous_fun
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
http://downloads.sourceforge.net/octave/optim-1.2.1.tar.gz?download


Page | 200  

on packages just in case they are needed; follow the instructions on the Octave Forge web page. For 

Matlab users, fminsearch is a built-in function, although there are other optimization routines in the 

optional Optimization Toolbox, which is not needed for the examples and programs in this document. 
 

A simple example is fitting the blackbody equation to the spectrum of an incandescent body for the 

purpose of estimating its color temperature. In this case, there is only one nonlinear parameter, 

temperature. The script BlackbodyDataFit.m demonstrates the technique, placing the experimentally 

measured spectrum in the vectors "wavelength" and "radiance" and then calling fminsearch with the 

fitting function fitblackbody.m. Incandescent lightbulbs, of the type that used to be common in 

household lighting before LEDs, are examples of blackbody radiators. (If a blackbody source is not 

thermally homogeneous, it may be possible to model it as the sum of two or more regions of different 

temperature, as in example 3 of fitshape1.m).  
 

Another application is demonstrated by Matlab's built-in demo fitdemo.m and its corresponding fitting 

function fitfun.m, which model the sum of two exponential decays. To see this, just type "fitdemo" in 

the Matlab command window. (Octave does not have this demo function).  

Fitting peaks 
Many instrumental methods of measurement produce signals in the form of peaks of various shapes; a 

common requirement is to measure the positions, heights, widths, and/or areas of those peaks, even 

when they are noisy or overlapped with one another. This cannot be done by linear least-squares 

methods, because such signals cannot be modeled as polynomials with linear coefficients (the positions 

and widths of the peaks are not linear functions), so iterative curve fitting techniques are used instead, 

often using Gaussian, Lorentzian, or some other fundamental simple peak shapes as a model. 
 

The Matlab/Octave demonstration script Demofitgauss.m demonstrates fitting a Gaussian function to a 

set of data, using the fitting function fitgauss.m. In this case, there are two non-linear parameters: peak 

position and peak width (the peak height is a linear parameter and is determined by regression in a 

single step in line 9 of the fitting function fitgauss.m and is returned in the global variable "c"). 

Compared to the simpler polynomial least-squares methods for measuring peaks (page 170), the 

iterative method has the advantage of using all the data points across the entire peak, including zero and 

negative points, and it can be applied to multiple overlapping peaks as demonstrated the script 

Demofitgauss2.m. 
 

To accommodate the possibility that the baseline may shift, we can add a column of 1s to the A 

matrix, just as was done in the CLS method (page 184). This has the effect of introducing into the 

model an additional component that is simply a flat line; its amplitude is returned along with the peak 

heights in the global vector “c”; Demofitgaussb.m and fitgauss2b.m illustrates this addition. 

(Demofitlorentzianb.m and fitlorentzianb.m for Lorentzian peaks). 
 

This peak fitting technique is easily extended to any number of overlapping peaks of the same type 

using the same fitting function fitgauss.m, which easily adapts to any number of peaks, depending on 

the length of the first-guess "start" vector lambda that is passed to the function as input arguments, 

along with the data vectors t and y: 
 

http://octave.sourceforge.net/packages.php
http://en.wikipedia.org/wiki/Blackbody#Planck.27s_law_of_black-body_radiation
https://terpconnect.umd.edu/~toh/spectrum/BlackbodyDataFit.m
https://terpconnect.umd.edu/~toh/spectrum/fitblackbody.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape1.m
https://terpconnect.umd.edu/~toh/spectrum/fitdemo.txt
https://terpconnect.umd.edu/~toh/spectrum/fitfun.txt
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgaussb.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2b.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitlorentzianb.m
https://terpconnect.umd.edu/~toh/spectrum/fitlorentzianb.m


Page | 201  

1 function err = fitgauss(lambda, t,y) 

2 %  Fitting functions for a Gaussian band spectrum. 

3 %  T. C. O'Haver. March 2006 

4 global c 

5 A = zeros(length(t),round(length(lambda)/2)); 

6 for j = 1:length(lambda)/2, 

7     A(:,j) = gaussian(t, lambda(2*j-1),lambda(2*j))'; 

8 end 

9 c = A\y'; % c = abs(A\y') for positive peak heights only 

10 z = A*c; 

11 err = norm(z-y'); 
 

If there are n peaks in the model, then the length of lambda is 2n, one entry for each iterated variable 

([position1 width1 position2 width2....etc.]). The "for" loop (lines 5-7) constructs an n × length(t) 

matrix containing the model for each peak separately, using a user-defined peak shape function (in this 

case gaussian.m), then it computes the n-length peak height vector c by least-squares regression in line 

9, using the Matlab shortcut "\" notation. (To constrain the fit to positive values of peak height, replace 

A\y' with abs(A\y') in line 9). The resulting peak heights are used to compute z, the sum of all n model 

peaks, by matrix multiplication in line 10, and then "err", the root-mean-square difference between the 

model z and the actual data y, is computed in line 11 by the Matlab 'norm' function and returned to the 

calling function ('fminsearch'), which repeats the process many times, trying different values of the 

peak positions and the peak widths until the value of "err" is low enough. 
 

This fitting function above would be called by Matlab's fminsearch function like so:  
 

params=fminsearch(@(lambda)(fitgauss(lambda, x,y)),[50 20]) 
 

where the square brackets contain a vector of first guesses for position and width for each peak 

([position1 width1 position2 width2....etc.]). The output argument 'params' returns a 2 × n matrix 

of best-fit values of position and width for each peak, and the peak heights are contained in the n-length 

global variable vector c. Similar fitting functions can be defined for other peak shapes simply by 

calling the corresponding peak shape function, such as lorentzian.m in line 7. (Note: for this and other 

scripts like Demofitgauss.m or Demofitgauss2.m to work on your version of Matlab, all the functions 

that they call must be loaded into Matlab beforehand, in this case fitgauss.m and gaussian.m. Scripts 

that call sub-functions must have those functions in the Matlab search path. Functions, conversely, can 

have all their required sub-functions defined within the main function itself and thus can be self-

contained, as are the next two examples). 

Simplified general-purpose peak-fitting function 

The function fitshape2.m (syntax: [Positions, Heights, Widths, FittingError] = 

fitshape2(x, y, start)) pulls all of this together into a simplified general-purpose Matlab/ 

Octave function for fitting multiple overlapping model shapes to the data contained in the vector 

variables x and y. The model is the weighted sum of any number of basic peak shapes which are 

defined mathematically as a function of x, with two variables that the program will independently 

determine for each peak - positions and widths - in addition to the peak heights (i.e., the weights of the 

weighted sum). You must provide the first guess starting vector 'start', in the form [position1 width1 

position2 width2 ...etc.], which specifies the first-guess position and width of each component (one pair 

https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
http://www.mathworks.com/help/matlab/ref/mldivide.html
http://en.wikipedia.org/wiki/Matrix_multiplication
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape2.m


Page | 202  

of position and width for each peak in the model). The function returns the parameters of the best-fit 

model in the vectors Positions, Heights, Widths, and computes the percent error between the 

data and the model in FittingError. It also plots the data as dots and the fitted model as a line.  
  

 The interesting thing about this function is that the only part that defines the shape of the model is the 

last line. In fitshape2.m, that line initially contains the expression for a Gaussian peak of unit height, 

but you could change that to any other expression or algorithm that computes a unit-height g as a 

function of x with two unknown parameters 'pos' and 'wid' (position and width, respectively, for peak-

type shapes, but they could represent anything for other function types, such as the exponential pulse, 

sigmoidal, etc.); everything else in the fitshape.m function can remain the same. It is all about the 

bottom line. This makes fitshape.m a good platform for experimenting with different mathematical 

expressions as proposed models to fit data. There are also two other variations of this function for 

models with one iterated variable plus peak height (fitshape1.m) and three iterated variables plus peak 

height (fitshape3.m). Each has illustrative examples in the help file (type "help fitshape...").  An 

alternative version is FitMultipleShapes2, which allows you to specify any of 16 common peak shape 

functions by number. Examples are in the internal help file . The syntax is: 
[Positions,Heights,Widths,FittingError]=FitMultipleShapes2(x,y,shape,start,m)   

Variable shape types 

The Voigt profile, Pearson, Breit-Wigner-Fano, Gauss-Lorentz blend, and the exponentially-broadened 

Gaussian and Lorentzian, are defined not only by the peak position, height, and width, but also by an 

additional parameter that fine-tunes the shape of the peak. If that parameter is equal and known for all 

peaks in a group, it can be passed as an additional input argument to the shape function, as shown in the 

demo function VoigtFixedAlpha.m for the Voigt profile, which is calculated as a convolution of 

Gaussian and Lorentzian components with different widths. If the shape parameter (alpha, the ratio of 

the two widths) is allowed to be different for each peak in the group and is to be determined by iteration 

(just as is position and width), then the routine must be modified to accommodate three, rather than 

two, iterated variables, as shown in the demo function VoigtVariableAlpha.m. Although the fitting error 

is lower with variable alphas, the execution time is longer and the alpha values so determined are not 

very stable, with respect to noise in the data and the starting guess values, especially for multiple peaks. 

(These are self-contained functions). Version 9.5 of the general-purpose Matlab/Octave function 

peakfit.m includes fixed and variable shape types for the Pearson, ExpGaussian, Voigt, and 

Gaussian/Lorentzian blend, as well as the 3-parameter logistic or Gompertz function (whose three 

parameters are labeled Bo, Kh, and L, rather than position, width, and shape factor). The script 

VoigtShapeFittingDemonstration.m uses the peakfit.m version 9.5 to fit a single Voigt profile and to 

calculate the Gaussian width component, Lorentzian width component, and alpha. It computes the 

theoretical Voigt profile with added random noise for realism. The script 

VoigtShapeFittingDemonstration2.m does the same for two overlapping Voigt profiles, using both fixed 

alpha and variable alpha models (shape numbers 20 and 30). (Requires voigt.m, halfwidth.m, and 

peakfit.m in the Matlab search path). The script GLBlendComparison compares the Voigt to the simpler 

Gauss/Lorentzian blend, showing that they are nearly identical within 0.3% relative difference. 
 

If you do not know the shape of your peaks, you can use peakfit.m or ipf.m (page 411) to try different 

https://terpconnect.umd.edu/~toh/spectrum/fitshape1.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape3.m
https://terpconnect.umd.edu/~toh/spectrum/FitMultipleShapes2
https://terpconnect.umd.edu/~toh/spectrum/voigt.m
https://terpconnect.umd.edu/~toh/spectrum/BWF.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtFixedAlpha.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtVariableAlpha.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/VoigtShapeFittingDemonstration.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtShapeFittingDemonstration2.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animated.gif


Page | 203  

shapes to see if one of the standard shapes included in those programs fits the data; try to find a peak in 

your data that is typical, isolated, and that has a good signal-to-noise ratio. For example, the Matlab 

functions ShapeTestS.m and ShapeTestA.m test the data in its input arguments x,y, assumed to be a 

single isolated peak, fits it with different candidate model peak shapes using peakfit.m, plots each fit in 

a separate figure window, and prints out a table of fitting errors in the command window. ShapeTestS.m 

tries seven different candidate symmetrical model peaks, and ShapeTestA.m tries six different 

candidate asymmetrical model peaks. The one with the lowest fitting error (and R2 closest to 1.000) is 

presumably the best candidate. Try the examples in the help files for each of these functions. But 

beware, if there is too much noise in your data, the results can be misleading. For example, even if the 

actual peak shape is something other than a Gaussian, the multiple Gaussians model is likely to fit 

slightly better because it has more degrees of freedom and can "fit the noise". The Matlab function 

peakfit.m has many more built-in shapes to choose from, but it is still a finite list and there is always 

the possibility that the actual underlying peak shape is not available in the software you are using or 

that it is simply not describable by a mathematical function. 
 

Signals with peaks of different shape types in one signal can be fit by the fitting function fitmultiple.m, 

which takes as input arguments a vector of peak types and a vector of shape variables. The sequence of 

peak types and shape parameters must be determined beforehand. To see how this is used, see 

Demofitmultiple.m. 
 

You can create your own fitting functions for any purpose; they are not limited to single algebraic 

expressions but can be arbitrarily complex multiple-step algorithms. For example, in the “Tfit” method 

for quantitative absorption spectroscopy (page 271), a model of the instrumentally-broadened 

transmission spectrum is fit to the observed transmission data, using a fitting function that performs 

Fourier convolution (page 106) of the transmission spectrum model with the known slit function of the 

spectrometer. The result is an alternative method of calculating absorbance that allows the optimization 

of signal-to-noise ratio and extends the dynamic range and calibration linearity of absorption 

spectroscopy far beyond the normal limits. 

Peak Fitting Functions for Matlab and Octave  

Here I describe more complete peak fitting 

functions that have additional capabilities: a 

built-in set of basic peak shapes that you can 

select, provision for estimating the “start” 

vector if you do not provide one, provision 

for handling baselines, ability to estimate 

peak parameter uncertainties, etc. These 

functions accept signals of any length, 

including those with non-integer and non-

uniform x-values, and can fit any number of 

peaks with Gaussian, equal-width Gaussian, 

fixed-width Gaussian, exponentially-

broadened Gaussian, exponentially-broadened equal-width Gaussians, bifurcated Gaussian, Lorentzian, 

https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestA.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestResults.txt
https://terpconnect.umd.edu/~toh/spectrum/fitmultiple.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitmultiple.m
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/fitM.m
https://terpconnect.umd.edu/~toh/spectrum/Convolution.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm


Page | 204  

fixed-width Lorentzians, equal-width Lorentzians, exponentially-broadened Lorentzian, bifurcated 

Lorentzian, logistic distribution, logistic function, triangular, alpha function, Pearson 7, exponential 

pulse, up sigmoid, down sigmoid, Gaussian/ Lorentzian blend, Breit-Wigner-Fano, and Voigt profile 

shapes. (A graphic that shows the basic peak shapes available is on page 419).  
 

There are two different versions, a command-line version called peakfit.m, for Matlab or Octave, and 

a keypress-operated interactive version called ipf.m or ipfoctave.m (page 411). For adding as an 

element on your own programs and for automating the fitting of large numbers of signals, peakfit.m is 

better; ipf.m is best for exploring a few signals to determine the best fitting range, peak shapes, number 

of peaks, baseline correction mode, etc. Both functions allow for simplified operation by providing 

default values for any unspecified input arguments; for example, the starting values, if not specified in 

the input arguments, are estimated by the program based on the length and x-axis interval of the data. 

Compared to the fitshape.m function described above, peakfit.m has a large number of built-in peak 

shapes, it does not require (although it can be given) the first-guess position and width of each 

component, and it has features for background correction and other useful features to improve the 

quality and reliability of fits. Both of these functions have been extensively tested on real experimental 

data by hundreds of researchers in many different fields). 
 

These functions can optionally estimate the expected standard deviation and interquartile range of the 

peak parameters using the bootstrap sampling 

method (page 166). See DemoPeakfitBootstrap for a 

self-contained demonstration of this function.   
 

The effect of random noise on the uncertainty of 

the peak parameters determined by iterative least-

squares fitting is readily estimated by the bootstrap 

sampling method (introduced on page 166). A 

simple demonstration of bootstrap estimation of the 

variability of an iterative least-squares fit to a single 

noisy Gaussian peak is given by my Matlab/ Octave 

function "BootstrapIterativeFit.m", which creates a 

single x,y data set consisting of a single noisy 

Gaussian peak, extracts bootstrap samples from that data set, performs an iterative fit to the peak on 

each of the bootstrap samples, and plots the distributions (histograms) of peak height, position, and 

width of the bootstrap samples. The syntax is BootstrapIterativeFit(TrueHeight, 

TruePosition, TrueWidth, NumPoints, Noise, NumTrials) where TrueHeight is the 

true peak height of the Gaussian peak, TruePosition is the true x-axis value at the peak 

maximum, TrueWidth is the true half-width (FWHM) of the peak, NumPoints is the number of points 

taken for the least-squares fit, Noise is the standard deviation of (normally-distributed) random noise, 

and NumTrials is the number of bootstrap samples.  
 

A typical example for BootstrapIterativeFit( 100,100,100,20,10,100); is displayed in the 

figure on the right, above. The results, displayed in the command window, are: 

>> BootstrapIterativeFit(100,100,100,20,10,100); 

https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipfoctave.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfitBootstrap.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit.m
https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit.gif


Page | 205  

      Peak Height  Peak Position  Peak Width 

mean:   99.27028    100.4002       94.5059 

STD:    2.8292      1.3264         2.9939 

IQR:    4.0897      1.6822         4.0164 

IQR/STD Ratio:    1.3518 
 

A similar demonstration function for two overlapping Gaussian peaks is available in 

"BootstrapIterativeFit2.m". Type "help BootstrapIterativeFit2" for more information. In both these 

simulations, the standard deviation (STD), as well as the interquartile range (IQR) of each of the peak 

parameters, are computed. This is done because the interquartile range is much less influenced 

by outliers. The distribution of peak parameters measured by iterative fitting is often non-normal, 

exhibiting a greater fraction of large deviations from the mean than is expected for a normal 

distribution. This is because the iterative procedure sometimes converges on an abnormal result, 

especially for multiple peak fits with many variable parameters. (You may be able to see this in the 

histograms plotted by these simulations, especially for the weaker peak in BootstrapIterativeFit2). In 

those cases, the standard deviation will be too high because of the outliers, and the IQR/STD ratio will 

be much less than the value of 1.34896 that is expected for a normal distribution. In that case, a better 

estimate of the standard deviation of the central portion of the distribution (without the outliers) 

is IQR/1.34896.  
 

It is important to emphasize that the bootstrap method predicts only the effect of random noise on the 

peak parameters for a fixed fitting model. It does not consider the possibility of peak parameter 

inaccuracy caused by using a non-optimum data range, or choosing an imperfect model, or by 

inaccurate compensation for the background/baseline, all of which are at least partly subjective and 

thus beyond the range of influences that can easily be treated by random statistics. If the data have 

relatively little random noise or have been smoothed to reduce the noise, then it is likely that model 

selection and baseline correction will be the major sources of peak parameter inaccuracy, which are not 

well predicted by the bootstrap method.  
 

For the quantitative measurement of peaks, it is instructive to compare the iterative least-squares 

method with simpler, less computationally intensive, methods. For example, the measurement of the 

peak height of a single peak of uncertain width and position could be done simply by taking the 

maximum of the signal in that region. If the signal is noisy, a more accurate peak height will be 

obtained if the signal is smoothed beforehand (page 41). But smoothing can distort the signal and 

reduce peak heights. Using an iterative peak fitting method, assuming only that the peak shape is 

known, can give the best possible accuracy and precision, without requiring smoothing even under high 

noise conditions, e.g. when the signal-to-noise ratio is 1, as in the demo script SmoothVsFit.m:  

True peak height = 1    NumTrials = 100    SmoothWidth = 50 
 

      Method        Maximum y    Max Smoothed y    Peakfit  

Average peak height   3.65         0.96625         1.0165 

Standard deviation    0.36395      0.10364         0.1157 

https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit2.m
http://en.wikipedia.org/wiki/Interquartile_range
https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit2.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsFit.m


Page | 206  

If peak area is measured rather than peak height, smoothing is unnecessary (unless to locate the peak 

beginning and end) but peak fitting still yields the best precision. See SmoothVsFitArea.m.  
 

It is also instructive to compare the iterative least-squares method with classical least-squares curve 

fitting, discussed on page 184, which can also fit peaks in a signal. The difference is that in the classical 

least-squares method, the positions, widths, and shapes of all the individual components are all known 

beforehand; the only unknowns are the amplitudes (e.g., peak heights) of the components in the mix-

ture. In non-linear iterative curve fitting, on the other hand, the positions, widths, and heights of the 

peaks are all unknown beforehand; the only thing that is known is the fundamental underlying shape of 

the peaks. The non-linear iterative curve fitting is more difficult to do (for the computer, anyway) and 

more prone to error, but it is necessary if you need to track shifts in peak position or width or to de-

compose a complex overlapping peak signal into fundamental components knowing only their shape. 

The Matlab/Octave script “CLSvsINLS.m” compares the classical least-squares (CLS) method with 

different variations of the iterative method (INLS) method for measuring the peak heights of three 

Gaussian peaks in a noisy test signal on a standard Windows PC, demonstrating that the fewer the 

number of unknown parameters, the faster and more accurate is the peak height calculation. 

Method  Positions  Widths      Execution time   % Accuracy 

  CLS     known     known         0.00133        0.30831 

  INLS    unknown   unknown       0.61289        0.6693 

  INLS    known     unknown       0.16385        0.67824 

  INLS    unknown   known         0.24631        0.33026 

  INLS    unknown   known (equal) 0.15883        0.31131 

Another comparison of multiple measurement techniques is presented in Case Study D (page 294). 
 

Note: If you are reading this book online, you can right-click on any of the m-file links and select 

Save Link As... to download them to your computer, then place them in the Matlab search path for use 

within Matlab. 

Accuracy and precision of peak parameters  

Iterative curve fitting is often used to measure the position, height, and width of peaks in a signal, espe-

cially when they overlap significantly. There are four major sources of error in measuring these peak 

parameters by iterative curve fitting. This section makes use of my peakfit.m function. Instructions are 

here or type "help peakfit". (Once you have peakfit.m in the Matlab search path, you can copy and 

paste, or drag and drop, any of the following single-line or multi-line code examples into the Matlab or 

Octave editor or into the command line and press Enter to execute it).  

a. Model errors.  

Peak shape. If you have the wrong model for your peaks, the results cannot be expected to be accurate; 

for instance, if your actual peaks are Lorentzian in shape, but you fit them with a Gaussian model or 

vice versa. For example, a single isolated Gaussian peak at x=5, with a height of 1.000 fits a Gaussian 

model virtually perfectly, using the Matlab user-defined peakfit function (page 392), as shown on the 

right. (The 5th input argument for the peakfit function specifies the shape of peaks to be used in the fit; 

https://terpconnect.umd.edu/~toh/spectrum/SmoothVsFitArea.m
https://terpconnect.umd.edu/~toh/spectrum/CLSvsINLS.m
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#D
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command


Page | 207  

"1" means Gaussian. See page 393 for a list of shape numbers). 
 

>> x=[0:.1:10];y=exp(-(x-5).^2);        

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,1,1) 

Peak#     Position     Height      Width        Area 

1            5            1       1.6651       1.7725 

MeanFitError =     7.8579e-07       R2=            1 
 

The "FitResults" are, from left to right, peak number, peak posi-

tion, peak height, peak width, and peak area. The MeanFitError, 

or just "fitting error", is the square root of the sum of the squares 

of the differences between the data and the best-fit model, as a 

percentage of the maximum signal in the fitted region. Recent 

versions of peakfit return also the R2, the "R-squared" or coeffi-

cient of determination, which is exactly 1 for a perfect fit. Note 

the agreement between the area (1.7725) with the theoretical area 

under the curve of exp(-x2), which is the square root of pi If you 

are reading this online, click for Wolfram Alpha solution. But 

this same peak, when fitted with the incorrect model (a Logistic model, peak shape number 3), gives a 

fitting error of 1.4% and height and width errors of 3% and 6%, respectively. However, the peak area 

error is only 1.7%, because the height and width errors partially cancel out. So, you do not have to have 

a perfect model to get a decent area measurement. 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,1,3) 

Peak#     Position     Height      Width          Area 

         Peak#     Position      Height       Width      Area 

1       5.0002      0.96652        1.762       1.7419 

MeanFitError =1.4095 

When fit with an even more incorrect Lorentzian model (peak shape 2, shown on the right, below), this 

peak gives a 7% fitting error and height, width, and area errors of 8%, 20%, and 17%, respectively.  

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,1,2) 

Peak#     Position    Height      Width         Area 

1            5       1.0876       1.3139       2.0579 

MeanFitError =5.7893 

But it is unlikely that your estimate of a model will be that far 

off; it is much more likely that your actual peaks are some un-

known combination of peak shapes, such as Gaussian with a little 

Lorentzian mixed in or vice versa, or some slightly asymmetrical 

modification of a standard symmetrical shape. So, if you use an 

available model that is at least close to the actual shape, the pa-

rameter errors may not be so bad and may, in fact, be better than 

other measurement methods. 

http://en.wikipedia.org/wiki/Gaussian_function#Properties
http://www.wolframalpha.com/input/?i=integral+of+y%3Dexp%28-x%5E2%29+from+-inf+to+inf
https://terpconnect.umd.edu/~toh/spectrum/PerfectFit.png
https://terpconnect.umd.edu/~toh/spectrum/LvsG.GIF


Page | 208  

So clearly the larger the fitting errors, the larger are the parameter errors, but the parameter errors are of 

course not equal to the fitting error (that would be too easy). Also, the peak height and width are the 

parameters most susceptible to errors. The peak positions are measured accurately even if the model is 

wrong if the peak is symmetrical and is not highly overlapping with other peaks.  
 

A good fit is not by itself proof that the shape function you have chosen is the correct one. In some cas-

es, the wrong function can give a fit that looks perfect. For example, the graph on the left above shows 

a fit of a real data set to a 5-peak Gaussian model that exhibits a low percent fitting error residuals that 

look random - usually an indicator of a good fit. But in fact, in this case, the model is wrong; those data 

came from an experimental domain where the underlying shape is fundamentally non-Gaussian but, in 

some cases, can look very like a Gaussian. As another example, a data set consisting of peaks with 

a Voigt profile peak shape can be fitted with a  weighted sum of a Gaussian and a Lorentzian almost as 

well as with an actual Voigt model, even though those models are not the same mathematically; the dif-

ference in fitting error is so small that it would likely be obscured by the random noise if it were a real 

experimental signal. The script GLBlendComparison compares the Voigt to the simpler 

Gauss/Lorentzian blend, showing that they are nearly identical within 0.3% relative difference. The 

same thing can occur in sigmoidal signal shapes: a pair of simple 2-parameter logistic functions seems 

to fit this example data pretty well, with a fitting 

error of less than 1%; you would have no reason to 

doubt the goodness of fit unless the random noise is 

low enough so you can see that the residuals are 

wavy. In fact, a 3-parameter logistic (Gompertz 

function) fits much better, and the residuals are ran-

dom, not wavy, which indicates a better fit. In such 

cases you cannot depend solely on what looks like a 

good fit to determine whether the fit is model is op-

timum; sometimes you need to know more about 

the peak shape expected in that kind of experiment, 

especially if the data are noisy. At best, if you do 

get a good fit with random non-wavy residuals, you 

can claim only that the data are consistent with the 

proposed model.  
 

In some applications the accuracy of the model is not so important. Take the example of quantitative 

analysis applications, where the peak heights or areas measured by curve fitting is used to determine 

the concentration of the substance that created the peak by constructing a calibration curve (page 447) 

based on laboratory prepared standards solutions of known concentrations. In that case, the necessity of 

using the exact peak model is lessened, if the shape of the unknown peak is constant and independent 

of concentration. If the wrong model shape is used, the R2 for curve fitting will be poor (much less than 

1.000) and the peak heights and areas measured by curve fitting will be inaccurate, but the error will be 

the same for the unknown samples and the known calibration standards, so the error will cancel out. As 

a result, the R2 for the calibration curve can be very high (0.9999 or better) and the measured concen-

trations will be no less accurate than they would have been with a perfect peak shape model. Even so, 

https://terpconnect.umd.edu/~toh/spectrum/GoodFitWrongModel.png
https://terpconnect.umd.edu/~toh/spectrum/voigt.m
https://terpconnect.umd.edu/~toh/spectrum/2GL.png
https://terpconnect.umd.edu/~toh/spectrum/2voigt.png
https://terpconnect.umd.edu/~toh/spectrum/2voigtNoisy.png
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2animated.gif
https://terpconnect.umd.edu/~toh/spectrum/WrongModel.png
https://en.wikipedia.org/wiki/Gompertz_function
https://terpconnect.umd.edu/~toh/spectrum/RightModel.png
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html


Page | 209  

it is useful to use as accurate a model peak shape as possible, because the R2 for curve fitting will work 

better as a warning indicator if something unexpected goes wrong during the analysis (such as an in-

crease in the noise or the appearance of an interfering peak from a foreign substance). 

See PeakShapeAnalyticalCurve.m for a Matlab/Octave demonstration. 

Number of peaks. Another source of model error occurs if you have the wrong number of peaks in 

your model, for example if the signal actually has two peaks but you try to fit it with only one peak. 

Let’s take an obvious case first. In the example below, the Matlab code generates a simulated signal 

with of two Gaussian peaks at x=4 and x=6 with peaks heights of 1.000 and 0.5000 respectively and 

widths of 1.665, plus random noise with a standard deviation 5% of the height of the largest peak (a 

signal-to-noise ratio of 20):  

>> x=[0:.1:10]; 

>> y=exp(-(x-6).^2)+.5*exp(-(x-4).^2)+.05*randn(size(x)); 

In a real experiment, you would not usually know the peak positions, heights, and widths; you would 

be using curve fitting to measure those parameters. Let us assume that, based on previous experience or 

some preliminary trial fits, you have established that the optimum peak shape model is Gaussian, but 

you do not know for sure how many peaks are in this group. If you start out by fitting this signal with 

a single-peak Gaussian model, you get: 
 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,1,1) 
 

   Peak#   Position   Height     Width      Area 

   1       5.5291     0.86396    2.9789    2.7392 

MeanFitError = 10.467  

Obviously, this is not right. The residual plot 

(bottom panel) shows a "wavy" structure that is 

clearly visible in the random scatter of points 

due to the random noise in the signal. This 

means that the fitting error is not limited by the 

random noise; it is a clue that the model is not 

quite complete.  

However, a fit with two peaks yields much bet-

ter results (The 4th input argument for the peak-

fit function specifies the number of peaks to be 

used in the fit). 

 

 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,2,1) 

      Peak#    Position  Height    Width    Area 

       1      4.0165     0.50484   1.6982   0.91267 

       2      5.9932     1.0018    1.6652   1.7759 

MeanFitError = 4.4635 

https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve.m
https://terpconnect.umd.edu/~toh/spectrum/peak.png


Page | 210  

Now the residuals have a random scatter of points, 

as would be expected if the signal had been accu-

rately fit except for the random noise. Moreover, 

the fitting error is less than half of the error with 

only one peak. In fact, the fitting error is just about 

what we would expect in this case based on the 5% 

random noise in the signal (estimating the relative 

standard deviation of the points in the baseline vis-

ible at the edges of the signal). Because this is a 

simulation in which we know beforehand the true 

values of the peak parameters (peaks at x=4 and 

x=6 with peaks heights of 1.0 and 0.50 respective-

ly and widths of 1.665), we can calculate the pa-

rameter errors (the difference between the real peak positions, heights, and widths and the measured 

values). Note that they are quite accurate (in this case within about 1% relative on the peak height and 

2% on the widths), which is better than the 5% random noise in this signal because of the averaging 

effect of fitting to multiple data points in the signal.  
 

However, if going from one peak to two peaks gave us a better fit, why not go to three peaks? If there 

were no noise in the data, and if the underlying peak shape were perfectly matched by the model, then 

the fitting error would have already been essentially zero with two model peaks. Adding a third peak to 

the model would yield a vanishingly small height for that third peak. But in our examples here, as in 

real data, there is always some random noise, and the result is that the third peak height will not be ze-

ro. Changing the number of peaks to three gives these results:  

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,3,1) 
 

          Peak#  Position   Height    Width     Area 

            1    4.0748     0.51617   1.7874    0.98212 

            2    6.7799     0.089595  2.0455    0.19507 

            3    5.9711     0.94455   1.53      1.5384 

MeanFitError = 4.3878 

The fitting algorithm has now tried to fit an 

additional low-amplitude peak (numbered 

peak 2 in this case) located at x=6.78. The fit-

ting error is lower than for the 2-peak fit, but 

only slightly lower, and the residuals are no 

less visually random that with a 2-peak fit. So, 

knowing nothing else, a 3-peak fit might be 

rejected on that basis alone. In fact, there is a 

serious downside to fitting more peaks than are 

present in the signal: it increases the parame-

ter measurement errors of the peaks that are 

present. Again, we can prove this because we 

https://terpconnect.umd.edu/~toh/spectrum/2peak.png
https://terpconnect.umd.edu/~toh/spectrum/3peak.png


Page | 211  

know beforehand the true values of the peak parameters: clearly, the peak positions, heights, and 

widths of the two real peaks than are in the signal (peaks 1 and 3) are significantly less accurate than 

those of the 2-peak fit.  
 

Moreover, if we repeat that fit with the same signal but with a different sample of random noise (simu-

lating a repeat measurement of a stable experimental signal in the presence of random noise), the addi-

tional third peak in the 3-peak fit will bounce around all over the place (because the third peak is fitting 

the random noise, not an actual peak in the signal).  

>> x=[0:.1:10]; 

>> y=exp(-(x-6).^2)+.5*exp(-(x-4).^2)+.05*randn(size(x)); 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,3,1) 

        Peak#   Position    Height     Width      Area 

        1       4.115      0.44767     1.8768     0.89442 

        2       5.3118     0.09340     2.6986     0.26832 

        3       6.0681     0.91085     1.5116     1.4657 

MeanFitError = 4.4089 

With this new set of data, two of the peaks (num-

bers 1 and 3) have roughly the same position, 

height, and width, but peak number 2 has changed 

substantially compared to the previous run. Now 

we have an even more compelling reason to reject 

the 3-peak model: the 3-peak solution is not stable. 

And because this is a simulation in which we know 

the right answers, we can verify that the accuracy 

of the peak heights is substantially poorer (about 

10% error) than expected with this level of random 

noise in the signal (5%). If we were to run a 2-peak 

fit on the same new data, we get much better measurements of the peak heights. 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,2,1) 

         Peak#   Position    Height     Width     Area 

          1      4.1601      0.49981    1.9108    1.0167 

          2      6.0585      0.97557    1.548     1.6076 

MeanFitError = 4.4113 

If this is repeated several times, it turns out that the peak parameters of the peaks at x=4 and x=6 are, 

on average, more accurately measured by the 2-peak fit. In practice, the best way to evaluate a pro-

posed fitting model is to fit several repeat measurements of the same signal (if that is practical experi-

mentally) and to compute the standard deviation of the peak parameter values. In real experimental 

work, of course, you usually do not know the right answers beforehand, so that is why it is important to 

use methods that work well when you do know. Here’s an example of a set of real data that was fit with 

a succession of 2, 3, 4 and 5 Gaussian models, until the residuals became random. With each added 

component, the fitting error becomes smaller and the residuals become more random. But beyond 5 

components point, there is little to be gained by adding more peaks to the model. Another way to de-

termine the minimum number of models peaks needed is to plot the fitting error vs the number of mod-

https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit2components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit3components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit4components.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter_2_fit5components.png
https://terpconnect.umd.edu/~toh/spectrum/2peakFixedWidth.png


Page | 212  

el peaks; the point at which the fitting error reaches a minimum, and increases afterward, would be the 

fit with the "ideal combination of having the best fit without excess/unnecessary terms" in the words of 

Wikipedia. The Matlab/Octave function testnumpeaks.m (R = testnumpeaks(x, y, peakshape, 

extra, NumTrials, MaxPeaks)) applies this idea by fitting the x,y data to a series of models of 

shape peakshape containing 1 to MaxPeaks model peaks. The correct number of underlying peaks is 

either the model with the lowest fitting error, or, if two or more models have about the same fitting er-

ror, the model with the least number of peaks. The Matlab/Octave demo script NumPeaksTest.m uses 

this function with noisy computer-generated signals containing a user-selected 3, 4, 5 or 6 underlying 

peaks. With very noisy data, however, the technique is not always reliable. 

Peak width constraints. Finally, there is one more thing that we can do that might improve the peak 

parameter measurement accuracy, and it concerns the peak widths. In all the above simulations, the 

basic assumption that all the peak parameters were unknown and independent of one another. In some 

types of measurements, however, the peak widths of each group of adjacent peaks are all expected to 

be equal, based on first principles or previous experiments. This is a common situation in analytical 

chemistry, especially in atomic spectroscopy and in chromatography, where the peak widths are deter-

mined largely by instrumental factors that are the same for all peaks in a given region.  
 

In the current simulation, the true widths of both peaks are in fact equal to 1.665, but all the results 

above show that the  measured peak widths are close but not quite equal, due to random noise in the 

signal. The unequal peak widths are a consequence of the random noise, not real differences in peak 

width. But we can introduce an equal-width constraint into the fit by using peak shape 6 (Equal-width 

Gaussians) or peak shape 7 (Equal-width Lorentzian). Using peak shape 6 on the same set of data as 

the previous example: 

>> [FitResults,MeanFitError]=peakfit([x' y'],5,10,2,6) 

            Peak#  Position   Height    Width    Area 

            1     4.0293     0.52818   1.5666   0.8808 

            2     5.9965     1.0192    1.5666   1.6997 

MeanFitError = 4.5588 
 

This "equal width" fit forces all the peaks within one group to have exactly the same width, but that 

width is determined by the program from the data. The result is a slightly higher fitting error (in this 

case 4.5% rather than 4.4%), but - perhaps surprisingly - the peak parameter measurements are usual-

ly more accurate and more reproducible (Specifically, the relative standard deviations are on average 

lower for the equal-width fit than for an unconstrained-width fit to the same data, assuming of course 

that the true underlying peak widths are equal). This is an exception to the general expectation that 

lower fitting errors result in lower peak parameter errors. It is an illustration of the general rule that the 

more you know about the nature of your signals, and the closer your chosen model adheres to that 

knowledge, the better the results. In this case we knew that the peak shape was Gaussian (although we 

could have verified that choice by trying other candidate peaks shapes). We determined that the number 

of peaks was 2 by inspecting the residuals and fitting errors for 1, 2, and 3 peak models. And then we 

introduced the constraint of equal peak widths within each group of peaks, based on prior knowledge of 

the experiment rather than on inspection of residuals and fitting errors. Here's another example, with 

real experimental data from a measurement where the adjacent peak widths are expected to be equal, 

http://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2
https://terpconnect.umd.edu/~toh/spectrum/testnumpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/NumPeaksTest.m


Page | 213  

showing the result of an unconstrained fit and an equal width fit; the fitting errors are slightly larger for 

the equal-width fit, but that is to be preferred in this case. Not every experiment can be expected to 

yield peaks of equal width, but when it does, it is better to make use of that constraint.  

 

Fixed-width shapes. Going one step beyond equal widths (in peakfit version 7.6 and later), you can 

also specify a fixed-width shapes (shape numbers 11, 12, 34-37), in which the widths of the peaks are 

known beforehand, but are not necessarily equal, and are specified as a vector in input argument 10, 

one element for each peak, rather than being determined from the data as in the equal-width fit above. 

Introducing this constraint onto the previous example and supplying an accurate width as the 10th input 

argument: peakfit([x' y'],0,0,2,11,0,0,0,0,[1.6661.666]) 
 

        Peak#     Position     Height      Width       Area 

          1       3.9943      0.49537      1.666      0.8785 

          2       5.9924      0.98612      1.666      1.7488 

MeanFitError = 4.8128 

Comparing to the previous equal-width fit, the fitting error of 4.8% is larger here (because there are 

fewer degrees of freedom to minimize the error), but the parameter errors, particularly the peak heights, 

are more accurate because the width information provided in the input argument was more accurate 

(1.666) than the width determined by the equal-width fit (1.5666). Again, not every experiment yields 

peaks of known width, but when it does, it is better to make use of that constraint. For example, see 

Example 35 (page 406) and the Matlab/Octave script WidthTest.m (typical results for a Gaussian/ Lo-

rentzian blend shape shown below, showing that the more constraints, the greater the fitting error but 

the lower the parameter errors, if the constraints are accurate). 

 

Relative percent error Fitting 

error 

Position 

Error 

Height 

Error 

Width 

Error 

Unconstrained shape factor and widths: 

shape 33 

0.78% 0.39% 0.80% 1.66% 

Fixed shape factor and variable widths: 

shape 13 

0.79% 0.25% 1.3% 0.98% 

Fixed shape factor and fixed widths: shape 

35 

 0.8% 0.19% 0.695 0.0% 

Multiple linear regression (peakfit version 9 or later). Finally, note that if the peak positions are also 

known, and only the peak heights are unknown, you do not even need to use the iterative fitting method 

at all; you can use the easier and faster multilinear regression technique (also called classical least-

squares, page 184) which is implemented by the function cls.m and by version 9 of peakfit.m as shape 

number 50. Although multilinear regression results in fitting error slightly greater (and R2 lower), the 

errors in the measured peak heights are often less, as in this example from peakfit9demo.m, where the 

true peak heights of the three overlapping Gaussian peaks are 10, 30, and 20.  
 

 

https://terpconnect.umd.edu/~toh/spectrum/Unconstrained4G.png
https://terpconnect.umd.edu/~toh/spectrum/EqualWidth4G.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Examples
https://terpconnect.umd.edu/~toh/spectrum/WidthTest.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9.png


Page | 214  

Multilinear regression results (known position and width): 

           Peak    Position     Height       Width   Area 

            1         400      9.9073         70     738.22 

            2         500      29.995         85     2714 

            3         560      19.932         90     1909.5 

%fitting error=1.3048   R2= 0.99832   %MeanHeightError=0.427 

Unconstrained iterative non-linear least-squares results: 

           Peak   Position     Height      Width    Area 

            1      399.7      9.7737      70.234    730.7 

            2      503.12     32.262      88.217    3029.6 

            3      565.08     17.381      86.58     1601.9 

%fitting error=1.3008   R2= 0.99833   %MeanHeightError=7.63 
 

This demonstrates dramatically how different measurement methods can look the same, and give fitting 

errors almost the same, and yet differ greatly in parameter measurement accuracy. (The similar script 

peakfit9demoL.m is the same thing with Lorentzian peaks). 

SmallPeak.m is a demonstration script comparing all these techniques applied to the challenging prob-

lem of measuring the height of a small peak that is closely overlapped with, and completely obscured 

by, a much larger peak. It compares unconstrained, equal-width, and fixed-position iterative fits (using 

peakfit.m) with a classical least-squares fit in which only the peak heights are unknown (using cls.m). It 

helps to spread out the four figure windows, so you can observe the dramatic difference in the stability 

of the different methods. A final table of relative percent peak height errors shows that the more the 

constraints, the better the results (but only if the constraints are justified). The real key is to know 

which parameters can be relied upon to be constant and which must be allowed to vary.  

Here's a screen video (MorePeaksLowerFittingError.mp4) of a real-data experiment using the 

interactive peak fitter ipf.m (page 411) with a complex experimental signal in which several different 

fits were performed using models from 4 to 9 variable-width, equal-width, and fixed-width Gaussian 

peaks. The fitting error gradually decreases from 11% initially to 1.4% as more peaks are used, but is 

that really justified? If the objective is simply to get a good fit, for example to estimate the random 

noise in the signal, then do whatever it takes. But if the objective is to extract some useful information 

from the model peak parameters, then more specific knowledge about that experiment is needed: how 

many peaks are really expected; are the peak widths really expected to be constrained? Note that in this 

case the residuals (bottom panel) are not random and always have a distinct "wavy" character, 

suggesting that the data may have been smoothed before curve fitting (not a good idea: see 

http://wmbriggs.com/blog/?p=195). Thus, there is a real possibility that some of those 9 peaks are 

simply "fitting the noise", as will be discussed further on page 287. 

b. Background correction 

The peaks that are measured in many scientific instruments are sometimes superimposed on a non-

specific background or baseline. Ordinarily, the experimental protocol is designed to minimize the 

background or to compensate for the background, for example by subtracting a "blank" signal from the 

signal of an actual specimen. But even so, there is often a residual background that cannot be 

eliminated completely experimentally. The origin and shape of that background depend on the specific 

measurement method, but often this background is a broad, tilted, or curved shape, and the peaks of 

https://terpconnect.umd.edu/~toh/spectrum/peakfit9demoL.m
https://terpconnect.umd.edu/~toh/spectrum/SmallPeak.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/MorePeaksLowerFittingError.mp4
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
http://wmbriggs.com/blog/?p=195
https://en.wikipedia.org/wiki/Blank_%28solution%29


Page | 215  

interest are comparatively narrow features superimposed on that background. In some cases, the 

baseline may be another interfering peak that overlaps the peaks of interest. The presence of the 

background has relatively little effect on the peak positions, but it is impossible to measure the peak 

heights, width, and areas accurately unless something is done to account for the background.  
 

   Various methods are described in the literature for estimating and subtracting the background in such 

cases. The simplest assumption is that the background can be approximated as a simple function in the 

local group of peaks being fit together, for example as a constant (flat), straight-line (linear) or curved 

line (quadratic). This is the basis of the "BaselineMode" modes in the ipf.m, iSignal.m, and iPeak.m 

functions, which are selected by the T key to cycle through OFF, linear, quadratic, flat, and mode(y) 

modes. In the flat mode, a constant baseline is included in the curve fitting calculation. In linear mode, 

a straight-line baseline connecting the two ends of the signal segment in the upper panel will be 

automatically subtracted before the iterative curve fitting. In quadratic mode, a parabolic baseline is 

subtracted. In the last two modes, you must adjust the pan and zoom controls to isolate the group of 

overlapping peaks to be fit, so that the signal returns to the local background at the left and right ends 

of the window. In the mode(y) mode, the most common value is subtracted from all points.  

Example of an experimental chromatographic signal in ipf.m. From left to right, (1) Raw data with 

peaks on a tilted baseline. The three weak peaks of interest are selected using the pan and zoom 

controls, adjusted so that the signal returns to the local background at the edges of the segment 

displayed in the upper window; (2) The linear baseline is subtracted when BaselineMode set to 1 in 

ipf.m by pressing the T key; (3) The selected region is fit with a three-peak Gaussian model, activated 

by pressing 3, G, F (meaning 3 peaks, Gaussian, Fit). Press R to print out a peak table. 

 

Alternatively, it may be better to subtract the background from the entire signal first, before further 

operations are performed. As before, the simplest assumption is that the background is piece-wise 

linear, that is, can be approximated as a series of small straight-line segments. This is the basis of the 

multiple-point background subtraction mode in ipf.m, iPeak.m, and in iSignal.  The user enters the 

number of points that is thought to be sufficient to define the baseline, then click where the baseline is 

thought to be along the entire length of the signal in the lower whole-signal display (e.g. on the valleys 

between the peaks). After the last point is clicked, the program interpolates between the clicked points 

and subtracts the piece-wise linear background from the original signal. 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/Baseline.GIF
https://terpconnect.umd.edu/~toh/spectrum/BaselineSubtracted.GIF
https://terpconnect.umd.edu/~toh/spectrum/BaselineSubtractedFit.GIF


Page | 216  

      

  From left to right, (1) Raw data with peaks superimposed on the baseline. (2) Background subtracted 

from the entire signal using the multipoint background subtraction function in iPeak.m (ipf.m and 

iSignal.m have the same function). 

Sometimes, even without an actual baseline pre-

sent, the peaks may overlap enough so that the 

signal never returns to the baseline, making it 

seem that there is a baseline to be corrected. 

This can occur especially with peaks shapes that 

have gradually sloping sides, such as the Lo-

rentzian, as shown in this example. Curve fit-

ting without baseline correction might work in 

that case.  
 

In some cases, the background may be modeled 

as a broad peak whose maximum falls outside of 

the range of data acquired, as in the real-data 

example on the left. It may be possible to fit the 

off-screen peak simply by including an extra 

peak in the model to account for the baseline. In 

the example on the left, above, there are three clear peaks visible, superimposed on a tilted baseline. 

In this case, the signal was fit nicely with four, rather than three, variable-width Gaussians, with an er-

ror of only 1.3%. The additional broad Gaussian, with a peak at x = -38.7, serves as the baseline. (Ob-

viously, you should not use the equal-width shapes for this, because the background peak is broader 

than the other peaks). Another real-data example exhibits four on-screen peaks of very different heights 

and widths on a broad baseline. Such a signal can be difficult to fit because the starting point for most 

iterative fits is that all peaks have about the same width. So, in some cases, assigning a custom “start” 

vector may be necessary. Using the ipf.m (page 412) ‘C’ and ‘W’ keys can help. 
 

In another real-data example of an experimental spectrum, the linear baseline subtraction ("Baseline-

Mode") mode described above is used in conjunction with a 5-Gaussian model, with one Gaussian 

component fitting the broad peak that may be part of the background and the other four fitting the 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/Demofindpeaksb3Large.png
https://terpconnect.umd.edu/~toh/spectrum/FiveLorentzianBackground.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/ChromB.gif
https://terpconnect.umd.edu/~toh/spectrum/ChromBC.gif
https://terpconnect.umd.edu/~toh/spectrum/4peaks.png


Page | 217  

sharper peaks. This fits the data very well (0.5% fitting error), but a fit like this can be difficult to get, 

because there are so many other solutions with slightly higher fitting errors; it may take several trials. It 

can help if you specify the start values for the iterated variables, rather than using the default choices; 

all the software programs described here have that capability.  

The Matlab/Octave function peakfit.m will accept a peak shape that is a vector of different shape 

numbers, which can be useful for baseline correction. As an example, consider a weak Gaussian peak 

on a sloped straight-line baseline, using a 2-component fit with one Gaussian component and one 

variable-slope straight line ('slope', shape 26), specified by using the vector ([1 26]) as the shape 

argument: 
 

x=8:.05:12;y=x+exp(-(x-10).^2);  

[FitResults,GOF]= peakfit([x;y],0,0,2,[1 26],[1 1],1,0) 
 

  Peak#    Position    Height     Width      Area            

    1         10          1     1.6651     1.7642 

    2      4.485    0.22297       0.05     40.045 

GOF = 0.0928    0.9999 

If the baseline seems to be curved rather than straight, you can model the baseline with a quadratic 

(shape 46) rather than a linear slope (peakfit version 8 and later).  
 

If the baseline seems to be different on either side of the peak, you can try to model the baseline with 

an S-shape (sigmoid), either an up-sigmoid, shape 10 (click for graphic), peakfit([x;y],0,0,2,[1 

10],[0 0], or a down-sigmoid, shape 23 (click for graphic), peakfit([x;y],0,0,2,[1 23],[0 

0], in these examples leaving the peak modeled as a Gaussian. 
 

If the signal is very weak compared to the baseline, the fit can be helped by adding rough first guesses 

('start') using the 'polyfit' function to generate automatic first guesses for the sloping baseline. For 

example, with two overlapping signal peaks and a 3-peak fit with peakshape=[1 1 26].  
 

x=4:.05:16; 

y=x+exp(-(x-9).^2)+exp(-(x-11).^2)+.02.*randn(size(x)); 

start=[8 1 10 1 polyfit(x,y,1)]; 

peakfit([x;y],0,0,3,[1 1 26],[1 1 1],1,start) 

 A similar technique can be employed in a spreadsheet, as demonstrated in CurveFit-

ter2GaussianBaseline.xlsx (graphic).  
 

The downside to including the baseline as a variable component is that it increases the number of de-

grees of freedom, increases the execution time, and increases the possibility of unstable fits. Specifying 

start values can help. 

c. Random noise in the signal.  
Any experimental signal has a certain amount of random noise, which means that the individual data 

points scatter randomly above and below their true values. The assumption is ordinarily made that the 

scatter is equally above and below the true signal so that the long-term average approaches the true 

mean value; the noise "averages to zero" as it is often said. The practical problem is that any given re-

cording of the signal contains only one finite sample of the noise. If another recording of the signal is 

made, it will contain another independent sample of the noise. These noise samples are not infinitely 

https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/UpSigmoidBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/DownSigmoidBaseline.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2GaussianBaseline.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2GaussianBaseline.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2GaussiansPlusBaseline.png


Page | 218  

long and therefore do not represent the true long-term nature of the noise. This presents two problems: 

(1) an individual sample of the noise will not "average to zero" and thus the parameters of the best-fit 

model will not necessarily equal the true values, and (2) the magnitude of the noise during one sample 

might not be typical; the noise might have been randomly greater or smaller than average during that 

time. This means that the mathematical "propagation of error" methods, which seek to estimate the 

likely error in the model parameters based on the noise in the signal, will be subject to error (underes-

timating the error if the noise happens to be lower than average and overestimating the errors if the 

noise happens to be larger than average).  
 

A better way to estimate the parameter errors is to record multiple samples of the signal, fit each of 

those separately, compute the model parameters from each fit, and calculate the standard error of each 

parameter. However, if that is not practical, it is possible to simulate such measurements by adding 

random noise to a model with known parameters, then fitting that simulated noisy signal to determine 

the parameters, then repeating the procedure repeatedly with different sets of random noise. This is ex-

actly what the script DemoPeakfit.m (which requires the peakfit.m function) does for simulated noisy 

peak signals such as those illustrated below. It is easy to demonstrate that, as expected, the average fit-

ting error precision and the relative standard deviation of the parameters increases directly with the 

random noise level in the signal. But the precision and the accuracy of the measured parameters al-

so depend on which parameter it is (peak positions are always measured more accurately than their 

heights, widths, and areas) and on the peak height and extent of peak overlap (the two left-most peaks 

in this example are not only weaker but also more overlapped than the right-most peak, and therefore 

exhibit poorer parameter measurements). In this example, the fitting error is 1.6% and the percent rela-

tive standard deviation of the parameters ranges from 0.05% for the peak position of the largest peak to 

12% for the peak area of the smallest peak. 

   

Overlap matters: The errors in the values of peak parameters measured by curve fitting depend not on-

ly on the characteristics of the peaks in question and the signal-to-noise ratio but also upon other 

peaks that are overlapping it. From left to right: 
  

(a) a single peak at x=100 with a peak height of 1.0 and width of 30 is fitted with a Gaussian model, 

yielding a relative fit error of 4.9% and relative standard deviation of peak position, height, and width 

of 0.2%, 0.95%, and 1.5%, respectively.  
 

(b) The same peak, with the same noise level but with another peak overlapping it, actually reduces the 

relative fit error to 2.4% (simply because the addition of the second peak increases overall signal am-

https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/1peak.GIF
https://terpconnect.umd.edu/~toh/spectrum/2peaks.GIF
https://terpconnect.umd.edu/~toh/spectrum/3peaks.GIF


Page | 219  

plitude). However, it increases the relative standard deviation of peak position, height, and width to 

0.84%, 5%, and 4% - a seemingly better fit, but with poorer precision for the first peak. 
 

(3) The addition of a third (larger but non-overlapping) peak reduces the fit error further to 1.6%, but 

the relative standard deviation of peak position, height, and width of the first peak are about the same 

as with two peaks, because the third peak does not overlap the first one significantly. 

If the average noise in the signal is not known 

or its probability distribution is uncertain, it is 

possible to use the bootstrap sampling method 

(page 166), illustrated by the animation on the 

left, to estimate the uncertainty of the peak 

heights, positions, and widths, as illustrated on 

the left and as described in detail on page 166. 

The keypress operated interactive function 

ipf.m (page 411) has this function, which is ac-

tivated by the 'N' key; click on the figure to 

open a GIF animation shown on the left. Or 

press ‘V’ to compute the expected standard de-

viations of the all the peak parameters using this 

method.  

 

One way to reduce the effect of noise is to take 

more data. If the experiment makes it possible to reduce the x-axis interval between points, or to take 

multiple readings at each x-axis values, then the resulting increase in the number of data points in each 

peak should help reduce the effect of noise. As a demonstration, using the script DemoPeakfit.m to cre-

ate a simulated overlapping peak signal like that shown above left, it is possible to change the interval 

between x values and thus the total number of data 

points in the signal. With a noise level of 1% and 75 

points in the signal, the fitting error is 0.35 and the 

average parameter error is 0.8%. With 300 points in 

the signal and the same noise level, the fitting error 

is essentially the same, but the average parameter 

error drops to 0.4%, suggesting that the accuracy of 

the measured parameters varies inversely with the 

square root of the number of data points in the 

peaks.  
 

The figure on the right illustrates the importance of 

sampling interval and data density. (You can down-

load the data file "udx" in TXT format or in Matlab 

MAT format). The signal consists of two Gaussian peaks, one located at x=50 and the second at x=150. 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/udx.txt
https://terpconnect.umd.edu/~toh/spectrum/udx.mat
https://terpconnect.umd.edu/~toh/spectrum/udx10noise.png
https://terpconnect.umd.edu/~toh/spectrum/Bootstrap3peak.gif


Page | 220  

Both peaks have a peak height of 1.0 and a peak half-width of 10. Normally-distributed random white 

noise with a standard deviation of 0.1 has been added to the entire signal. The x-axis sampling interval, 

however, is different for the two peaks; it is 0.1 for the first peak and 1.0 for the second peak. This 

means that the first peak is characterized by ten times more points than the second peak. When you fit 

these peaks separately to a Gaussian model (e.g., using peakfit.m or ipf.m), you will find that all the 

parameters of the first peak are measured more accurately than the second, even though the fitting error 

is not much different: 

First peak:                                                                 Second peak: 

Percent Fitting Error=7.6434%          Percent Fitting Error=8.8827% 

Peak#  Position  Height   Width        Peak#  Position   Height   Width  

1       49.95    1.0049   10.111       1      149.64    1.0313    9.941 

Noise color. So far, this discussion has applied to white noise. But other noise colors (page 29) have 

different effects. Low-frequency weighted (“pink”) noise has a greater effect on the accuracy of peak 

parameters measured by curve fitting, and, in a nice symmetry, high-frequency “blue” noise has a 

smaller effect on the accuracy of peak parameters that would be expected based on its standard devia-

tion. This is because the information in a smooth peak signal is concentrated at low frequencies. An 

example of this occurs when you apply curve fitting is to a signal that has been deconvoluted (page 

109) to remove a broadening effect. This is the reason smoothing before curve fitting does not help 

(page 228) because the peak signal information is concentrated in the low-frequency range but smooth-

ing reduces mainly the noise in the high-frequency range.  

Sometimes you may notice that the residuals in a curve-fitting operation are structured into bands or 

lines rather than being completely random. This can occur if either the independent variable or 

the dependent variable is quantized into discrete steps rather than continuous. It may look strange, but it 

has little effect on the results if the random noise is larger than the steps. When there is noise in the data 

(in other words, pretty much always), the exact results will depend on the region selected for the fit - 

for example, the results will vary slightly with the pan and zoom setting in ipf.m, and the more noise, 

the greater the effect.  

d. Iterative fitting errors 
Unlike multiple linear regression, curve fitting, 

iterative methods may not always converge on the 

exact same model parameters each time the fit is 

repeated with slightly different starting values (first 

guesses). The Interactive Peak Fitter ipf.m (page 411) 

makes it easy to test this, because it uses slightly 

different starting values each time the signal is fit 

(by pressing the F key in ipf.m, for example). Even 

better, by pressing the X key, the ipf.m function 

silently computes 10 fits with different starting 

values and takes the one with the lowest fitting error. 

A basic assumption of any curve fitting operation is 

that the fitting error (the root-mean-square difference between the model and the data) is minimized; 

https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/QuantizationX.png
https://terpconnect.umd.edu/~toh/spectrum/QuantizationY.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfitErrorTest2.GIF


Page | 221  

the parameter errors (the difference between the actual parameters and the parameters of the best-fit 

model) will also be minimized. This is generally a good assumption, as demonstrated by the graph 

above which shows typical percent parameters errors as a function of fitting error for the left-most peak 

in one sample of the simulated signal generated by DemoPeakfit.m (shown in the previous section). 

The variability of the fitting error here is caused by random small variations in the first guesses, rather 

than by random noise in the signal. In many practical cases, there is enough random noise in the signals 

that the iterative fitting errors within one sample of the signal are small compared to the random noise 

errors between samples. Remember that the variability in measured peak parameters from fit to fit of a 

single sample of the signal is not a good estimate of the precision or accuracy of those parameters, for 

the simple reason that those results represent only one sample of the signal, noise, and background. The 

sample-to-sample variations are likely to be much greater than the within-sample variations due to the 

iterative curve fitting. (In this case, a "sample" is a single recording of signal). To estimate the 

contribution of random noise to the variability in measured peak parameters when only a single sample 

if the signal is available, the bootstrap method can be used (page 166). 
 

Selecting the optimum data region of interest. When you perform a peak fitting using ipf.m (page 411), 

you have control over data region selected by using the pan and zoom controls (or, using the command-

line function peakfit.m, by setting the “center” and “window” input arguments). Changing these 

settings usually changes the resulting fitted peak parameters. If the data were perfect, say, a 

mathematically perfect peak shape with no random noise, then the pan and zoom settings would make 

no difference at all; you would get the exact same values for peak parameters at all settings, assuming 

only that the model you are using matches the actual shape. But of course, in the real world, data are 

never mathematically perfect and noiseless. The greater the amount of random noise in the data, or the 

greater the discrepancy between your data and the model you select, the more the measured parameters 

will vary if you fit different regions using the pan and zoom controls. This is simply an indication of 

the unavoidable uncertainty in the measured parameters. 
 

A difficult case.  

As a dramatic example of the ideas in the previous sections, consider this simulated example signal 

above. This consists of two Gaussian peaks of equal height = 1.00, shown separately on the left, that 

overlap closely enough so that their sum, shown on the right, is a single symmetrical peak that looks 

very much like a single Gaussian. 

>> x=[0:.1:10]'; 

>> y=exp(-(x-5.5).^2)+exp(-(x-4.5).^2); 

https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/DifficultCase.png
https://terpconnect.umd.edu/~toh/spectrum/Overlapping.png


Page | 222  

Attempts to fit this with a single Gaussian (shown in the graph below) yield a fit with roughly a fairly 

low 1% fitting error. But the residual noticeably wavy and smooth, suggesting that there is little or no 

random noise in the data but that the model is not right.  

 

>> peakfit([x y],5,19,1,1) 

          Peak#   Position   Height     Width    Area 

           1      4.5004    1.001     1.6648    1.773 

           2      5.5006    0.99934   1.6641    1.770 

If there were no noise in the signal, the iterative curve fitting (peakfit.m or ipf.m) routines could easily 

extract the two equal Gaussian components to an accuracy of 1 part in 1000. But in the presence of 

even a little noise (for example, 1% RSD), the results are uneven; one peak is almost always 

significantly higher than the other: 

       

>> y=exp(-(x-5.5).^2)+exp(-(x-4.5).^2)+.01*randn(size(x)) 

>> peakfit([x y],5,19,2,1) 

     Peak#   Position    Height     Width    Area 

       1      4.4117     0.83282    1.61     1.43 

       2      5.4022     1.1486     1.734    2.12 

The fit is stable with any one sample of noise, if peakfit.m is run again with slightly different starting 

values, for example by pressing the F key several times in ipf.m (page 411). So, the problem is not iter-

ative fitting errors caused by different starting values. The problem is the noise: although the signal is 

completely symmetrical, any sample of the noise is slightly asymmetrical (e.g., the first half of the 

noise invariably averages either slightly higher or slightly lower than the second half, resulting in an 

asymmetrical fit result). The surprising thing is that the error in the peak heights is much larger (about 

15% relative, on average) than the random noise in the data (1% in this example). So even though the 

fit looks good - the fitting error is low (less than 1%) and the residuals are random and unstructured - 

the model parameters can still be very far off. If you were to simulate another measurement (i.e., gen-

erate another independent set of noise), the results would be different but still inaccurate (the first peak 

has an equal chance of being larger or smaller than the second). Unfortunately, the expected error is not 

accurately predicted by the bootstrap method (page 166), which seriously underestimates the standard 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#bootstrap


Page | 223  

deviation of the peak parameters with repeated measurements of independent signals (because a boot-

strap sub-sample of asymmetrical noise is likely to remain asymmetrical). A Monte Carlo simulation 

(page 165) would give a more reliable estimation of uncertainty in such cases.  
 

Better results can be obtained in cases where the peak widths are expected to be equal, in which case 

you can use peak shape 6 (equal-width Gaussian) instead of peak shape 1:  
 

peakfit([x y],5,19,2,6) 
 

It also helps to provide decent first guesses (start) and to set the number of trials (NumTrials) to a num-

ber above 1):  
 

peakfit([x,y],5,10,2,6,0,10,[4 2 5 2],0,0) 

 

The best case will be if the shape, position, and width of the two peaks are known accurately, and if 

the only unknown is their heights. Then the Classical Least-squares (multiple regression) technique can 

be employed and the results will be much better.  
 

For an even more challenging example like this, where the two closely overlapping peaks are very dif-

ferent in height, see page 318. 

So, to sum up, we can make the following observations about the accuracy of model parameters:  

(1) the parameter errors depend on the accuracy of the model chosen and on number of peaks;  

(2) the parameter errors are directly proportional to the noise in the data (and worse for low-

frequency or pink noise);  

(3) all else being equal, parameter errors are proportional to the fitting error, but a model that 

fits the underlying reality better, e.g., equal or fixed widths or shapes, often gives lower 

parameter errors even if the fitting error is larger;  

(4) the errors are typically least for peak position and worse for peak width and area;  

(5) the errors depend on the data density (number of independent data points in the width of 

each peak) and on the extent of peak overlap (the parameters of isolated peaks are easier to 

measure than highly overlapped peaks);  

(6) if only a single signal is available, the effect of noise on the standard deviation of the peak 

parameters in many cases can be predicted approximately by the bootstrap method, but if the 

overlap of the peaks is too great, the error of the parameter measurements can be much greater 

than predicted. 
 

Sometimes curve fitting is complicated if the peaks are asymmetrical (wider on one side than the other). 

AsymmetricalOverlappingPeaks.m illustrates one way to deal with the problem of excessive peak 

overlap in a multi-step script that uses first-derivative symmetrization as a pre-process performed 

before iterative least-squares curve fitting to analyze a complex signal consisting of multiple 

asymmetric overlapping peaks. See page 361 for details. Or you can use an asymmetrical peak model, 

as described in the next section. 

  

http://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Monte
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#bootstrap
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaks.m


Page | 224  

Fitting signals that are subject to exponential broadening.  

DataMatrix2 (below left) is a computer-generated test signal consisting of 16 symmetrical Gaussian 

peaks with random white noise added. The peaks occur in groups of 1, 2, or 3 overlapping peaks, but 

the peak maxima are located at exactly integer values of x from 300 to 3900 (on the 100's) and the peak 

widths are always exactly 60 units. The peak heights vary from 0.06 to 1.85. The standard deviation of 

the noise is 0.01. You can use this signal to test curve-fitting programs and to determine the accuracy of 

their measurements of peak parameters. Right-click and select "Save" to download this signal, put it in 

the Matlab search path, then type "load DataMatrix2" at the command prompt to load it into the Matlab 

workspace. DataMatrix3 (above right) is an exponentially broadened version of DataMatrix2, with a 

"decay constant", also called "time constant", of 33 points on the x-axis. The result of the exponential 

broadening is that all the peaks in this signal are asymmetrical, their peak maxima are shifted to longer 

x values, and their peak heights are smaller, and their peak widths are larger than the corresponding 

peaks in DataMatrix2. Also, the random noise is damped in this signal compared to the original and 

is no longer "white", as a consequence of the broadening. This type of effect is common in physical 

measurements and often arises from some physical or electrical effect in the measurement system that 

is apart from the fundamental peak characteristics. In such cases, you may wish to compensate for the 

effect of the broadening, either by deconvolution or by curve fitting, in an attempt to measure what the 

peak parameters would have been before the broadening (and also to measure the broadening itself). 

This can be done for Gaussian peaks that are exponentially broadened by using the "ExpGaussian" 

peak shape in peakfit.m and ipf.m (page 411), or the "ExpLorentzian", if the underlying peaks are Lo-

rentzian. Right-click and select "Save" to download this signal, put it in the Matlab search path, then 

type "load DataMatrix3" to load it into the Matlab workspace. The example illustrated on the right fo-

cuses on the single isolated peak whose "true" peak position, height, width, and area in the origi-

nal unbroadened signal, are 2800, 0.52, 60, and 33.2 respectively. (The relative standard deviation of 

the noise is 0.01 / 0.52=2%.) In the broadened signal, the peak is visibly asymmetrical, the peak maxi-

mum is shifted to larger x values, and it has a shorter height and larger width, as demonstrated by the 

attempt to fit a normal (symmetrical) Gaussian to the broadened peak. (The peak area, on the other 

hand, is not much affected by the broadening).  

>> load DataMatrix3 

>> ipf(DataMatrix3); 

Peak Shape = Gaussian 

BaselineMode ON 

https://terpconnect.umd.edu/~toh/spectrum/DataMatrix3.png
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix2.mat
https://terpconnect.umd.edu/Tom%27s%20%20Documents/FTP/SPECTRUM/DataMatrix2.mat
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix3.mat
http://www.google.com/search?sourceid=chrome&ie=UTF-8&q=peak+fitting#pq=exponentially%20broadening&hl=en&cp=11&gs_id=4y&xhr=t&q=exponential+broadening&qe=ZXhwb25lbnRpYWwgYnJvYWRlbmluZw&qesig=rpyGatby7ykxTM-8OxiO5w&pkc=AFgZ2tl2Ieg3rRvLTcbPqB51UwlrLtXTdFBlToOwdA_HoPjrkbwj_Lpz9v4UatehiFvZJ53EMN9GaTydNbPJGFVeOGIv9qJ_VQ&pf=p&sc
https://terpconnect.umd.edu/~toh/spectrum/SignalWithWhiteNoise.png
https://terpconnect.umd.edu/~toh/spectrum/SignalWithLPFilteredNoise.png
http://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix3.mat


Page | 225  

Number of peaks = 1 

Fitted range = 2640 - 2979.5 (339.5)  (2809.75)   

Percent Error = 1.2084 

Peak#   Position   Height    Width     Area 

  1     2814.832  0.451005  68.4412  32.8594 

The large "wavy" residual in the plot above is a 

tip-off that the model is not quite right. Moreo-

ver, the fitting error (1.2%) is larger than ex-

pected for a peak with a half-width of 60 points 

and a 2% noise RSD (approximately 2/sqrt(60) 

= 0.25%). 
 

Fitting to an exponentially-broadened Gaussian 

(pictured on the right) gives a much lower fit-

ting error ("Percent error") and a more nearly 

random residual plot. But the interesting thing 

is that it also recovers the original (pre-

broadening) peak position, height, and width to 

an accuracy of a fraction of 1%, if that is of 

interest to you. In performing this fit, the decay 

constant ("extra") was experimentally determined from the broadened signal by adjusting it with the A 

and Z keys to give the lowest fitting error; that also results in a reasonably good measurement of the 

broadening factor (32.6, vs the actual value 

of 33). Had the original signal been noisier, 

these measurements would not be so accu-

rate. Note: When using peakshape 5 (fixed 

decay constant exponentially broadened 

Gaussian) you must give it a reasonably 

good value for the decay constant ('extra'), 

the input argument right after the peakshape 

number. If the value is too far off, the fit 

may fail completely, returning all zeros. A 

little trial and error suffice. Alternatively, 

you can use the simple first-derivative addi-

tion technique (page 80) to get a good esti-

mate of the time constant before curve-

fitting. Also, peakfit.m version 8.4 has two 

forms of unconstrained variable decay con-

stant exponentially broadened Gaussian, shape numbers 31 and 39, that will measure the decay con-

stant as an iterated variable. Shape 31 (expgaussian.m) creates the shape by performing a Fourier con-

volution of a specified Gaussian by an exponential decay of specified decay constant, whereas shape 39 

(expgaussian2.m) uses a mathematical expression for the final shape so produced. Both result in 

the same peak shape but are parameterized differently. Shape 31 reports the peak height and position as 

https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian2.m


Page | 226  

that of the original Gaussian before broadening, whereas shape 39 reports the peak height of the broad-

ened result. Shape 31 reports the width as the FWHM (full width at half maximum) and shape 39 re-

ports the standard deviation (sigma) of the Gaussian. Shape 31 reports the exponential factor and 

the number of data points, and shape 39 reports the reciprocal of the decay constant in time units. (See 

the script DemoExpgaussian.m for a more detailed numerical example). For multiple-peak fits, both 

shapes usually require a reasonable first guess (“start”) vector for best results, which you can determine 

automatically from a preliminary fit with a simple Gaussian model (as in this example). If the exponen-

tial decay constant of each peak is expected to be different and you need to measure those values, use 

shapes 31 or 39, but if the decay constant of all the peaks is expected to be the same, use shape 5, and 

determine the decay constant by fitting an isolated peak. For example: 

Peak Shape = Exponentially-broadened Gaussian 

BaselineMode ON 

Number of peaks = 1 

Extra = 32.6327 

Fitted range = 2640 - 2979.5 (339.5)  (2809.75)   

Percent Error = 0.21696 

Peak#    Position   Height     Width      Area 

  1      2800.130  0.518299  60.08629  33.152429 

Comparing the two methods, the exponentially broadened Gaussian fit recovers all the underlying peak 

parameters quite accurately: 
 

Position Height Width Area 

Actual peak parameters 2800 0.52 60 33.2155 

Gaussian fit to broadened signal 2814.832 0.45100549 68.441262 32.859436 

ExpGaussian fit to broadened signal 2800.1302 0.51829906 60.086295 33.152429 

 Other peaks in the same signal, under the 

broadening influence of the same decay 

constant, can be fitted with similar set-

tings, for example, the set of three over-

lapping peaks near x=2400. As before, 

the peak positions are recovered almost 

exactly and even the width measurements 

are reasonably accurate (1% or better). If 

the exponential broadening decay con-

stant is not the same for all the peaks in 

the signal, for example, if it gradually 

increases for larger x values, then the de-

cay constant setting can be optimized for 

each group of peaks. The smaller fitting 

error evident here is just a reflection of 

https://terpconnect.umd.edu/~toh/spectrum/DemoExpgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/Example37.m
https://terpconnect.umd.edu/~toh/spectrum/ExpGfit2DataMatrix3.gif


Page | 227  

the larger peak heights in this group of peaks - the noise is the same everywhere in this signal.  

Peak Shape = Exponentially-broadened Gaussian 

BaselineMode OFF 

Number of peaks = 3 

Extra = 31.9071 

Fitted range = 2206 - 2646.5 (440.5)  (2426.25)   

Percent Error = 0.11659 

Peak# Position    Height      Width       Area 

1     2300.2349  0.83255884   60.283214   53.422354 

2     2400.1618  0.4882451    60.122977   31.24918 

3     2500.3123  0.85404245   60.633532   55.124839 

The residual plots in both examples still have some "wavy" character, rather than being completely 

random and "white". The exponential broadening smooths out any white noise in the original signal 

that is introduced before the exponential effect, acting as a low-pass filter in the time domain and re-

sulting in a low-frequency dominated "pink" noise, which is what remains in the residuals after the 

broadened peaks have been fit as well as possible. On the other hand, white noise that is introduced af-

ter the exponential effect would continue to appear white and random on the residuals. In real experi-

mental data, both types of noise may be present in varying amounts.  

One final caveat: peak asymmetry such as exponential broadening could possibly be the result of a pair 

of closely spaced peaks of different peak heights. In fact, a single exponential broadened Gaussian peak 

can sometimes be fitted with two symmetrical Gaussians to a fitting error at least as low as a sin-

gle exponential broadened Gaussian fit. This makes it hard to distinguish between these two models 

based on fitting error alone. However, you can decide that by inspecting the other peaks in the signal: 

in most experiments, exponential broadening applies to every peak in the signal, and the broadening is 

either constant or changes gradually over the length of the signal. If only one or a few of the peaks ex-

hibit asymmetry, and the others are symmetrical, it is most likely that the asymmetry is due to closely 

https://terpconnect.umd.edu/~toh/spectrum/ipf69.png
https://terpconnect.umd.edu/~toh/spectrum/Peakfit21.png


Page | 228  

spaced peaks of different peak heights. If all peaks have the same or similar asymmetry, it is more like-

ly to be a broadening factor that applies to the entire signal. The two figures on the previous page pro-

vide an example from real experimental data. On the left, three asymmetrical peaks are each fitted with 

two symmetrical Gaussians (six peaks total). On the right, those same three peaks are fitted with one 

exponentially broadened Gaussian each (three peaks total). In this case, the three asymmetrical peaks 

all have the same asymmetry and can be fitted with the same decay constant ("extra"). Moreover, the 

fitting error is slightly lower for the three-peak exponentially broadened fit. Both observations argue 

for the three-peak exponentially broadened fit rather than the six-peak fit. 
 

Note: if your peaks are trailing off to the left, rather than to the right as in the above examples, simply 

use a negative value for the decay constant; to do that in ipf.m (page 411), press Shift-X and type a 

negative value. 
 

An alternative to this type of curve fitting for exponentially broadened peaks is to use the first-

derivative addition technique (page 80) to remove the asymmetry and then fit the resulting peak with a 

symmetrical model. This is faster in terms of computer execution time, especially for signals with 

many peaks, but it requires that the exponential time constant is known or estimated experimentally 

beforehand.  

The Effect of Smoothing before least-squares analysis  

In general, it is not advisable to smooth a signal before applying least-squares fitting, because doing so 

might distort the signal, can make it hard to evaluate the residuals properly, and might bias the results 

of bootstrap sampling estimations of precision, causing it to underestimate the effect of noise on varia-

tions in peak parameters (page 166). SmoothOptimization.m is a Matlab/Octave script that compares 

the effect of smoothing on the measurements of peak height of a Gaussian peak with a half-width of 

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Optimization
https://terpconnect.umd.edu/~toh/spectrum/SmoothOptimization.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/SmoothOptimization.png


Page | 229  

166 points, plus white noise with a signal-to-noise ratio (SNR) of 10. The script uses three different 

methods:  

(a) simply taking the single point at the center of the peak as the peak height;  

(b) using the “gaussfit” method to fit the top half of the peak (see page 168), and  

(c) fitting the entire signal with a Gaussian using the iterative method.  

The results of 150 trials with independent white noise samples are shown above: a typical raw signal is 

shown in the upper left. The other three plots show the effect of the SNR of the measured peak height 

vs the smooth ratio (the ratio of the smooth width to the half-width of the peak) for those three meas-

urement methods. The results show that the simple single-point measurement is indeed much improved 

by smoothing, as is expected; however, the optimum SNR (which improves by roughly the square root 

of the peak width of 166 points) is achieved only when the smooth ratio approaches 1.0, and that much 

smoothing distorts the peak shape significantly, reducing the peak height by about 40%. The curve-

fitting methods are much less affected by smoothing and the iterative method hardly at all. So, the bot-

tom line is that you should not smooth prior to curve-fitting, because it will distort the peak and will not 

gain any significant SNR advantage. The only situations where it might be advantageous so smooth 

before fitting are: 

(a) when the noise in the signal is high-frequency weighted (i.e. "blue" noise), where low-pass fil-

tering will make the peaks easier to see for the purpose of setting the starting points for an itera-

tive fit, or  

(b) if the signal is contaminated with high-amplitude narrow spike artifacts, in which case 

a median-based pre-filter or another spike killer function, can remove the spikes without much 

change to the rest of the signal. (Or, in another situation altogether, if you want to fit a curve 

joining the successive peaks of a modulated wave, called the "envelope", then you can smooth 

the absolute value of the wave before fitting the envelope).  

Peak Finding and Measurement 
A requirement in scientific data processing is to detect peaks in a signal and to measure their positions, 

heights, widths, and/or areas. One way to do this is to make use of the fact that the first derivative of a 

peak has a downward-going zero-crossing at the peak 

maximum (page 65). However, the presence of random 

noise in real experimental signal will cause many false 

zero-crossing simply due to the noise. To avoid this 

problem, the technique described here smooths the 

first derivative of the signal, then looks for downward-

going zero-crossings, and then it takes only those zero-

crossings whose slope exceeds a certain predetermined 

minimum (called the “slope threshold”) at a point 

where the original signal exceeds a certain minimum 

(called the “amplitude threshold”). By adjusting the 

smooth width, slope threshold, and amplitude 

https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#H
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Matlab
https://terpconnect.umd.edu/~toh/spectrum/killspikes.m
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
http://en.wikipedia.org/wiki/Zero_crossing
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.gif


Page | 230  

threshold, it is possible to detect only the desired peaks and ignore most peaks that are too small, too 

wide, or too narrow. Moreover, this technique can be extended to estimate the position, height, and 

width of each peak by least-squares curve-fitting of a segment of the original unsmoothed signal in the 

vicinity of the zero-crossing. Thus, even if heavy smoothing of the first derivative is necessary to 

provide reliable discrimination against noise peaks, the peak parameters extracted by curve fitting are 

not distorted by the smoothing, and the effect of random noise in the signal is reduced by curve fitting 

over multiple data points in the peak. This technique can measure peak positions and heights quite 

accurately, but the measurements of peak widths and areas are most accurate if the peaks are Gaussian 

in shape (or Lorentzian, in the variant findpeaksL). For the most accurate measurement of other peak 

shapes, or of highly overlapped peaks, or of peak superimposed on a baseline, the related functions 

findpeaksb.m, findpeaksb3.m, findpeaksfit.m utilize non-linear iterative curve fitting with selectable 

peak shape models and baseline correction modes. 
 

The routine is now available in several different versions that are described below:  
 

(1) a set of command-line functions for Matlab or Octave, each linked to its description: peaksat.m, 

findpeaksx, findpeaksxw, findpeaksG, findpeksGw, (Wavelet-based denoise, requires the "wdenoise" 

function found in the Wavelet Toolbox), findvalleys, findpeaksL, measurepeaks, findpeaksGd, 

findpeaksb, findpeaksb3, findpeaksplot, findpeaksplotL, peakstats, findpeaksE, findpeaksGSS, 

findpeaksLSS, findpeaksT, findpeaksfit, autofindpeaks, and autopeaks. These can be used as 

components in creating your own custom scripts and functions. Do not confuse with the "findpeaks" 

function in Matlab's Signal Processing Toolbox; that's a completely different algorithm. 
 

(2) an interactive keypress-operated function, called iPeak (ipeak.m or ipeakoctave), page 248, for 

adjusting the peak detection criteria interactively to optimize for any particular peak type iPeak runs in 

the Figure window and use a simple set of keystroke commands to reduce screen clutter, minimize 

overhead, and maximize processing speed.  
 

(3) A set of spreadsheets, available in Excel and in OpenOffice formats.  

(4) Real-time peak detection in Matlab is discussed on page 342. 

Click here to download the ZIP file "PeakFinder.zip", which includes findpeaksG.m and its variants, 

ipeak.m, and a sample data file and demo scripts for testing. You can also download iPeak and other 

programs of mine from the Matlab File Exchange. 

Simple peak detection 
 

allpeaks.m. P=allpeaks(x,y) A super-simple peak detector for x,y, data sets that lists every y 

value that has lower y values on both sides. A related version, allpeaksw.m, also estimates the width of 

the peaks. allvalleys.m lists every y value that has higher y values on both sides. Type "help allpeaks" 

or "help allpeaksw" for an example. “help allpeaks” or “help allpeaksw” to see an example of its appli-

cation. 
 

peaksat.m. (Peaks Above Threshold) Syntax: P=peaksat(x,y,threshold). This function de-

tects every y value that has lower y values on both sides and is above the specified threshold. Returns a 

matrix P with the x and y values of each peak, where n is the number of detected peaks.  A related ver-

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksfit
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/peaksat.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksx
https://terpconnect.umd.edu/~toh/spectrum/findpeaksxw.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#Valleys
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksL
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksG2d
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb3
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksplot
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksplot
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#peakstats
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakSNR
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakStartAndEnd
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakStartAndEnd
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#triangle
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksfit
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#autofindpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#autopeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks_vs_findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks_vs_findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakoctave.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#Spreadsheet
https://terpconnect.umd.edu/~toh/spectrum/PeakFinder.zip
http://www.mathworks.com/matlabcentral/fileexchange/11755-peak-finding-and-measurement
https://terpconnect.umd.edu/~toh/spectrum/allpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/allpeaksw.m
https://terpconnect.umd.edu/~toh/spectrum/allvalleys.m
https://terpconnect.umd.edu/~toh/spectrum/peaksat.m


Page | 231  

sion, peaksatw.m, also estimates the width of the peaks. Type "help peaksat" or "help peaksatw" for an 

example. Type “help peaksat” or “help peaksatw” to see an example of its application. 
 

peaksatG.m. ("Peaks Above Threshold/Gaussian") P=peaksatG(x,y,threshold,peakgroup 
This function is like peakat.m but in addition it also least-squares fits the top of each detected peak with 

a Gaussian to estimate their width and area; the number of points at the top of the peak that are fit is 

determined by the input argument "peakgroup". Returns a 5 by n matrix P with the x and y values of 

each peak, where n is the number of detected peaks. Type "help peaksatG" for examples. 
 

These simple functions do not have any internal data smoothing. If the data are noisy, smoothing can 

be applied separately beforehand to prevent the detection of noise peaks (see page 41). The following 

functions, on the other hand, do apply smoothing before peak detection. 
 

findpeaksx.m is a  Matlab/Octave command-line function to locate and count the positive peaks in 

noisy data sets.  
 

P=findpeaksx(x, y, SlopeThreshold, AmpThreshold, SmoothWidth, PeakGroup, 

smoothtype) 

It detects peaks by looking for downward zero-crossings in the smoothed first derivative that exceed 

SlopeThreshold and peak amplitudes that exceed AmpThreshold and returns a list (in matrix P) con-

taining the peak number and the measured position and height of each peak (and for the vari-

ant findpeaksxw, the full width at half maximum, determined by calling the halfwidth.m function). It 

can find and count over 10,000 peaks per second in very large signals. The data are passed to the 

findpeaksx function in the vectors x and y (x = independent variable, y = dependent variable). The oth-

er parameters are user-adjustable: 
 

SlopeThreshold - Slope of the smoothed first derivative that is taken to indicate a peak. This 

discriminates based on peak width. Larger values of this parameter will neglect the broad 

features of the signal. A reasonable initial value for Gaussian peaks is 0.7*WidthPoints^-2, 

where WidthPoints is the number of data points in the half-width (FWHM) of the peak.  
 

AmpThreshold - Discriminates based on peak height. Any peaks with height less than this 

value are ignored.  
 

SmoothWidth - Width of the smooth function that is applied to data before the slope is 

measured. Larger values of SmoothWidth will neglect small, sharp features. A reasonable value 

is typically about equal to 1/2 of the number of data points in the half-width of the peaks.  
 

PeakGroup - The number of data points around the "top part" of the (unsmoothed) peak that 

are taken to estimate the peak heights. If the value of PeakGroup is 1 or 2, the maximum y 

value of the 1 or 2 points at the point of zero-crossing is taken as the peak height value; if 

PeakGroup n is 3 or greater, the average of the next n points is taken as the peak height value. 

For spikes or very narrow peaks, keep PeakGroup=1 or 2; for broad or noisy peaks, make 

PeakGroup larger to reduce the effect of noise.  
 

Smoothtype determines the smoothing algorithm (page 41) 

    If smoothtype=1, rectangular (sliding-average or boxcar)  

    If smoothtype=2, triangular (2 passes of sliding-average) 

    If smoothtype=3, p-spline (3 passes of sliding-average) 
 

Basically, higher values yield a greater reduction in high-frequency noise, at the expense of 

https://terpconnect.umd.edu/~toh/spectrum/peaksatw.m
https://terpconnect.umd.edu/~toh/spectrum/peaksatG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksxw.m
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://en.wikipedia.org/wiki/Full_width_at_half_maximum


Page | 232  

slower execution. For a comparison of these smoothing types, see page 58. 
 

The demonstration scripts demofindpeaksx.m and demofindpeaksxw.m finds, numbers, plots, and 

measures noisy peaks with unknown random positions. (Note that if two peaks overlap too much, the 

reported width will be the width of the blended peak; in that case, it is better to use findpeaksG.m. 
 

Speed demonstration. Here I compare the above peak finding functions, in Matlab, on a typical 

desktop or laptop PC. Note: Matlab’s “tic” and “toc” functions are used to determine elapsed time. 
 

Peaksat.m:  x=[0:.01:500]'; y=x.*sin(x.^2).^2; tic; P=peaksat(x,y,0); toc; 

NumPeaks=length(P) 

Elapsed time is 0.025 sec on a Dell XPS i7 3.5Ghz desktop, which is 523,000 peaks per second.  
 

findpeaksx.m:  x=[0:.01:500]’; y=x.*sin(x.^2).^2; tic; 

P=findpeaksx(x,y,0,0,3,3); toc; NumPeaks=length(P) 

Elapsed time is 0.11 sec on the same computer, which is 110,000 peaks per second. 

Gaussian peak measurement 

P=findpeaksG(x, y, SlopeThreshold, AmpThreshold, SmoothWidth, FitWidth, 

smoothtype) 
 

P=findpeaksL(…) 
 

These Matlab/Octave functions locate the positive peaks in a noisy data set, perform a least-squares 

curve-fit of a Gaussian or Lorentzian function to the top part of the peak, and compute the position, 

height, and width (FWHM) of each peak from that least-squares fit. (The 6th input argument, FitWidth, 

is the number of data points around each peak top that is fit). The other arguments are the same as 

findpeaksx. It returns a list (in matrix P) containing the peak number and the estimated position, height, 

width, and area of each peak. It can find and curve-fit over 1800 peaks per second in very large 

signals. (This is useful primarily for signals that have several data points in each peak, not for spikes 

that have only one or two points, for which findpeaksx is better).  
 

>> x=[0:.01:50]; y=(1+cos(x)).^2; P=findpeaksG(x,y,0,-1,5,5); plot(x,y) 

P = 

     1       6.2832       4       2.3548       10.028 

     2       12.566       4       2.3548       10.028 

     3        18.85       4       2.3548       10.028… 
 

The function findpeaksplot.m is a simple variant of findpeaksG.m that also plots the x,y data and 

numbers the peaks on the graph (if any are found). The function findpeaksplotL.m does the same thing 

optimized for Lorentzian peak. 
 

findpeaksSG.m is a segmented variant of the findpeaksG function, with the same syntax, except that 

the four peak detection parameters can be vectors, dividing up the signal into regions that you can 

optimize for peaks of different widths. You can declare any number of segments, based on the length of 

the third (SlopeThreshold) input argument. (Note: you only need to enter vectors for those parameters 

that you want to vary between segments; to allow any of the other peak detection parameters to remain 

unchanged across all segments, simply enter a single scalar value for that parameter; only the 

SlopeThreshold must be a vector). (FindpeaksSL.m is the same thing for Lorentzian peaks.) The 

https://terpconnect.umd.edu/~toh/spectrum/demofindpeaksx.m
https://terpconnect.umd.edu/~toh/spectrum/demofindpeaksxw.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksx
https://terpconnect.umd.edu/~toh/spectrum/findpeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksplotL.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSL.m


Page | 233  

following example declares two segments, with AmpThreshold remaining the same in both segments. 
 

SlopeThreshold=[0.001 .0001]; 

AmpThreshold=.2; 

SmoothWidth=[5 10];  

FitWidth=[10 20]; 

P=findpeaksSG(x, y, SlopeThreshold, AmpThreshold, SmoothWidth, FitWidth,3); 
 

In the graphic shown below on the right, the demonstration script TestPrecisionFindpeaksSG.m creates 

a noisy signal with three peaks of widely different widths, detects and measures the peak positions, 

heights and widths of each peak using 

findpeaksSG, then prints out the percent 

relative standard deviations of parameters 

of the three peaks in 100 measurements 

with independent random noise. With 3-

segment peak detection parameters, 

findpeaksSG reliably detects and 

accurately measures all three peaks. In 

contrast, findpeaksG, when tuned to the 

middle peak (using line 26 instead of line 

25), measures the first and last peaks 

poorly, because the peak detection 

parameters are far from optimum for 

those peak widths. You can also see that 

the precision of peak height 

measurements gets progressively better 

(smaller relative standard deviation) the 

larger the peak widths, simply because 

there are more data points in wider peaks. (You can change any of the variables in lines 10-18). 
 

A related function is findpeaksSGw.m which is like the above except that is uses wavelet denoising 

(page 133) instead of smoothing (requires the Wavelet Toolbox). It takes the wavelet “level” rather than 

the smooth width as an input argument. The script TestPrecisionFindpeaksSGvsW.m compares the 

precision and accuracy for peak position and height measurement for both the regular findpeaksSG.m 

and the wavelet-based findpeaksSGw.m functions, finding that there is little to be gained in most cases 

by using the wavelet denoise instead of smoothing. That is mainly because in either case the peak 

parameter measurements are based on least-squares fitting to the raw, not the smoothed, data at each 

detected peak location, so the usual wavelet denoising advantage of avoiding smoothing distortion does 

not apply here. 

 

One inconvenience with the above peak finding functions: it is annoying to have to estimate the values 

of the peak detection parameters that you need to use for your signals. A quick way to estimate these is 

to use autofindpeaks.m, which is similar to findpeaksG.m except that you can optionally leave out the 

peak detection parameters and just write “autofindpeaks(x, y)” or “autofindpeaks(x, y, n)”, where n is 

the “peak capacity”, roughly the number of peaks that would fit into that signal record (greater n looks 

https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://www.mathworks.com/products/wavelet.html
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSGvsW.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakDetectionParameters
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaskSG.png


Page | 234  

for many narrow peaks; smaller n looks for fewer wider peaks and neglects the fine structure). Simply, 

n allows you to quickly adjust all the peak detection parameters at once just by changing a single 

number. In addition, if you do leave out the explicit peak detection parameters, autofindpeaks will print 

out the numerical input argument list that it uses in the command window, so you can copy, paste, and 

edit for use with any of the findpeaks… functions. If you call autofindpeaks with the output arguments 

[P,A]=autofindpeaks(x,y,n), it returns the calculated peak detection parameters as a 4-element row 

vector A, which you can then pass on to other functions such as measurepeaks, effectively giving that 

function the ability to calculate the peak detection parameters from a single number n. For example, in 

the following signal, a visual estimate indicates about 20 peaks, so you use 20 as the 3rd argument:  
 

x=[0:.1:50];  

y=10+10.*sin(x).^2+randn(size(x));  

[P,A]=autofindpeaks(x,y,20); 
 

Then you can use A as the peak detection parameters for other peak detection functions, such as 

P=findpeaksG(x,y,A(1),A(2),A(3),A(4),1) or P=measurepeaks(x,y,A(1),A(2),A(3),

A(4),1). You will probably want to fine-tune the amplitude threshold A(2) manually for your own 

needs, but that is the one that is easiest to know. 
 

Type “help autofindpeaks” and run the examples there. (The function autofindpeaksplot.m is the same 

but also plots and numbers the peaks). The script testautofindpeaks.m runs all the examples in the help 

file, plots the data and numbers the peaks (like autofindpeaksplot.m), with a 1-second pause between 

each example (If you are reading this online, click for the animated graphic). 

Optimization of peak finding 
Finding peaks in a signal depends on distinguishing between legitimate peaks and other features like 

noise and baseline changes. Ideally, a peak detector should detect all the legitimate peaks and ignore all 

the other features. This requires that a peak detector be 

“tuned” or optimized for the desired peaks. For example, 

the Matlab/Octave demonstration script 

OnePeakOrTwo.m creates a signal (shown on the right) 

that might be interpreted as either one peak at x=3 on a 

curved baseline or as two peaks at x=5 and x=3, depending 

on context. The peak finding algorithms described here 

have input arguments that allow some latitude for 

adjustment. In this example script, the “SlopeThreshold” 

argument is adjusted to detect just one or both of those 

peaks. The findpeaks… functions allow either 

interpretation, depending on the peak detection 

parameters. The optimum values of the input arguments for findpeaksG and related functions depend 

on the signal and on which features of the signal are important for your work. Rough values for these 

parameters can be estimated based on the width of the peaks that you wish to detect, as described above, 

but for the greatest control it will be best to fine-tune these parameters for your particular signal. A 

simple way to do that is to use autopeakfindplot(x, y, n) and adjust n until it finds the peak you want; it 

will print out the numerical input argument list so you can copy, paste, and edit for use with any of the 

https://terpconnect.umd.edu/~toh/spectrum/Integration.html#measurepeaks
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/testautofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testautofindpeaks.gif
https://terpconnect.umd.edu/~toh/spectrum/OnePeakOrTwo.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakDetectionParameters
https://terpconnect.umd.edu/~toh/spectrum/autopeakfindplot.m
https://terpconnect.umd.edu/~toh/spectrum/OnePeakOrTwo.png


Page | 235  

findpeaks… functions. A more flexible way, if you are using Matlab, is to use the interactive peak 

detector iPeak (page 248), which allows you to adjust all of these parameters individually by simple 

keypresses and displays the results graphically and instantly. The script FindpeaksComparison shows 

how findpeakG compares to the other peak detection functions when applied to a computer-generated 

signal with multiple peaks with variable types and amounts of baseline and random noise. By itself, 

autofindpeaks.m, findpeaksG and findpeaksL do not correct for a non-zero baseline; if your peaks are 

superimposed on a baseline, you should subtract the baseline first or use the other peak detection 

functions that do correct for the baseline. In the 

example shown on the left (using the interactive peak 

detector iPeak program described on page 248), 

suppose that the important parts of the signal are two 

broad peaks at x=4 and x=6, the second one half the 

height of the first. The small, jagged features are just 

random noise. We want to detect the two peaks but 

ignore the noise. (The detected peaks are numbered 

1,2,3,…in the lower panel of this graphic). This is 

what it looks like if the AmpThreshold is too small 

or too large, if the SlopeThreshold is too small or too 

large, if the SmoothWidth is too small or too large, 

and if the FitWidth is too small or too large. If these 

parameters are within the optimum range for this 

measurement objective, the findpeaksG functions will return something like this (although the exact 

values will vary with the noise and with the value of FitWidth): 
      

     Peak#    Position    Height     Width     Area         

       1      3.9649      0.99919    1.8237    1.94        

       2      5.8675      0.53817    1.6671    0.955         

How does ‘findpeaksG’ differ from ‘max’ in Matlab or ‘findpeaks’ in 

the Signal Processing Toolkit? 

The ‘max’ function simply returns the largest single value in a vector. Findpeaks in the Signal 

Processing Toolbox can be used to find the values and indices of all the peaks that are higher than a 

specified peak height and are separated from their neighbors by a specified minimum distance. My 

version of findpeaks (findpeaksG) accepts both an independent variable (x) and dependent variable (y) 

vectors, finds the places where the average curvature over a specified region is concave down, fits that 

region with a least-squares fit and returns the peak 

position (in x units), height, width, and area, of any 

peak that exceeds a specified height. For example, to 

create a noisy series of peaks (plotted on the 

right) and apply both findpeaks functions to the 

resulting data: 
 

x=[0:.1:100]; 

y=5+5.*sin(x)+randn(size(x)); 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/AmpThresholdTooLow.png
https://terpconnect.umd.edu/~toh/spectrum/AmpThresholdTooLarge.png
https://terpconnect.umd.edu/~toh/spectrum/AllSettingsTooLow.png
https://terpconnect.umd.edu/~toh/spectrum/SlopeThresholdTooLarge.png
https://terpconnect.umd.edu/~toh/spectrum/SlopeThresholdTooLarge.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTooSmall.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTooLarge.png
https://terpconnect.umd.edu/~toh/spectrum/FitWidthTooSmall.png
https://terpconnect.umd.edu/~toh/spectrum/FitWidthTooLarge.png
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksSPThelp.txt
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/AmpThresholdBothPeaks.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySine.png


Page | 236  

plot(x,y) 

Now, most people just looking at this plot of data would count 16 peaks, with peak heights averaging 

about 10 units. Every time the statements above are run, the random noise is different, but you would 

still count the 16 peaks because the signal-to-noise ratio is 10, which is not that bad. But the findpeaks 

function in the Signal Processing Toolbox counts anywhere from 11 to 20 peaks, with an average height 

(PKS) of 11.5.  

[PKS,LOCS]=findpeaks(y,'MINPEAKHEIGHT',5,'MINPEAKDISTANCE',11) 
 

In contrast, my findpeaksG function findpeaksG(x,y,0.001,5,11,11,3) counts 16 peaks every 

time, with an average height of 10 ±0.3, which is much more reasonable. It also measures the width and 

area, assuming the peaks are Gaussian (or Lorentzian, in the variant findpeaksL). To be fair, findpeaks 

in the Signal Processing Toolbox, or my even faster findpeaksx.m function, works better for peaks that 

have only 1-3 data points on the peak; findpeaksG is better for peaks that have more data points.  
   

The demonstration script FindpeaksSpeedTest.m compares the speed of the four peak detectors on the 

same large test signal: Signal Processing Toolkit findpeaks, peaksat, findpeaksx, and findpeaksG: 
 

                                            Number    Elapsed    Peaks per  

 Function        of peaks   time, sec   second 
findpeaks (SPT)      160      0.012584       12715 
peaksat              999      0.0012912     773699 
findpeaksx           158      0.001444      109418 
findpeaksG           157      0.011005       14267  
 

Finding valleys 

There is also a similar function for finding valleys (minima), called findvalleys.m, which works the 

same way as findpeaksG.m, except that it locates minima instead of maxima. Only valleys above the 

AmpThreshold (that is, more positive or less negative) are detected; if you wish to detect valleys that 

have negative minima, then AmpThreshold must be set more negative than that. 

 

>> x=[0:.01:50];y=cos(x);P=findvalleys(x,y,0,-1,5,5) 

P = 

    1.0000    3.1416   -1.0000    2.3549         0 

    2.0000    9.4248   -1.0000    2.3549         0 

    3.0000   15.7080   -1.0000    2.3549         0 

    4.0000   21.9911   -1.0000    2.3549         0.... 

.... 

Accuracy of the measurements of peaks  
 

The accuracy of the measurements of peak position, height, width, and area by the findpeaksG function 

depends on the shape of the peaks, the extent of peak overlap, the strength of the background, and the 

signal-to-noise ratio. The width and area measurements particularly are strongly influenced by peak 

overlap, noise, and the choice of FitWidth. Isolated peaks of Gaussian shape are measured most 

accurately. For Lorentzian peaks, use findpeaksL.m instead (the only difference is that the reported 

peak heights, widths, and areas will be more accurate if the peaks are Lorentzian). See "ipeakdemo.m" 

below for an accuracy trial for Gaussian peaks. For highly overlapping peaks that do not exhibit 

distinct maxima, use peakfit.m or the Interactive Peak Fitter (ipf.m, page 411). For a direct comparison 

https://terpconnect.umd.edu/~toh/spectrum/FindpeaksSPThelp.txt
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksSPThelp.txt
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksx
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksSpeedTest.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSPT.m
https://terpconnect.umd.edu/~toh/spectrum/peaksat.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksx.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/findvalleys.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksL.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/ipf.m


Page | 237  

of the accuracy of findpeaksG vs peakfit, run the demonstration script peakfitVSfindpeaks.m. This 

script generates four very noisy peaks of 

different heights and widths, then measures 

them in two different ways: first with 

findpeaksG.m (figure on the left) and then with 

peakfit.m, and compares the results. The peaks 

detected by findpeaksG are labeled "Peak 1", 

"Peak 2", etc. If you run this script several times, 

it will generate the same peaks but 

with independent samples of the random noise 

each time. You will find that both methods work 

well most of the time, with peakfit giving 

smaller errors in most cases (because it 

uses all the points in each peak, not just the top 

part), but occasionally findpeaksG will miss the 

first (lowest) peak and rarely it will detect a 5th 

peak that is not there. On the other hand, in this case peakfit.m is constrained to fit 4 and only 4 peaks 

each time. 
 

The demonstration script FindpeaksComparison compares the accuracy of findpeaksG and findpeaksL 

to several peak detection functions when applied to signals with multiple peaks and variable types and 

amounts of baseline and random noise.  

Peak finding combined with iterative curve fitting.  

findpeaksb.m is a variant of findpeaksG.m that more accurately measures peak parameters by 

using iterative least-square curve fitting based on my peakfit.m function. This yields better peak 

parameter values than findpeaksG alone for three reasons:  
 

(1) it can be set for different peak shapes with the input argument 'PeakShape';  
 

(2) it fits the entire peak, not just the top part; and  
 

(3) it has provision for background subtraction (when the input argument "BaselineMode" is set 

to 1, 2, or 3 - linear, quadratic, or flat, respectively).  
 

This function works best with isolated peaks that do not overlap. For version 3, the syntax is P = 

findpeaksb(x,y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, 

smoothtype, windowspan, PeakShape, extra, BASELINEMODE). The first seven input 

arguments are the same as for the findpeaksG.m function; if you have been using findpeaksG or iPeak 

to find and measure peaks in your signals, you can use those same input argument values for 

findpeaksb.m. The remaining four input arguments are for the peakfit function:  

• "windowspan" specifies the number of data points over which each peak is fit to the model 

shape (This is the hardest one to estimate; in BaselineMode 1 and 2, 'windowspan' must be large 

enough to cover the entire single peak and get down to the background on both sides of the peak, 

https://terpconnect.umd.edu/~toh/spectrum/peakfitVSfindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/peakfitExample.png
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/peakfitVSfindpeaks.png


Page | 238  

but not so large as to overlap neighboring peaks);"PeakShape" specifies the model peak 

shape: 1=Gaussian, 2=Lorentzian, etc (type 'help findpeaksb' for a list), 

• "extra" is the shape modifier variable that is used for the Voigt, Pearson, exponentially broad-

ened Gaussian and Lorentzian, Gaussian/Lorentzian blend, and bifurcated Gaussian and Lo-

rentzian shapes to fine-tune the peak shape; 

• "BASELINEMODE" is 0, 1, 2, or 3 for no, linear, quadratic, or flat background subtraction. 

The peak table returned by this function has a 6th column listing the percent fitting errors for each 

peak. Here is a simple example with three Gaussians on a linear background, comparing 

plain findpeaksG, findpeaksb without background subtraction (BASELINEMODE=0), and 

to findpeaksb with background subtraction (BASELINEMODE=1).  
 

x=1:.2:100;Heights=[1 2 3];Positions=[20 50 80];Widths=[3 3 3]; 

y=2-(x./50)+modelpeaks(x,3,1,Heights,Positions,Widths)+.02*randn(size(x)); 

plot(x,y); 

disp('          Peak      Position      Height      Width        Area      

   % error') 

PlainFindpeaks=findpeaksG(x,y,.00005,.5,30,20,3)  

NoBackgroundSubtraction=findpeaksb(x,y,.00005,.5,30,20,3,150,1,0,0) 

LinearBackgroundSubtraction=findpeaksb(x,y,.00005,.5,30,20,3,150,1,0,1) 

 

The demonstration script DemoFindPeaksb.m shows how findpeaksb works with multiple peaks on a 

curved background, and FindpeaksComparison shows how findpeaksb compares to the other peak 

detection functions when applied to signals with multiple peaks and variable types and amounts of 

baseline and random noise.  
 

Segmented peak finder. What if the peak widths vary 

greatly over the signal? findpeaksSb.m is a segmented 

variant of findpeaksb.m. It has the same syntax as 

findpeaksb.m, except that the input arguments 

SlopeThreshold, AmpThreshold, smoothwidth, 

peakgroup, window, width, PeakShape, extra, 

NumTrials, BaselineMode, and fixedparameters, can all 

optionally be scalars or vectors with one entry for each 

segment, in the same manner as findpeaksSG.m. It 

returns a matrix P listing the peak number, position, 

height, width, area, percent fitting error and "R2" of 

each detected peak. In the example on the right, the two 

peaks have the same height above baseline (1.00) but 

different shapes (the first Lorentzian and the second 

Gaussian), very different widths, and different baselines. So, using findpeaksG or findpeaksL or 

findpeaksb, it would be impossible to find one set of input arguments that would be optimum for both 

peaks. However, using findpeaksSb.m, different settings can apply to different regions of the signal. In 

this simple example, there are only two segments, defined by SlopeThreshold with 2 different values, 

and the other input arguments are either the same or are different in those two segments. The result is 

that the peak height of both peaks is measured accurately. First, we define the values of the peak 

https://terpconnect.umd.edu/~toh/spectrum/modelpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSb.png


Page | 239  

detection parameters, then call findpeaksSb. 
 

>> SlopeThreshold=[.001 .00005]; AmpThreshold=.6; smoothwidth=[5 

120]; peakgroup=[5 120];smoothtype=3; window=[30 200]; PeakShape=[2 1]; 

extra=0; NumTrials=1; BaselineMode=[3 0]; 
 

 

>> findpeaksSb(x,y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, 

smoothtype, window, PeakShape, extra, NumTrials, BaselineMode) 
 

Peak #   Position   Height   Width    Area 

   1      19.979    0.9882    1.487    1.565 

   2      79.805    1.0052   23.888   25.563 
  

DemoFindPeaksSb.m demonstrates the findpeaksSG.m function by creating a random number of 

Gaussian peaks whose widths increase by a factor of 25-fold over the x-axis range and that are 

superimposed on a curved baseline with random white noise that increases gradually; four segments are 

used in this example, changing the peak detection and curve fitting values so that all the peaks are 

measured accurately. Graphic. Printout. 
 

findpeaksb3.m is a more ambitious variant of findpeaksb.m that fits each detected peak along with the 

previous and following peaks found by findpeaksG.m, to deal better with the overlap of the adjacent 

overlapping peaks. The syntax is  
 

FPB=findpeaksb3(x,y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, 

smoothtype, PeakShape, extra, NumTrials, BASELINEMODE, ShowPlots).  
 

The demonstration script DemoFindPeaksb3.m shows how 

findpeaksb3 works with irregular clusters of overlapping 

Lorentzian peaks, as in the example on the left (type "help 

findpeaksb3") for more. The demonstration script 

FindpeaksComparison shows how findpeaksb3 compares to 

the other peak detection functions when applied to signals 

with multiple peaks and variable types and amounts of 

baseline and random noise.  

 

 

 

findpeaksfit.m is essentially a serial combination of findpeaksG.m and peakfit.m. It uses the number 

of peaks found and the peak positions and widths that are the output of the findpeaksG function as the 

input for the peakfit.m function, which then fits the entire signal with the specified peak model. This 

combination yields better values than findpeaksG alone, because peakfit fits the entire peak, not just the 

top part, and it deals with non-Gaussian and overlapped peaks. However, it fits only those peaks that 

are found by findpeaksG, so you must make sure that all the peaks in the data are found. The syntax is:  
 

function [P, FitResults, LowestError, BestStart, xi, yi] = findpeaksfit (x, 

y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, smoothtype, 

peakshape, extra, NumTrials, BaselineMode, fixedparameters, plots) 

 

https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksSb.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksSbLarge.png
https://terpconnect.umd.edu/~toh/spectrum/DemoFindpeaksSb.txt
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/Demofindpeaksb3Large.png


Page | 240  

The first seven input arguments are exactly the same as for the findpeaksG.m function; if you have 

been using findpeaksG or iPeak to find and measure peaks in your signals, you can use those same 

input argument values for findpeaksfit.m. The remaining six input arguments of findpeaksfit.m are for 

the peakfit function; if you have been using peakfit.m or ipf.m (page 411) to fit the peaks in your 

signals, then you can use those same input argument values for findpeaksfit.m. The demonstration 

script findpeaksfitdemo.m was used to generate a GIF animation that shows findpeaksfit automatically 

finding and fitting the peaks in a set of 150 signals, each of which may have 1 to 3 noisy Lorentzian 

peaks in variable locations, artificially slowed down with the "pause" function so you can see it better. 

(This requires the findpeaksfit.m and lorentzian.m functions installed. Type "help findpeaksfit" for 

more information).  

Comparison of peak finding functions 
The demonstration script 

FindpeaksComparison.m compares 

the peak parameter accuracy of 

findpeaksG/L, findpeaksb, 

findpeaksb3, and findpeaksfit 

applied to a computer-generated 

signal with multiple peaks plus 

variable types and amounts of 

baseline and random noise. 

(Requires those four functions, plus 

gaussian.m, lorentzian.m, 

modelpeaks.m, findpeaksG.m, 

findpeaksL.m, pinknoise.m, and 

propnoise.m, in the Matlab/ Octave 

search path). Results are displayed 

graphically in figure windows 1, 2, 

and 3 and printed out in a table of parameter accuracy and elapsed time for each method, as shown 

below. You may change the lines in the script marked by <<< to modify the number and character and 

amplitude of the signal peaks, baseline, and noise. (Make the signal like yours to discover which 

method works best for your type of signal). The best method depends mainly on the shape and 

amplitude of the baseline and on the extent of peak overlap. Type "help FindpeaksComparison" for 

details. (Elapsed times for Matlab 2020 running on Dell XPS i7 3.5Ghz).   

Average absolute percent errors of all peaks 

           Position error  Height error  Width error  Elapsed time, sec 

findpeaksG     0.35955%    38.573%       25.797%      0.005768 

findpeaksb     0.38828%    8.5024%       14.329%      0.069061 

findpeaksb3    0.27187%    3.7445%       3.0474%      0.49538 

findpeaksfit   0.51930%    8.0417%       24.035%      0.27363 
 

Note: findpeaksfit.m differs from findpeaksb.m in that findpeaksfit.m fits all the found peaks at one 

time with a single multi-peak model, whereas findpeaksb.m fits each peak separately with a single-

peak model, and findpeaksb3.m fits each detected peak along with the previous and following peaks. 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfitdemo.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.gif
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison.m
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison2.png
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison2.png
https://terpconnect.umd.edu/~toh/spectrum/ErrorBars.png
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison.txt
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison2large.png


Page | 241  

As a result, findpeaksfit.m works better with a 

relatively small number of peak that all overlap, 

whereas findpeaksb.m works better with a large 

number of isolated non-overlapping peaks, and 

findpeaksb3.m works for large numbers of peaks 

that overlap at most one or two adjacent peaks. 

FindpeaksG/L is simple and fast, but it does not 

perform baseline correction; findpeaksfit can 

perform flat, linear, or quadratic baseline 

correction, but it works only over the entire 

signal at once; in contrast, findpeaksb and 

findpeaksb3 perform local baseline correction, 

which often works well if the baseline is curved 

or irregular. 

 

findpeaksG2d.m is a variant of findpeaksG that 

can be used to locate the positive peaks and shoulders in a noisy x-y time series data set. Detects peaks 

in the negative of the second derivative of the signal, by looking for downward slopes in the third 

derivative that exceed SlopeThreshold. See TestFindpeaksG2d.m. 
 

[M,A]=autopeaks.m is a peak detector for peaks of arbitrary shape; it is basically a combination of 

autofindpeaks.m and measurepeaks.m. It has similar syntax to measurepeaks.m, except that the peak 

detection parameters (SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, and smoothtype) can 

be omitted and the function will calculate trial values in the manner of autofindpeaks.m. Using the 

syntax [M,A]=autopeaks(x, y) works well in some cases, but if not try [M,A]=autopeaks(x, y, n), using 

different values of n (roughly the number of peaks that would fit into the signal record) until it detects 

the peaks that you want to measure. Like measurepeaks, it returns a table M containing the peak 

number, peak position, absolute peak height, peak-valley difference, perpendicular drop area (page 

143), and tangent skim area of each peak it detects (page 139), but is also can optionally return a vector 

A containing the peak detection parameters that it calculates (for use by other peak detection and fitting 

functions). For the most precise control over peak detection, you can specify all the peak detection 

parameters by typing M=autopeaks(x,y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup). 

[M,A]=autopeaksplot.m is the same but it also plots the signal and the individual peaks in the manner 

of measurepeaks.m (shown above). The script testautopeaks.m runs all the examples in the autopeaks 

help file, with a 1-second pause between each one, printing out results in the command window and 

additionally plotting and numbering the peaks (Figure window 1) and each individual peak (Figure 

window 2); it requires gaussian.m and fastsmooth.m in the search path. 
 

https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksg.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksL.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/testautopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.png


Page | 242  

Peak statistics. The function peakstats.m uses the same algorithm as findpeaksG, but it computes and 

returns a table of summary statistics of the peak intervals 

(the x-axis interval between adjacent detected peaks), 

heights, widths, and areas, listing the maximum, 

minimum, average, and percent standard deviation of 

each, and optionally plotting the x,y data with numbered 

peaks in figure window 1, printing the table of peak 

statistics in the command window, and plotting the 

histograms of the peak intervals, heights, widths, and 

areas in the four quadrants of figure window 2. Type 

"help peakstats". The syntax is the same as findpeaksG, 

with the addition of an 8th input argument to control the 

display and plotting. Version 2, March 2016, adds 

median and mode. Example: 
 

x=[0:.1:1000];y=5+5.*cos(x)+randn(size(x)); 

PS=peakstats(x,y,0,-1,15,23,3,1); 
   

Peak Summary Statistics 

158 peaks detected 

           Interval     Height     Width        Area 

Maximum    6.6428      10.9101     5.6258      56.8416 

Minimum    6.0035      9.1217      2.5063      28.2559 

Mean       6.283       9.9973      3.3453      35.4737 

% STD      1.8259      3.4265      15.1007     12.6203 

Median     6.2719      10.0262     3.2468      34.6473 

Mode       6.0035      9.1217      2.5063      28.2559 
 

With the last input argument omitted or equal to zero, the plotting and printing in the command window 

are omitted; the numerical values of the peak statistics table are returned as a 4x4 array, in the same 

order as the example above. 
 

tablestats.m (PS=tablestats(P,displayit)) is similar to peakstats.m except that it accepts as 

input a peak table P such as generated by findpeaksG.m, findvalleys.m, findpeaksL.m, findpeaksb.m, 

findpeaksplot.m, findpeaksnr.m, findpeaksGSS.m, findpeaksLSS.m, or findpeaksfit.m - any of the 

functions that return a table of peaks with at least 4 columns listing peak number, height, width, and 

area. Computes the peak intervals (the x-axis interval between adjacent detected peaks) and the 

maximum, minimum, average, and percent standard deviation of each, and optionally displaying the 

histograms of the peak intervals, heights, widths, and areas in figure window 2. Set the optional last 

argument displayit = 1 if the histograms are to be displayed, otherwise not. Example:  
 

x=[0:.1:1000];y=5+5.*cos(x)+.5.*randn(size(x)); 

figure(1);P=findpeaksplot(x,y,0,8,11,19,3);tablestats(P,1); 
 

 

FindpeaksE.m is a variant of findpeaksG.m that additionally estimates the percent relative fitting error 

of each peak (assuming a Gaussian peak shape) and returns it in the 6th column of the peak table.  
 

Example:  

https://terpconnect.umd.edu/~toh/spectrum/peakstats.m
http://www.mathsisfun.com/data/histograms.html
https://terpconnect.umd.edu/~toh/spectrum/tablestats.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksE.m
https://terpconnect.umd.edu/~toh/spectrum/PeakstatsHistograms.png


Page | 243  

>> x=[0:.01:5]; 

>> y=x.*sin(x.^2).^2+.1*whitenoise(x); 

>> P=findpeaksE(x,y,.0001,1,15,10) 

P = 

    1    1.3175     1.3279     0.25511    0.36065    5.8404 

    2    1.4245     1.2064     0.49053    0.62998   10.476 

    3    2.1763     2.1516     0.65173    1.4929     3.7984 

    4    2.8129     2.8811     0.2291     0.70272    2.3318... 
 

Peak start and end 

Defining the "start" and "end" of the peak (the x-values where the peak begins and ends) is a bit 

arbitrary because typical peak shapes approach the baseline asymptotically far from the peak maximum. 

You might define the peak start and end points as the x values where the y value is some small fraction, 

say 1%, of the peak height, but then the random noise on the baseline will be a larger fraction of the 

signal amplitude at that point. Smoothing to reduce noise is likely to distort and broaden peaks, 

effectively changing their start and end points. Overlap of peaks also greatly complicates the issue. One 

solution is to fit each peak to a model shape (page 170), then calculate the peak start and end from the 

model expression. That method minimizes the noise problem by fitting the data over the entire peak, 

and it can handle overlapping peaks, but it 

works only if the peaks can be modeled by 

available fitting programs. For example, 

Gaussian peaks can be shown to reach a 

fraction a of the peak height at x = p ± 

sqrt(w^2 log(1/a))/(2 sqrt(log(2))) where p is 

the peak position and w is the peak width 

(full width at half maximum). So, for 

example if a = .01, x =p ± w*sqrt((log(2) + 

log(5))/(2 log(2))) = 1.288784*w. 

Lorentzian peaks can be shown to reach a 

fraction a of the peak height at x = p ± 

sqrt[(w^2 - a w^2)/a]/2. If a = .01, x = p ± 

(3/2 sqrt(11)*w) = 4.97493*w. The 

findpeaksG variants findpeaksGSS.m 

and findpeaksLSS.m, for Gaussian and 

Lorentzian peaks respectively, compute the 

peak start and end positions in this manner 

and return them in the 6th and 7th columns of the peak table P. Uncertainty in the measured peak 

position p and especially in the peak width w will make the results less certain.  
 

The problem with this method is that it requires an analytical peak model, expressed as a closed-form 

expression that can be solved algebraically for their start and end points. A more versatile method is to 

fit a model to the peak data by iterative curve fitting (page 195), and then use the best-fit model to 

locate the start and stop points by interpolation. For complex peak shapes, the model need not be 

limited to a single peak; complex, asymmetrical peak shapes can often be modeled as the sum of simple 

shapes, such as Gaussians. An example of this method is demonstrated in the script StartAndEnd.m, 

http://www.wolframalpha.com/input/?i=solve+exp%28-%28%28x%29%2F%281%2F%282+sqrt%28log%282%29%29%29+w%29%29%5E2%29+%3D+a%2C+w%3E0+for++x
http://www.wolframalpha.com/input/?i=solve+1%2F%281%2B%28%28x%29%2F%280.5*w%29%29%5E2%29%3Da+for+w%3E0%2C+x
https://terpconnect.umd.edu/~toh/spectrum/findpeaksGSS.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksLSS.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/StartAndEnd.m


Page | 244  

which simulates a noisy, asymmetrical peak and then applies this method using my peakfit.m function 

(page 392). You can select the start/stop cut-off point as a fraction of the peak height in line 8 of this 

script, the amount of random noise in line 7, and the number of model peaks in line 9. At the cut-off 

points, the signal-to-noise ratio is very poor, so a direct measurement of x where y equals the cut-off is 

impractical.  Nevertheless, the start and end points can be calculated surprisingly precisely by 

computing a least-squares best-fit model (contained in the output arguments xi and yi of the peakfit 

function), which averages out the noise over the entire signal (the more data points the better). The 

graphic on the previous page shows the method in operation for 50 repeat measurements with different 

random noise samples, first with 1% noise and then with 10% noise. (If the animation is not visible, 

click this link). Despite the poor signal-to-noise ratio at the cut-off points, the relative standard 

deviation of the measured start and end points (marked by the vertical lines) is only about 0.2%. Even 

when the noise is increased 10-fold (line 7), the relative standard deviation is still under 1%. (If you 

have a different number of data points per peak, the precision will be inversely proportional to the 

square root of the number of points). 
 

Triangle construction method. Before the age of computers and electronics, peak parameters were 

sometimes measured by constructing a triangle around each peak with its long sides tangent to the 

sides of the peak, as shown below. This old method is mimicked by the functions findpeaksT.m and 

findpeaksTplot.m, which are demonstrated by the script that generated this graphic). In this method 

the peak height is taken as the apex of the triangle, which is slightly higher than the peak of the 

underlying curve. It turns out that the performance of this method is poor when the signals are very 

noisy or if the peaks overlap, but in a few special circumstances, the triangle construction method can 

be more accurate for the measurement of peak area than the Gaussian method if the peaks are 

asymmetric or of uncertain shape. (For some specific examples, see the demo function 

triangulationdemo.m: click for the graphic).  
 

https://terpconnect.umd.edu/~toh/spectrum/triangulation.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
https://terpconnect.umd.edu/~toh/spectrum/StartAndEnd.gif
https://terpconnect.umd.edu/~toh/spectrum/findpeaksT.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksTplot.m
https://terpconnect.umd.edu/~toh/spectrum/triangulationG.m
https://terpconnect.umd.edu/~toh/spectrum/TriangulationMethodAccuracy.txt
https://terpconnect.umd.edu/~toh/spectrum/triangulationdemo.png


Page | 245  

Locating sharp steps. The function findsteps.m, syntax: P=findsteps(x, y, SlopeThreshold, 

AmpThreshold, SmoothWidth, peakgroup), locates 

positive transient steps in noisy x-y time series data, by 

computing the first derivative of y that exceed 

“SlopeThreshold”, computes the step height as the 

difference between the maximum and minimum y 

values over a number of data point equal to 

"Peakgroup", and returns list P with step number, x 

position, y position, and the step height of each step 

detected. "SlopeThreshold" and "AmpThreshold" 

control step sensitivity; higher values will neglect 

smaller features. Increasing "SmoothWidth" reduces 

small sharp false steps caused by random noise or by 

"glitches" in the data acquisition. The figure above shows a real example of experimental data. The 

related function findstepsplot.m also plots the data and numbers the peaks. 
 

Rectangular pulses (square waves) require a different approach, based on amplitude discrimination 

rather than differentiation. The function "findsquarepulse.m" (syntax S=findsquarepulse(t,y, 

threshold) locates the rectangular pulses in the signal t,y that exceed a y-value of "threshold" and 

determines their start time, average height (relative to the baseline) and width. DemoFindsquare.m 
creates a test signal (with a true height of 2636 and a width of 750) and calls findsquarepulse.m to 

demonstrate. If the signal is very noisy, some preliminary rectangular smoothing (e.g. 

using fastsmooth.m) before calling findsquarepulse.m may be helpful to eliminate false peaks. 

 

NumAT(m,threshold): "Numbers Above Threshold": Counts the number of adjacent elements in the 

vector “m” that are greater than or equal to the scalar value 'threshold'. It returns a matrix listing each 

group of adjacent values, their starting index, the number of elements in each group, the sum of each 

group, and the average (mean) of each group. Type "help NumAT" and try the example.  

https://terpconnect.umd.edu/~toh/spectrum/findsteps.m
https://terpconnect.umd.edu/~toh/spectrum/findstepsplot.m
https://terpconnect.umd.edu/~toh/spectrum/findsquarepulse.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindsquare.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/NumAT.m
https://terpconnect.umd.edu/~toh/spectrum/findsquarepulse.png


Page | 246  

Using the peak table 
All these peak finding functions return a peak table as a matrix, with one row for each peak detected 

and with several columns listing, for example, the peak number, position, height, width, and area in 

columns 1 - 5 (with additional columns included for the variants measurepeaks.m, findpeaksnr.m, 

findpeaksGSS.m, and findpeaksLSS.m). You can assign this matrix to a variable (e.g., P, in these ex-

amples) and then use Matlab/Octave notation and built-in functions to extract specific information from 

that matrix. The powerful combination of functions and Matlab’s "colon" notation allows you to con-

struct compact expressions that extract the very specific information that you need. Here are several 

examples: 
 

[P(:,2) P(:,3)] is the time series of peak heights (peak position in the first column and peak 

height in the second column). 
 

mean(P(:,3)) returns the average peak height of all peaks (because peak height is in column 3). This 

also works with “median”.  
 

max(P(:,3)) returns the maximum peak height of all the peaks. This also works with min.  
 

hist(P(:,3)) displays the histogram of peak heights (using built-in “hist” function). 
 

std(P(:,4))./mean(P(:,4)) returns the relative standard deviation of the peak widths (col-

umn 4). 
 

P(:,3)./max(P(:,3)) returns the ratio of each peak height (column 3) to the height of the highest 

peak detected.  
 

100.*P(:,5)./sum(P(:,5)) returns the percentage of each peak area (column 5) of the total area 

of all peaks detected.  

sortrows(P,2) sorts P by peak position; sort rows(P,3) sorts P by peak height (small to large). 

 

To create "d" as the vector of x-axis (position) differences between adjacent peaks (because peak posi-

tion is in column 2): 
for n=1:length(P)-1;d(n)=max(P(n+1,2)-P(n,2));end 

(In Matlab/Octave, multiple statements can be placed on one line, separated by semicolons.) 
 

The val2ind function. My downloadable function val2ind.m (syntax [index,closestval] 

= val2ind(v,val)) is a simple function that returns the index and the value of the element of 

vector 'v' that is closest to 'val' (download this function and place in the Matlab search path). This 

simple function is very useful in working with peak tables: val2ind(P(:,3),7.5) returns the 

peak number whose height (column 3) is closest to 7.5. P(val2ind(P(:,2),7.5),3) returns the 

peak height (column 3) of the peak whose position (column 2) is closest to 7.5. 

P(val2ind(P(:,3),max(P(:,3))),:) returns the row vector of peak parameters of 

the highest peak in peak table P. The three statements j=P(:,4)<5.8; k=val2ind(j,1); 

P(k,:) return the matrix of peak parameters of all peaks in P whose halfwidths (in column 4) are 

less than a specified number (5.8 in this case). Note: In Matlab and Octave, multiple statement can be 

https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksnr.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksGSS.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksLSS.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m


Page | 247  

placed on one line, separated by semicolons. 
 

Finding peaks in multi-column data. The script FindingPeaksInMultiColumnData.m shows how to 

read a multi-column dataset from an Excel file and detect the peaks in each column, returning the peak 

data in a 3-dimentional table of results, PP.  Works with any of my peak finding and/or fitting functions.  

Demo scripts  

DemoFindPeak.m is a simple demonstration script using the findpeaksG function on noisy synthetic 

data. The function numbers the peaks and prints out the peak table in the Matlab command window:  
      

Peak #  Position    Height    Width    Area 

Measuredpeaks = 

1      799.95     6.9708     51.222   380.12 

2      1199.4     3.9168     50.44    210.32 

3      1600.6     2.9955     49.683   158.44 

4      1800.4     2.0039     50.779   108.33 

 ......etc. 
 

DemoFindPeakSNR is a variant of 

DemoFindPeak.m that uses findpeaksnr.m 

to compute the signal-to-noise ratio (SNR) 

of each peak and returns it in the 5th column 

(click for a graphic).  

DemoFindPeaksb.m is a similar demonstra-

tion script that uses the findpeaksb function 

on noisy synthetic data consisting of 

variable numbers of Gaussian peaks 

superimposed on a variable curved 

background. (The findpeaksG function 

would not give accurate measurements of 

peak height, width, and area for this signal, 

because it does not correct for the 

background). Click for animation. 

 Relative Percent Errors 

   Position    Height    Width      Area 

 -0.002246     0.54487   1.4057     1.9429 

 -0.02727      5.0091    8.9204     13.483 

  0.008429    -1.1224   -1.4923     -2.6315 …etc. 

% Root mean square errors 

ans = 

0.044428   2.2571     3.8253     5.850 

Peak Identification   
The command line function idpeaks.m is used for identifying peaks according to their x-axis maximum 

positions, which is useful whenever the identification of a peak depends on its x-axis position, for 

https://terpconnect.umd.edu/~toh/spectrum/FindingPeaksInMultiColumnData.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeak.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeakSNR.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakSNR
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeakSNR.png
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaksb
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.gif
https://terpconnect.umd.edu/~toh/spectrum/idpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.gif


Page | 248  

example in atomic spectroscopy and in chromatography. The syntax is  
 

[IdentifiedPeaks, AllPeaks]=idpeaks(DataMatrix, AmpT, SlopeT, SmoothWidth, 

FitWidth, maxerror, Positions, Names) 
 

It finds peaks in the signal "DataMatrix" (x-values in column 1 and y-values in column 2), according to 

the peak detection parameters "AmpT", "SlopeT", "SmoothWidth", "FitWidth" (see the "findpeaksG" 

function above), then compares the found peak positions (x-values) to a database of known peaks, in 

the form of an array of known peak maximum positions ('Positions') and matching cell array of names 

('Names'). If the position of a peak found in the signal is closer to one of the known peaks by less than 

the specified maximum error ('maxerror'), that peak is considered a match and its peak position, name, 

error, and peak amplitude (height) are entered into the output cell array "IdentifiedPeaks". The full list 

of detected peaks, identified or not, is returned in "AllPeaks". Use "cell2mat" to access numeric 

elements of IdentifiedPeaks, e.g., cell2mat(IdentifiedPeaks(2,1)) returns the position of 

the first identified peak, cell2mat(IdentifiedPeaks(2,2)) returns its name, etc. Obviously, 

for your own applications, it is up to you to provide your own array of known peak maximum positions 

('Positions') and matching cell array of names ('Names') for your particular types of signals. The related 

function idpeaktable.m does the same thing for a peak table P returned by any of my peak finder or 

peak fitting functions, having one row for each peak and columns for peak number, position, and height 

as the first three columns. The syntax is [IdentifiedPeaks] = idpeaktable(P, 

maxerror, Positions, Names). The interactive iPeak function described in the next section 

has this function built-in as one of the keystroke commands (page 184). 
 

Example:  Download idpeaks.zip, extract it, and place the extracted files in the Matlab or Octave 

search path. This contains a high-resolution atomic emission spectrum of copper ('spectrum', x = 

wavelength in nanometers; y = amplitude) and a data table of known Cu I and Cu II atomic lines 

('DataTable') containing the positions and names of many copper lines. The idpeaks function detects 

and measures the peak locations of all the peaks in "spectrum", then looks in 'DataTable' to see if any of 

those peaks are within .01 nm of any entry in the table and prints out the peaks that match. 
 

>> load DataTable 

>> load spectrum 

>> idpeaks(Cu,0.01,.001,5,5,.01,Positions,Names) 
 

ans= 

  'Position'   'Name'           'Error'         'Amplitude' 

  [  221.02]   'Cu II 221.027'  [ -0.0025773]   [ 0.019536] 

  [  221.46]   'Cu I 221.458'   [ -0.0014301]   [   0.4615] 

  [  221.56]   'Cu I 221.565'   [-0.00093125]   [  0.13191] …  

 

Live Script Peak detection tool 

PeakDetection.mlx is an interactive Live Script (page 363) for peak detection and measurement. It 

collects into one easy-to-use tool several of the peak-related functions previously described, including a 

selection of peak detectors, data smoothing, symmetrization, peak sharpening, and curve fitting, with 

interactive sliders and drop-down menus to control them interactively.  

https://terpconnect.umd.edu/~toh/spectrum/idpeaktable.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#iPeakID
https://terpconnect.umd.edu/~toh/spectrum/idpeaks.zip
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.mlx


Page | 249  

 

Clicking the OpenDataFile button in line 1 opens a file browser, allowing you to navigate to your data 

file (in .csv or .xlsx format). Start by de-selecting the FitDetectedPeaks check box on line 26 to make 

peak detection adjustments faster. The startpc and endpc sliders in lines 5 and 6 allow you to set the 

start and end of the region to focus on (expressed as a percentage of the total data length). You can set 

controls to smooth the data (lines 10 and 11) or to "de-tail" or symmetrize the peaks (line 9). You can 

choose a peak detector using the PeakDetector drop-down menu in line 20. The ListPeaks and 

LabelPeaks check boxes in lines 3 and 4 allow you to number the peaks on the graph and/or to display 

a list of peak parameters of the detected peaks. You can optionally try to sharpen the peaks, to enable 

detection of weak side peak or shoulders, by clicking the SharpenPeaks check box in line 13.  
 

You can optionally apply iterative least-square curve fitting, by clicking the FitDetectedPeaks check 

box on line 26 and selecting the desired fitting function shape from the PeakShape drop-down menu 

on line 27. The position and width of the peaks estimated by the peak detectors is used as the first-

guess starting point for the iterative fit, so only detected peaks will be included in the fit. This function 

requires that peakfit.m be in the Matlab path. (Normally, curve fitting uses only the unsmoothed data; 

however, if peak sharpening or symmetrization is applied in line 9 or 13, it uses the processed data). 

The function of each of the controls is described in the associated comment lines. 
 

Examples of its application. For illustrations of its application to peaks with different shapes and 

overlap, see the PDF file PeakDetector.pdf, which references a set of .csv data files that are 

downloadable from the same address. (To see the graphs shown on the right of the script as above, 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html#Selfdeconv
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/PeakDetector.pdf


Page | 250  

right-click on the right panel and select "Disable synchronous scrolling"). 

iPeak: Keypress-operated interactive peak detector 
iPeak (ipeak.m or ipeakoctave.m) is an interactive peak finder for time series data, based on the 

"findpeaksG.m" and "findpeaksL.m" functions. The interactive keypress operation works on your 

computer, even if you run Matlab in a web browser, but not on Matlab Mobile. Its basic operation is 

similar to iSignal and ipf.m. It accepts data in a single vector, a pair of vectors, or a matrix with the 

independent variable in the first column and the dependent variable in the second column. If you call 

iPeak with only those one or two input arguments, it estimates a default initial value for the peak 

detection parameters (AmpThreshold, SlopeThreshold, SmoothWidth, and FitWidth) based on the 

formulas below and displays those values at the bottom of the screen. 

        WidthPoints=length(y)/20;   
        SlopeThreshold=WidthPoints^-2;   

        AmpThreshold=abs(min(y)+0.1*(max(y)-min(y)));  

        SmoothWidth=round(WidthPoints/3);   

        FitWidth=round(WidthPoints/3); 

You can then fine-tune the peak detection up/down by using these pairs of adjacent keys: 
 

Amplitude threshold: A/Z 

Slope threshold: S/X 

Smooth width: D/C 

Fit width: F/V. 
 

Example 1:   One input argument; data in single vector: 
 

>> y=cos(.1:.1:100); 

>> ipeak(y)   

 

ipeak.mhttps://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakoctave.m
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/iPeakExample1.png


Page | 251  

Example 2:  One input argument; data in two columns of a matrix: 
 

>> x=[0:.01:5]'; 

>> y=x.*sin(x.^2).^2;M=[x y]; 

>> ipeak(M) 

 
 

Example  3:  Noisy data. Two input arguments; data in separate x and y vectors: 
 

>> x=[0:.1:100]; 

>> y=(x.*sin(x)).^2; 

>> ipeak(x,y); 

 

Double-click the Matlab figure window title bar to expand it to full screen; double-click again to return 

the figure window to its former size and position. 
 

https://terpconnect.umd.edu/~toh/spectrum/example2.png


Page | 252  

Example 4:  When you start iPeak using the simple syntax as illustrated above, the initial values of the 

peak detection parameters are calculated by the program, but if it starts off by picking up far too many 

or too few peaks, you can add an additional input argument (after the data) to control peak sensitivity. 
 

>> x=[0:.1:100];y=5+5.*cos(x)+randn(size(x));ipeak(x,y,10); 

   or  >> ipeak([x;y],10); 

   or  >> ipeak(humps(0:.01:2),3) 

   or  >> x=[0:.1:10];y=exp(-(x-5).^2);ipeak([x' y'],1) 
 

This additional numeric argument is an estimate of maximum peak density (PeakD), the ratio of the 

typical peak width to the length of the entire data record. Small values detect fewer peaks; larger 

values detect more peaks. It affects only the starting values for the peak detection parameters. (It is just 

a quick way to set reasonable initial values of the peak detection parameters, so you will not have so 

much adjusting to do; you can still fine-tune the peak detection parameters individually).  
 

>> load sunspots 

>> ipeak(year,number,20) 

 

 
Peaks in annual sunspot numbers from 1700 to 2009 (download the datafile).  

Sunspot data downloaded from NOAA 

iPeak displays the entire signal in the lower half of the Figure window and an adjustable zoomed-in 

https://terpconnect.umd.edu/~toh/spectrum/sunspots.txt
http://www.ngdc.noaa.gov/stp/solar/ssndata.html
https://terpconnect.umd.edu/~toh/spectrum/sunspotsipeak.png


Page | 253  

section in the upper window. Pan and zoom the portion in the upper window using the cursor arrow 

keys. The peak closest to the center of the upper window is labeled in the upper left of the top window, 

and its peak position, height, and width are listed. The Spacebar/Tab keys jump to the next/previous 

detected peak and display it in the upper window at the current zoom setting (use the up and down 

cursor arrow keys to adjust the zoom range). Or you can press the J key to jump to a specified peak 

number. Double-click the figure window title bar to expand to full screen for a closer view. 

 
Adjust the peak detection parameters AmpThreshold (A/Z keys), SlopeThreshold (S/X), SmoothWidth 

(D/C), FitWidth (F/V) so that it detects the desired peaks and ignores those that are too small, too 

broad, or too narrow to be of interest. You can also type in a specific value of AmpThreshold by 

pressing Shift-A or a specific value of SlopeThreshold by pressing Shift-S. Detected peaks are 

numbered from left to right.  
 

Press P to display the peak table of all the detected peaks (Peak #, Position, Height, Width, Area, and 

percent fitting error): 
 

    Gaussian shape mode (press Shift-G to change) 

    Window span: 169 units 

    Linear baseline subtraction 

       Peak#    Position    Height     Width      Area      Error 

         1      500.93      6.0585     34.446     222.17     9.5731 

         2      767.75      1.8841    105.58      211.77    25.979 

         3      1012.8      0.20158    35.914       7.7     269.21 

             ............. 
 

Press Shift-G to cycle between Gaussian, Lorentzian, and flat-top shape modes. Press Shift-P to save 

peak table as disc file. Press U to switch between peak and valley mode. Do not forget that only valleys 

above (that is, more positive or less negative than) the AmpThreshold are detected; if you wish to 

https://terpconnect.umd.edu/~toh/spectrum/iPeak73Large.png


Page | 254  

detect valleys that have negative minima, then AmpThreshold must be set more negative than that. 

Note: to speed up the operation for signals over 100,000 points in length, the lower window is 

refreshed only when the number of detected peaks changes or if the Enter key is pressed. Press K to 

see all the keystroke commands.  

 
The Valley mode. Press U key to switch between peak and valley mode. 

 

If the density of data points on the peaks is too low - less than about 4 points - the peaks may not be 

reliably detected; you can improve reliability by using the interpolation command (Shift-I) to re-

sample the data by linear interpolation to a larger number of points. Conversely, if the density of data 

points on the peaks of interest is very high - say, more than 100 points per peak - then you can speed up 

the operation of iPeak by re-sampling to a smaller number of points.  
 

Peak Summary Statistics in iPeak. The E key prints a table of summary statistics of the peak 

intervals (the x-axis interval between adjacent detected peaks), heights, widths, and areas, listing the 

maximum, minimum, average, and percent standard deviation, and displaying the histograms of the 

peak intervals, heights, widths, and areas in figure window 2.  
   

Peak Summary Statistics 

149 peaks detected 

No baseline correction 

          Interval      Height      Width          Area 

Maximum    1.3204       232.7724    0.33408      80.7861 

Minimum    1.1225       208.0581    0.27146      61.6991 

Mean       1.2111       223.3685    0.31313      74.4764 

% STD      2.8931       1.9115      3.0915       4.0858 

https://terpconnect.umd.edu/~toh/spectrum/histograms.png
https://terpconnect.umd.edu/~toh/spectrum/ipeak63.png
https://terpconnect.umd.edu/~toh/spectrum/ValleyMode.png


Page | 255  

 

Example 5: Six input arguments. As above, but input arguments 3 to 6 directly specifies initial values  

of AmpThreshold (AmpT), SlopeThreshold (SlopeT), SmoothWidth (SmoothW), FitWidth 

(FitW). PeakD is ignored in this case, so just type a '0' as the second argument after the data matrix). 

                  
>> ipeak(datamatrix,0,.5,.0001,20,20); 

 
Pressing 'L' toggles ON and OFF the peak labels in the upper window. 

 

Keystrokes allow you to pan and zoom the upper window, to inspect each peak in detail if desired. You 

can set the initial values of pan and zoom in optional input arguments 7 ('xcenter') and 8 ('xrange'). See 

example 6 below.  
 

The Y key toggles between linear and log y-axis scale in the lower window (a log axis is good for 

inspecting signals with high dynamic range). It effects only the lower window display and has no effect 

on the data itself or on the peak detection and measurements.  

 

https://terpconnect.umd.edu/~toh/spectrum/SpectrumMedium.png


Page | 256  

 
Log scale (Y key) makes the smaller peaks easier to see in the lower window.  

 

Example 6: Eight input arguments. As above, but input arguments 7 and 8 specify the initial pan and 

zoom settings, 'xcenter' and 'xrange', respectively. In this example, the x-axis data are wavelengths in 

nanometers (nm), and the upper window zooms in on a very small 0.4 nm region centered on 249.7 nm. 

(These data, provided in the ZIP file, are from a high-resolution atomic spectrum). 
 

        >> load ipeakdata.mat 

        >> ipeak(Sample1,0,100,0.05,3,4,249.7,0.4); 
 

Baseline correction modes. The T key cycles the baseline correction mode from off, linear, 

quadratic, flat, linear mode(y), flat mode(y), and then back to off. The current mode is displayed above 

the upper panel. When the baseline correction mode is OFF, peak heights are measured relative to zero. 

(Use this mode when the baseline is zero or if you have previously subtracted the baseline from the 

entire signal using the B key). In the linear or quadratic modes, peak heights are automatically 

measured relative to the local baseline interpolated from the points at the ends of the segment displayed 

in the upper panel; use the zoom controls to isolate a group of peaks so that the signal returns to the 

local baseline at the beginning and end of the segment displayed in the upper window. The peak heights, 

widths, and areas in the peak table (R or P keys) will be automatically corrected for the baseline. The 

linear or quadratic modes will work best if the peaks are well separated so that the signal returns to the 

local baseline between the peaks. (If the peaks are highly overlapped, or if they are not Gaussian in 

shape, the best results will be obtained by using the curve fitting function - the N or M keys. The flat 

mode is used only for curve fitting function, to account for a flat baseline offset without reference to the 

edges of the signal segment being fit).  The mode(y) method subtracts the most common y value from 

https://terpconnect.umd.edu/~toh/spectrum/ipeak7.zip
https://terpconnect.umd.edu/~toh/spectrum/logYmodeLarge.png


Page | 257  

all the points in the selected region. For peak-type signals where the peaks usually return to the baseline 

between peaks, this is usually the baseline even if the signal does not return to the baseline at the ends 

like modes 2 and 3 (graphic example). 
 

Example 7:  Nine input arguments. As example 6, but the 9th input argument sets the background 

correction mode (equivalent to pressing the T key)' 0=OFF; 1=linear; 2=quadratic, 3=flat, 4=mode(y). 

If not specified, it is initially OFF. 
 

        >> ipeak(Sample1,0,100,0.00,3,4,249.7,0.4,1); 
 

Converting to command-line functions. To aid in writing your own scripts and functions to automate 

processing performed with iPeak, the 'Q' key prints out the findpeaksG, findpeaksb, and findpeaksfit 

commands for the segment of the signal in the upper window and for the entire signal, with the input 

arguments in place, which you can then Copy and Paste into your own scripts. The 'W' key similarly 

prints out the peakfit.m and ipf.m commands.  
 

Shift-Ctrl-S transfers the current signal to iSignal.m (page 371) and Shift-Ctrl-P transfers the current 

signal to Interactive Peak detector (iPeak.m), if those functions are installed in your Matlab path. 
 

Ensemble averaging in iPeak. For signals that contain repetitive waveform patterns occurring in one 

continuous signal, with nominally the same shape except for noise, the ensemble averaging function 

(Shift-E) can compute the average of all the repeating waveforms. It works by detecting a single peak 

in each repeat waveform to synchronize the repeats (and therefore does not require that the repeats be 

equally spaced or synchronized to an external reference signal). To use this function, first adjust the 

peak detection controls to detect only one peak in each repeat pattern, and then zoom in to isolate any 

one of those repeat patterns, and then press Shift-E. The average waveform is displayed in Figure 2 

and saved as “EnsembleAverage.mat” in the current directory. See the script 

iPeakEnsembleAverageDemo.m. 
 

De-tailing peaks with exponential tails in iPeak. If your signal has peaks that tail to the right or left 

because they have been exponentially broadened, you can remove the tails by the first-derivative 

addition technique (page 80): press Shift-Y, enter an estimate of the exponential time constant and then 

use the 1 and 2 keys to adjust it by 10% per keystroke (or Shift-1 and Shift-2 to adjust by 1% per 

keystroke). Click for animation. Increase the factor until the baseline after the peak goes negative, then 

increase it slightly so that it is as low as possible but not negative. This results in narrower, taller peaks, 

but has no effect on the peak areas. The effect is like deconvoluting the exponential function from the 

broadened peak, but it is faster and simpler. (It the peaks tail to the left rather than the right, use a 

negative factor). 
 

Normal and Multiple Peak fitting in iPeak: The N key applies iterative curve fitting to the detected 

peaks that are displayed in the upper window (referred to here as "Normal" curve fitting). The use of 

the iterative least-squares function can result in more accurate peak parameter measurements than the 

normal peak table (R or P keys), especially if the peaks are non-Gaussian in shape or are highly 

overlapped. (If the peaks are superimposed on a background, first select the baseline 

correction mode using the T key, then use the pan and zoom keys to select a peak or a group of 

overlapping peaks in the upper window, with the signal returning all the way to the local baseline at the 

https://terpconnect.umd.edu/~toh/spectrum/Mode%28y%29example.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.m
https://terpconnect.umd.edu/~toh/spectrum/iPeakShiftYDeTail.gif
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html


Page | 258  

ends of the upper window if you are using the linear or quadratic baseline modes; see page 215). Make 

sure that the AmpThreshold, Slope-Threshold, SmoothWidth are adjusted so that each peak is 

numbered once. Only numbered peaks are fitted. Then press the N key, which will display this menu of 

peak shapes (graphic on page 419): 
 

Gaussians: y=exp(-((x-pos)./(0.6005615.*width)) .^2) 

  Gaussians with independent positions and widths...................1 

(default) 

  Exponentially--broadened Gaussian (equal time constants)..........5  

  Exponentially--broadened equal-width Gaussian.....................8  

  Fixed-width exponentially-broadened Gaussian...................36  

  Exponentially--broadened Gaussian (independent time constants)...31  

  Gaussians with the same widths....................................6  

  Gaussians with preset fixed widths...............................11  

  Fixed-position Gaussians.........................................16  

  Asymmetrical Gaussians with unequal half-widths on both sides....14  

Lorentzians: y=ones(size(x))./(1+((x-pos)./(0.5.*width)).^2) 

  Lorentzians with independent positions and widths.................2  

  Exponentially--broadened Lorentzian..............................18  

  Equal-width Lorentzians...........................................7 

  Fixed-width Lorentzian...........................................12 

  Fixed-position Lorentzian........................................17 

Gaussian/Lorentzian blend (equal blends)...........................13 

  Fixed-width Gaussian/Lorentzian blend............................35 

  Gaussian/Lorentzian blend with independent blends)...............33 

Voigt profile with equal alphas....................................20 

  Fixed-width Voigt profile with equal alphas......................34 

  Voigt profile with independent alphas............................30 

Logistic: n=exp(-((x-pos)/(.477.*wid)).^2); y=(2.*n)./(1+n).........3  

Pearson: y=ones(size(x))./(1+((x-pos)./((0.5.^(2/m)).*wid)).^2).^m..4 

  Fixed-width Pearson..............................................37 

  Pearson with independent shape factors, m........................32 

Breit-Wigner-Fano..................................................15 

Exponential pulse: y=(x-tau2)./tau1.*exp(1-(x-tau2)./tau1)..........9 

Alpha function: y=(x-spoint)./pos.*exp(1-(x-spoint)./pos);.........19 

Up Sigmoid (logistic function): y=.5+.5*erf((x-tau1)/sqrt(2*tau2)).10 

Down Sigmoid y=.5-.5*erf((x-tau1)/sqrt(2*tau2))....................23 

Triangular.........................................................21 
 

Type the number for the desired peak shape from this table and press Enter, then type in a number of 

repeat trial fits and press Enter (the default is 1; start with that and then increase if necessary). If you 

have selected a variable-shape peak (e.g., numbers 4, 5, 8 ,13, 14, 15, 18, 20, 30-33), the program will 

ask you to type in a number that fine-tunes the shape. The program will then perform the fit, display the 

results graphically in Figure window 2, and print out a table of results in the command window, e.g.: 
 
 

Peak shape (1-8): 2 

Number of trials: 1 
 

Least-squares fit to Lorentzian peak model 

Fitting Error 1.1581e-006% 

  Peak#   Position   Height   Width   Area   

    1        100        1       50    71.652 

    2        350        1      100    146.13 

    3        700        1      200    267.77 



Page | 259  

 
Normal Peak Fit (N key) applied to a group of three overlapping Gaussians peaks 

 

There is also a "Multiple" peak fit function (M key) that will attempt to apply iterative curve fitting to 

all the detected peaks in the signal simultaneously. Before using this function, it is best to turn off the 

automatic baseline correction (T key) and use the multi-segment baseline correction function (B key) to 

remove the background (because the baseline correction function will probably not be able to subtract 

the baseline from the entire signal). Then press M and proceed as for the normal curve fit. A multiple 

curve fit may take a minute or so to complete if the number of peaks is large, possibly longer than 

the Normal curve fitting function on each group of peaks separately.  
 

The N and M key fitting functions perform non-linear iterative curve fitting using the peakfit.m 

function. The number of peaks and the starting values of peak positions and widths for the curve fit 

function are automatically supplied by the 

findpeaksG function, so it is essential that the 

peak detection variables in iPeak be adjust so 

that all the peaks in the selected region are 

detected and numbered once. (For more 

flexible curve fitting, use ipf.m, page 411, 

which allows manual optimization of peak 

groupings and start positions).  
 

Example 8.  This example generates four 

Gaussian peaks, all with the exact same peak 

height (1.00) and area (1.773). The first peak 

(at x=4) is isolated, the second peak (x=9) is 

slightly overlapped with the third one, and the 

last two peaks (at x= 13 and 15) are strongly 

overlapped. 
 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/iPeakPeakfitBestOf10.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakExample8.png


Page | 260  

x=[0:.01:20]; 

y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-13).^2)+exp(-(x-15).^2); 

ipeak(x,y) 

By itself, iPeak does a fairly good job of measuring peaks positions and heights by fitting just the top 

part of the peaks, because in this example the peaks are Gaussian. However, the areas and widths of the 

last two peaks (which should be 1.665 like the others) are quite a bit too large because of the overlap:  
 

Peak#   Position    Height    Width     Area 

  1        4          1       1.6651     1.7727 

  2        9          1       1.6651     1.7727 

  3       13.049      1.02    1.8381     1.9956 

  4       14.951      1.02    1.8381     1.9956 
 

In this case, curve fitting (using the N or M keys) does a much better job, even if the overlap is even 

greater, but only if the peak shape is known:    
  
Peak#    Position    Height    Width    Area   

  1         4          1       1.6651    1.7724 

  2         9          1       1.6651    1.7725 

  3        13          1       1.6651    1.7725 

  4        15         0.99999  1.6651    1.7724 
 

Note 1: If the peaks are too overlapped to be detected and numbered separately, try pressing the H key 

to activate the even-derivative sharpen function before pressing M (version 4.0 and above only). This 

affects only the peak detection, not the signal itself. 
  

Note 2: If you plan to use a variable-shape peak (numbers 4, 5, 8 ,13, 14, 15, 18, or 20) for the Multiple 

peak fit, it is a good idea to obtain a reasonable value for the requested "extra" shape parameter by 

performing a Normal peak fit on an isolated single peak (or small group of partly-overlapping peaks) of 

the same shape, then use that value for the Multiple curve fit of the entire signal.  
 

Note 3: If the peak shape varies across the signal, you can either use the Normal peak fit to fit each 

https://terpconnect.umd.edu/~toh/spectrum/peakfitExample8.png


Page | 261  

section with a different shape rather than the Multiple peak fit, or you can use the unconstrained shapes 

that fit the shape individually for each peak: Voigt (30), ExpGaussian (31), Pearson (32), or 

Gaussian/Lorentzian blend (33). 

Peak identification in iPeak. There is an optional "peak identification" operation if the optional 

input arguments 9 ('MaxError'), 10 ('Positions'), and 11 ('Names') are included. The "I" key toggles this 

function ON and OFF. This function compares the found peak positions (maximum x-values) to a 

reference database of known peaks that is supplied in input arguments 10 and 11 in the form of arrays 

of known peak maximum positions ('Positions') and matching cell array of names ('Names'). If the 

position of a found peak in the signal is closer to one of the known peaks by less than the specified 

maximum error ('MaxError'), then that peak is considered a match and its name is displayed next to the 

peak in the upper window. When the 'O' key is pressed (the letter 'O'), the peak positions, names, errors, 

and amplitudes are printed out in a table in the command window.  
   

Example 9: Application to atomic spectra. Eleven input arguments. As above, but also specifies 

'MaxError', 'Positions', and 'Names' in optional input arguments 9, 10, and 11, for peak identification 

function. Pressing the 'I' key toggles off and on the peak identification labels in the upper window. 

These data (provided in this ZIP file) are from a high-resolution atomic). 
 

>> load ipeakdata.mat 

>> ipeak(Sample1,0,100,0.05,3,6,296,5,0.1,Positions,Names); 

 
The peak identification function applied to a high-resolution atomic emission spectrum of copper.  

https://terpconnect.umd.edu/~toh/spectrum/ipeak7.zip
https://terpconnect.umd.edu/~toh/spectrum/ipeakIDmedium.png


Page | 262  

 
An atomic emission spectrum of a sample containing trace amounts of several elements. iPeak is used 

to zoom in to three small peaks near 296 nm. iPeak identified and labeled three peaks based on the 

atomic line data in ipeakdata.mat. Press the I key to display the peak ID names. Double-click the 

figure window title bar to expand to full screen for an even better view.   
 

Pressing "O" prints the peak positions, names, errors, and amplitudes in a table in the command 

window.   
 

     Name            Position    Error        Amplitude 

    'Mg I 295.2'     [295.2]    [0.058545]    [129.27] 

    'Cu 296.1   '    [296.1]    [0.045368]    [124.6] 

    'Hg 297.6   '    [297.6]    [0.023142]    [143.95] 
 

Here is another example, from a large atomic emission spectrum with over 10,000 data points and 

many hundreds of peaks. The reference table of known peaks in this case is taken from Table 1 

of  ASTM C1301 - 95(2009)e1. With the settings I was using, ten peaks were identified, shown in the 

table below. You can see that some of these elements have more than one line identified. Obviously, the 

lower the settings of the AmpThreshold, SlopeThreshold, and SmoothWidth, the more peaks will be 

detected; and the higher the setting of "MaxError", the more peaks will be close enough to be 

considered identified. In this example, the element names in the table below are hot-linked to the screen 

https://www.astm.org/DATABASE.CART/HISTORICAL/C1301-95R09E1.htm
https://terpconnect.umd.edu/~toh/spectrum/ipeak2.png


Page | 263  

image of the corresponding peak detected as identified by iPeak. Some of these lines, especially Nickel 

231.66nm, Silicon 288.18nm, and Iron 260.1nm, are rather weak and thus have poor signal-to-noise 

ratios, so their identifications might be in doubt (especially Iron, because its wavelength error is greater 

than the rest). It is up to you to decide which peaks are strong enough to be significant. In this example, 

I used an independently published table of element wavelengths, rather than data acquired on that same 

instrument, so these results really do depend on the accurate wavelength calibration of the instrument. 

The results suggests that the wavelength calibration is in fact excellent, based on the small errors for 

the two well-known and relatively strong sodium lines at 589 and 589.59 nm. I set the wavelength 

matching requirement (MaxError) to 0.2 nm in this example. (The identification of iron at 260.1 nm 

might be doubted, based its the relatively large wavelength error and low amplitude). 
 

'Name'        'Position'     'Error'      'Amplitude' 

'Cadmium'     [  226.46]   [-0.039471]   [   44.603] 

'Nickel'      [  231.66]   [ 0.055051]   [   26.381] 

'Silicon'     [  251.65]   [ 0.041616]   [   45.275] 

'Iron'        [   260.1]   [    0.156]   [    38.04] 

'Silicon'     [  288.18]   [ 0.022458]   [   27.214] 

'Strontium'   [  421.48]   [-0.068412]   [   41.119] 

'Barium'      [  493.35]   [-0.057923]   [   72.466] 

'Sodium'      [     589]   [0.0057964]   [   405.23] 

'Sodium'      [  589.57]   [-0.015091]   [    315.2] 

'Potassium'   [  766.54]   [ 0.051585]   [   61.987] 
 

Note: The ZIP file contains the latest version of the iPeak function as well as some sample data to 

demonstrate peak identification (Example 8). Obviously for your own applications, it is up to you to 

provide your own array of known peak maximum positions ('Positions') and matching cell array of 

names ('Names') for your particular types of signals.  

iPeak keyboard Controls (version 8.1):   

 Pan signal left and right...Coarse pan: < or >   

                             Fine pan: left or right cursor arrow keys 

                             Nudge one point left or right: [ and ] 

 Zoom in and out.............Coarse zoom: / or '    

                             Fine zoom: up or down cursor arrow keys 

 Resets pan and zoom.........ESC 

 Select entire signal........Ctrl-A 

 Refresh entire plot.........Enter (Updates cursor position in lower plot) 

 Change plot color...........Shift-C (cycles through standard colors) 

 Adjust AmpThreshold.........A,Z  (Larger values ignore short peaks) 

 Type in AmpThreshold........Shift-A  (Type value and press Enter) 

 Adjust SlopeThreshold.......S,X  (Larger values ignore broad peaks) 

 Type in SlopeThreshold......Shift-S  (Type value and press Enter) 

 Adjust SmoothWidth..........D,C  (Larger values ignore sharp peaks} 

 Adjust FitWidth.............F,V (Adjust to cover top part of peaks) 

 Toggle sharpen mode ........H  Helps detect overlapped peaks. 

 Enter de-tailing factor.....Shift-Y. Removes exponential peak tails 

 Adjust de-tailing 10%.......1,2  Adjust peak de-tailing factor 10%. 

 Adjust de-tailing 1%........Shift-1,Shift-2  Adjust de-tailing 1%. 

 Baseline correction.........B, then click baseline at multiple points  

 Restore original signal.....G  to cancel previous background subtraction 

https://terpconnect.umd.edu/~toh/spectrum/iPeakCadmium.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakNickel.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakSilicon.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakIron.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakStrontiuml.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakBarium.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakSodium.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakSodium.png
https://terpconnect.umd.edu/~toh/spectrum/iPeakPotassium.png
https://terpconnect.umd.edu/~toh/spectrum/ipeak7.zip


Page | 264  

 Invert signal...............-  Invert (negate) the signal (flip + and -) 

 Set minimum to zero.........0 (Zero) Sets minimum signal to zero 

 Interpolate signal..........Shift-I  Interpolate (re-sample) to N points 

 Toggle log y mode OFF/ON....Y  Plot log Y axis on lower graph 

 Cycles baseline modes.......T 0=none; 1=linear; 2=quad; 3=flat; 

                               4=linear mode(y); 5=flat mode(y) 

 Toggle valley mode OFF/ON...U  Switch to valley mode 

 Gaussian/Lorentzian mode....Shift-G Cycle between Gaussian, 

                                     Lorentzian, and flat-top modes 

 Print peak table............P  Prints Peak #, Position, Height, Width 

 Save peak table.............Shift-P  Saves peak table as disc file 

 Step through peaks..........Space/Tab  Jumps to next/previous peak 

 Jump to peak number.........J  Type peak number and press Enter 

 Normal peak fit.............N  Fit peaks in upper window with peakfit.m 

 Multiple peak fit...........M  Fit all peaks in signal with peakfit.m 

 Ensemble average all peaks..Shift-E  (Read instructions first) 

 Print keyboard commands.....K  Prints this list 

 MeasUre peak areas .........Shift-U  Areas by perp. drop and tan. skim. 

 Print findpeaks arguments...Q  Prints findpeaks function with arguments. 

 Print ipeak arguments.......W  Prints ipeak function with all arguments. 

 Print report................R  Prints Peak table and parameters 

 Print peak statistics.......E  prints mean, std of peak intervals,  

                                 heights, etc. 

 Peak labels ON/OFF......... L  Label all peaks detected in upper window. 

 Peak ID ON/OFF..............I  Identifies closest peaks in  

                                'Names' database. 

 Print peak IDs..............O  Prints table of peaks IDs 

 Switch to ipf.m.............Shift-Ctrl-F  Transfer current signal to 

                                            Interactive Peak Fitter 

 Switch to iSignal...........Shift-Ctrl-S  Transfer current signal  

                                           to iSignal.m 

 Expand to full screen.......Double-click figure window title bar 

   

Click for Animated step-by-step instructions 
 

iPeak Demo functions 

demoipeak.m (or demoipeakoctave) is a demonstration function that generates a noisy signal with 

peaks, calls iPeak, and then prints out a table of the actual peak parameters and a list of the peaks 

detected and measured by iPeak for comparison. Before running this demo, ipeak.m must be 

downloaded and placed in the Matlab search path. The ZIP file contains several demo functions 

(ipeakdemo.m, ipeakdemo1.m, etc.) that illustrate various aspects of the iPeak function and how it can 

be used effectively. Download the zip file, right-click and select "Extract all", then put the resulting 

files in the Matlab path and run them by typing their names at the Matlab command window prompt. 

To test for the proper installation and operation of iPeak, run “testipeak.m”. 
 

PeakAreaMethods.m is a script that compares the three methods are available in iPeak.m for peak area 

measurements, using a computer-generated signal of 5 overlapping peaks with unequal heights and 

widths but equal areas. The peak areas are measured by Gaussian estimation (GE), perpendicular drop 

(PD), and iterative curve fitting (Fa), which are taken as the correct values. You can control the peak 

shape and widths in lines 18 and 19. 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/demoipeak.m
https://terpconnect.umd.edu/~toh/spectrum/demoipeakoctave.m
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
http://terpconnect.umd.edu/~toh/spectrum/ipeak8.zip
https://terpconnect.umd.edu/~toh/spectrum/testipeak.m
https://terpconnect.umd.edu/~toh/spectrum/PeakAreaMethods.m


Page | 265  

ipeakdemo: effect of the peak detection parameters 

 Four Gaussian peaks with the same 

heights but different widths (10, 30, 

50 and 70 units). This demonstrates 

the effect of SlopeThreshold and 

SmoothWidth on peak detection. 

Increasing SlopeThreshold (S key) 

will discriminate against the broader 

peaks. Increasing SmoothWidth (D 

key) will discriminate against the 

narrower peaks and noise. FitWidth 

(adjusted by the F and V keys) 

controls the number of points around 

the "top part" of the (unsmoothed) 

peak that are taken to estimate the 

peak heights, positions, and widths. A 

reasonable value is ordinarily about 

equal to 1/2 of the number of data 

points in the half-width of the peaks. In this case, where the peak widths are quite different, set it to 

about 1/2 of the number of data points in the narrowest peak.  
 

ipeakdemo1: the baseline correction mode. Demonstration of background correction, with separated, 

narrow peaks on a large baseline. 

Each time you run this demo, 

you will get a different set of 

peaks and noise. A table of the 

actual peak positions, heights, 

widths, and areas is printed out 

in the command window. Jump 

to the next/ previous peaks using 

the Spacebar/Tab keys. Hint: 

Select the linear baseline 

correction mode (T key), adjust 

the zoom setting so that the 

peaks are shown one at a time in 

the upper window, then press 

the P key to display the peak 

table. For peak signals like this, 

the mode(y) baseline correction 

modes 4 and 5 are often useful, 

subtracting the most common y value (the statistical mode) from the points in the selected region, which 

usually removes the baseline and does not need the signal to return to the baseline to the edges of the 

selected region like modes 2 and 3. 

https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo1.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo.gif
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo1.png


Page | 266  

ipeakdemo2: peak overlap and the curve fitting functions.  

Demonstration of error caused by 

overlapping peaks on a large offset 

baseline. Each time you run this demo, 

you will get a different set of peaks 

and noise. A table of the actual peak 

positions, heights, widths, and areas is 

printed out in the command window. 

(Jump to the next/ previous peaks 

using the Spacebar/ Tab keys). Hint: 

Use the B key and click on the 

baseline points, then press the P key 

to display the peak table. Or use 

background correction modes 2-4 and 

use the Normal curve fit (N key) with 

peak shape 1 (Gaussian). 

 

 

 

ipeakdemo3:  Baseline shift caused by overlapping peaks 

Demonstration of overlapping Lo-

rentzian peaks, without an added 

background. A table of the actual 

peak positions, heights, widths, and 

areas is printed out in the command 

window; in this example, the true 

peak heights are 1,2 3,...10. Over-

lap of peaks can cause significant 

errors in measuring peak parame-

ters, especially for Lorentzian 

peaks, because they have gently 

sloping sides that contribute to the 

baseline of any peaks in the region. 

Hint: turn OFF the background 

correction mode (T key) and use 

the Normal curve fit (N key) to fit 

small groups of 2-5 peaks numbered in the upper window, with peak shape 2 (Lorentzian). For the 

greatest accuracy in measuring a particular peak, include one or two additional peaks on either side, to 

help account for the baseline shift caused by the sides of those neighboring peaks. Alternatively, if the 

total number of peaks is not too great, you can use the Multiple curve-fit (M key) to fit the entire signal 

in the lower window.  

 

https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo3.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo2.png
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo3.png


Page | 267  

ipeakdemo4: dealing with very noisy signals 

Detection and measurement of four peaks in 

a very noisy signal. The signal-to-noise ratio 

of the first peak is 2. Each time you run this 

demo, you will get a different set of noise. A 

table of the actual peak positions, heights, 

widths, and areas is printed out in the com-

mand window. Jump to the next/previous 

peaks using the Spacebar/ Tab keys. The 

peak at x=100 is usually detected, but the 

accuracy of peak parameter measurement is 

poor because of the low signal-to-noise ra-

tio. ipeakdemo6 is similar but has the op-

tion of different kinds of noise (white, pink, 

proportional, etc.) 

Hint: With very noisy signals it is usually 

best to increase SmoothWidth and FitWidth to help reduce the effect of the noise. 

 

ipeakdemo5: dealing with highly overlapped peaks 

In this demo, the peaks are so 

highly overlapped that only one 

or two of the highest peaks yield 

distinct maxima that are detected 

by iPeak. The height, width, and 

area estimates are highly inaccu-

rate because of this overlap. The 

normal peak fit function ('N' key) 

would be useful in this case, but 

it depends on iPeak for the num-

ber of peaks and for the initial 

guesses, and so it would fit only 

the peaks that were found and 

numbered. 

To help in this case, pressing the 

'H' key will activate the peak sharpen function that decreases peak width and increases the peak height 

of all the peaks, making it easier to detect and number all the peaks for use by the peakfit function (N 

key). Note: peakfit fits the original unmodified peaks; the sharpening is used only to help locate the 

peaks to provide peakfit with suitable starting values. 
 

https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo4.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo5.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdemo4.png
https://terpconnect.umd.edu/~toh/spectrum/demo5.gif


Page | 268  

If you are using Python, a basic peak finding algorithm is described on page 440, and on  

https://terpconnect.umd.edu/~toh/spectrum/Python.html 

Spreadsheet Peak Finder Templates  

 

Simple peak and valley detection. The spreadsheet pictured above, PeakAndValleyDetection-

Template.xlsx (or PeakAndValleyDetectionExample.xlsx with sample data), is a simple peak and val-

ley detector that defines a peak as any point with lower points on both sides and a valley as any point 

with higher points on both sides. Peaks and valleys are marked by colored cells in columns F through L 

and tabulated in columns T through Y with their x and y measured values, based on the use of the IN-

DIRECT, ADDRESS, and MATCH functions as described on page 348. The raw data can be optional-

ly smoothed by entering a smooth width (a positive odd integer) in cell E6 to suppress false detection 

caused by random noise. Directions for expanding the template are included. 
 

Selective peak detection. The spreadsheet PeakDetectionTemplate.xls (or PeakDetectionExam-

ple.xls with sample data) implements the first-derivative zero-crossing peak detection method with am-

plitude and slope thresholds as described on page 230. The input x, y data are contained in Sheet1, col-

umn A and B, rows 9 to 1200. (You can type or paste your own data there). The amplitude threshold 

and slope threshold are set in cells B4 and E4, respectively. Smoothing and differentiation are per-

formed by the convolution technique used by the spreadsheets DerivativeSmoothing.xls described pre-

viously on page 73. The Smooth Width and the Fit Width are both controlled by the number of non-

zero convolution coefficients in row 6, columns J through Z. (In order to compute a symmetrical first 

derivative, the coefficients in columns J to Q must be the negatives of  the positive coefficients in col-

umns S to Z). The original data and the smoothed derivative are shown in the two charts. To detect 

https://terpconnect.umd.edu/~toh/spectrum/Python.html
https://terpconnect.umd.edu/~toh/spectrum/Python.html
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample.xls
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls


Page | 269  

peaks in the data, a series of three conditions are tested for each data point in columns F, G, and H, 

corresponding to the three nested loops in findpeaksG.m:   

1. Is the signal greater than Amplitude Threshold? (line 45 of findpeaksG.m; column F in the 

spreadsheet) 

2. Is there a downward directed zero crossing (page 65) in the smoothed first derivative? (line 43 

of findpeaksG.m; column G in the spreadsheet) 

3. Is the slope of the derivative at that point greater than the Slope Threshold? (line 44 of 

findpeaksG.m; column H in the spreadsheet) 

If the answer to all three questions is yes (highlighted by blue cell coloring), a peak is registered at that 

point (column I), counted in column J, and assigned an index number in column K. The peak index 

numbers, X-axis positions, and peak heights are listed in columns AC to AF. Peak heights are comput-

ed two ways: "Height" is based on slightly smoothed Y values (more accurate if the peaks are broad 

and noisy, as in PeakDetectionDemo2b.xls) and "Max" is the highest individual Y value near the peak 

(more accurate if the data are smooth or if the peaks are very narrow, as in PeakDetectionDemo2a.xls). 

PeakDetectionDemo2.xls/xlsx is a demonstration with a user-controlled computer-generated series of 

four noisy Gaussian peaks with known peak parameters. PeakDetectionSineExample.xls is a demo that 

generates a sinusoidal signal with an adjustable number of peaks.  
 

You can extend these spreadsheets to longer columns of data by dragging the last row of columns 

A through K as needed, then select and edit the data in the graphs to include all the points in the data 

(Right-click, Select data, Edit). You can extend the spreadsheet to a greater number of peaks by drag-

ging the last row of columns AC and AD as needed. Edit R7 and the data range in the equations of 

cells in row 9, columns U, V, W,  X, AE, and AF to include all the rows containing data, then copy-

drag them down to cover all expected peaks.  
 

Peak detection with least-squares measurement. An extension of that method is made in the 

spreadsheet template PeakDetectionAndMeasurement.xlsx (screen image), which makes the assump-

tion that the peaks are Gaussian and measures their height, position, and width more precisely using 

a least-squares technique, just like "findpeaksG.m". For the first 10 peaks found, the x,y original un-

smoothed data are copied to Sheets 2 through 11, respectively, where that segment of data is subjected 

to a Gaussian least-squares fit, using the same technique as GaussianLeastSquares.xls. The best-fit 

Gaussian parameter results are copied back to Sheet1, in the table in columns AH-AK. (In its present 

form, the spreadsheet is limited to measuring 10 peaks, although it can detect any number of peaks. Al-

so, it is limited in Smooth Width and Fit Width by the 17-point convolution coefficients). 
 

The spreadsheet is available in OpenOffice (ods) and in Excel (xls and xlsx) formats. They are func-

tionally equivalent and differ only in minor cosmetic aspects. There are two example spreadsheets (A, 

and B) with calculated noisy waveforms that you can modify. Note: To enter data into the .xls and .xlsx 

versions, click the "Enable Editing" button in the yellow bar at the top.  
 

If the peaks in the data are too much overlapped, they may not make sufficiently distinct maxima to be 

detected reliably. If the noise level is low, the peaks can be sharpened artificially by the technique de-

https://terpconnect.umd.edu/~toh/spectrum/findpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2b.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2a.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionSineExample.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingAndMeasurement.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#GaussFit
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample3.xlsx
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html


Page | 270  

scribed previously. This is implemented by PeakDetectionAndMeasurementPS.xlsx and its demo ver-

sion with example data already entered PeakDetectionAndMeasurementDemoPS.xlsx.  

Expanding the PeakDetectionAndMeasurement.xlsx spreadsheet to larger numbers of measured 

peaks is more difficult. You will have to drag down row 17, columns AC through AK, and adjust the 

formulas in those rows for the required number of additional peaks, then copy all Sheet11 and paste it 

into a series of new sheets (Sheet12, Sheet13, etc.), one for each additional peak, and finally adjust the 

formulas in columns B and C in each of these additional sheets to refer to the appropriate row in Sheet1. 

Modify these additional equations in the same pattern as those for peaks 1-10. (In contrast to these 

spreadsheets, the Matlab/Octave findpeaks functions adapt automatically to any length of data and 

any number of peaks).  
 

Spreadsheet vs Matlab/Octave. A comparison of this spreadsheet to its Matlab/Octave 

equivalent findpeaksplot.m is instructive. On the positive side, the spreadsheet literally "spreads out" 

the data and the calculations spatially over many cells and sheets, breaking down the discrete steps in a 

very graphic way. In particular, the use of conditional formatting in columns F through K makes the 

peak detection decision process more evident for each peak, and the least-squares sheets 2 through 11 

lay out every detail of those calculations. This has significant instructional value. Spreadsheet 

programs have many flexible and easy-to-use formatting options to make displays more attractive. On 

the downside, a spreadsheet as complicated as PeakDetectionAndMeasurement.xlsx is far more 

difficult to construct than its Matlab/Octave equivalent. Much more serious, the spreadsheet is less 

flexible and harder to expand to larger signals and to larger number of peaks. In contrast, the 

Matlab/Octave equivalent is easy to use, faster in execution, much more flexible, and can easily handle 

signals and smooth/fit widths of any size. Spreadsheets become cumbersome with very large data sets. 

Moreover, a Matlab/ Octave function can readily be employed as an element in your own custom 

Matlab/Octave programs to perform even larger tasks. It is harder to do that in a spreadsheet.  
 

To compare the computation speed of this spreadsheet peak finder to the Matlab/Octave equivalent, we 

can take as an example the spreadsheet PeakDetectionExample2.xls, or PeakDetectionExample2.ods, 

which computes and plots a test signal consisting of a noisy sine-squared waveform with 300 data 

points and then detects and measures 10 peaks in that waveform and displays a table of peak 

parameters. This is equivalent to the Matlab/Octave script: 

   tic 

   x=1:300; 

   y(1:99)=randn(size(1:99)); 

   y(100:300)=10.*sin(.16.*x(100:300)).^2. + randn(size(x(100:300))); 

   P=findpeaksplot(x,y,0.005,5,7,7,3); 

   disp(P) 

   drawnow 

   toc 

The table below compares the elapsed times measured for Matlab 2020 and for Octave 6.1.0 running on 

a Dell XPS i7 3.5Ghz desktop. The speed advantage of Matlab is clear. Python (page 440) can do as 

well as Matlab and at the same speed. 

 

 

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurementPS.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurementDemoPS.xlsx
https://terpconnect.umd.edu/~toh/spectrum/findpeaksplot.m
http://office.microsoft.com/en-us/excel-help/quick-start-apply-conditional-formatting-HA010370614.aspx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample2.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample2.ods


Page | 271  

Method Elapsed time 

Excel spreadsheet ~ 1 sec 

Calc spreadsheet ~ 1 sec 

Matlab or Python 0.035 sec 

Octave 0.5 sec 

This is a rather small test; many real-world applications have many more data points and many more 

peaks, in which the speed advantage of Matlab/Python would be more significant. Moreover, those 

would be the tools of choice if you have many separate data sets to which you need to apply a peak de-

tection/measurement algorithm completely automatically (page 340). See also Excel VS Matlab. 

 

Hyperlinear Quantitative Absorption 

Spectrophotometry 
Specific knowledge of instrumentation design is often useful in designing an effective signal-

processing regimen. This example, taken from my own research in the 1980s, shows how a custom 

signal processing procedure for an optical measurement system can be constructed by combining 

several of the methods and concepts introduced in this book. The result is a technique that expands the 

classical limits of measurement in optical absorption spectroscopy. This is an alternative computational 

method for quantitative analysis by multiwavelength absorption spectroscopy, which I have called the 

transmission-fitting or “TFit” method. It is based on fitting a model of the instrumentally-broadened 

transmission spectrum to the observed transmission data, and it is an alternative to the usual method of 

calculating the absorbance by the simple "classical" definition of log10(Io/I). The method is described 

in T. C. O'Haver and J. Kindervater, J. of Analytical Atomic Spectroscopy 1, 89 (1986); T. C. O'Haver 

and Jing-Chyi Chang, Spectrochim. Acta 44B, 795-809 (1989); T. C. O'Haver, Anal. Chem. 68, 164-169 

(1991). I include this here as an example of combining different signal processing techniques because it 

combines many of the important concepts that have been covered in this book, namely: signal-to-noise 

ratio (page 23), Fourier convolution (page 106), multicomponent spectroscopy (page 183), iterative 

least-squares fitting (page 195), and calibration for quantitative analysis (page 332).  
 

Advantages of the TFit method compared to conventional methods are:  

(a) much wider dynamic range (i.e., the concentration range over which one calibration curve 

can be expected to give good results), 
 

(b) greatly improved calibration linearity ("hyperlinearily"), which reduces the labor and cost of 

preparing and running large numbers of standard solutions and safely disposing of them after-

ward, and 
 

(c) the ability to operate under conditions that are optimized for signal-to-noise ratio rather than 

https://www.google.com/search?q=Excel+VS+Matlab+Notes.&oq=Excel+VS+Matlab+Notes.&aqs=chrome..69i57.1064j0j9&sourceid=chrome&es_sm=93&ie=UTF-8#q=Excel+VS+Matlab
http://oceanoptics.com/measurementtechnique/absorbance/
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html


Page | 272  

for Beer's Law ideality, that is, using small spectrometers with shorter focal length, lower dis-

persion and larger slit widths to increase light throughput and reduce the effect of photon and 

detector noise (assuming, of course, that the detector is not saturated or overloaded). 

Just like the classical multilinear regression (classical least-squares) methods that are conventionally 

used in absorption spectroscopy, the Tfit method  

(a) requires an accurate reference spectrum of each analyte, 
 

(b) utilizes multiwavelength data such as would be acquired on diode-array, Fourier transform, 

or automated scanning spectrometers,  
 

(c) applies both to single-component and multi-component mixture analysis, and 
 

(d) requires that the absorbances of the components vary with wavelength, and, for multi-

component analysis, that the absorption spectra of the components be sufficiently different. 

Black or grey absorbers do not work with this method.  

The disadvantages of the Tfit method are:  

(a) It makes the computer work harder than the multilinear regression methods (but, on a typical 

personal computer, calculations take only a fraction of a second, even for the analysis of a mix-

ture of several components). 
 

(b) It requires knowledge of the instrument function, i.e., the slit function or the resolution func-

tion of an optical spectrometer. (However, this is a fixed characteristic of the instrument and 

can be measured beforehand by scanning the spectrum of a narrow atomic line source such as a 

hollow cathode lamp). It changes only if you change the slit width of the spectrometer. 
 

 (c) It is an iterative method that can under unfavorable circumstances converge on an incorrect 

local optimum, but this is handled by proper selection of the starting value, which in this case 

can be calculated by the traditional log (Io/I) method, and 
 

(d) It will not work for gray-colored substances whose absorption spectra do not vary over the 

spectral region measured. 

You can perform the required calculations in a spreadsheet or in Matlab or Octave, using the software 

described below. 
 

The following sections give the background of the method and a description of the main func-

tion and demonstration programs and spreadsheet templates: 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#backgrouond
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#TheFITMfunction
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#TheFITMfunction
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#tfit.m
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#spreadsheet


Page | 273  

Background 

The figure above illustrates optical absorption spectroscopy, where the intensity “I” of monochromatic 

light passing through an absorbing sample is given (in Matlab notation) by the Beer-Lambert Law: 
 

         I = Io.*10^-(alpha*L*c)          

where “IO” (pronounced “eye-zero”) is the intensity of the light incident on the sample, “alpha” is the 

absorption coefficient of the absorber, “L” is the distance that the light travels through the material (the 

optical path length), and “c” is the concentration of absorber in the sample. The variables I, Io, and al-

pha are all functions of wavelength; L and c are scalar.  

Traditionally, measured values of I and Io are used to compute a quantity called "absorbance", defined 

as 

                                                        A = log10(Io/I) 
 

Absorbance is defined in this way so that, when you combine this definition with the Beer-Lambert 

law, you get:  
 

                                                       A = alpha*L*c   
 

In this way, absorbance is proportional to concentration, ideally, which simplifies analytical calibration. 

This works for monochromatic light beams. However, any real spectrometer has a finite spectral reso-

lution, meaning that the light beam passing through the sample is not truly monochromatic, with the 

result that an intensity reading at one wavelength setting is an average over a small spectral interval, 

which is determined by the “adjustable aperture” in the above diagram, also called the “slit width”. 

More exactly, what is measured is a convolution of the true spectrum of the absorber and the instru-

ment function, the instrument's response as a function of the wavelength of the light. Ideally, the in-

strument function is infinitely narrow (a "delta" function), but practical spectrometers have a non-

zero slit width, the width of the adjustable aperture in the diagram above, which passes a small spectral 

interval of wavelengths of light from the dispersing element (prism) onto the sample and detector. If 

the absorption coefficient "alpha" varies over that spectral interval, then the traditionally calculated ab-

sorbance will no longer be linearly proportional to the concentration (this is called the “polychromici-

ty” error). The effect is most noticeable at high absorbances. In practice, many instruments will become 

non-linear starting at an absorbance of 2 (~1% Transmission). As the absorbance increases, the effect 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Beer_lambert_law
http://en.wikipedia.org/wiki/Absorbance
https://terpconnect.umd.edu/~toh/spectrum/Convolution.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/spectrum/724px-Spetrophotometer-en.svg.png


Page | 274  

of unabsorbed stray light and instrument noise becomes more significant. 
 

The theoretical best signal-to-noise ratio and absorbance precision for a photon-noise limited optical 

absorption instrument can be shown to be close to an absorbance close to 1.0 (see “Is there an opti-

mum absorbance for best signal-to-noise ratio?”). The range of absorbances below 1.0 is easily acces-

sible down to at least 0.001, but the range above 1.0 is limited. Even an absorbance of 10 is unreacha-

ble on most instruments and the direct measurement of an absorbance of 100 is unthinkable, as it im-

plies the measurement of light attenuation of 100 powers of ten - no real measurement system has a dy-

namic range even close to that. In practice, it is difficult to achieve a dynamic range even as high as 5 

or 6 absorbance units, so that most of the theoretically optimum absorbance range above 1.0 is unusa-

ble. (c.f. http://en.wikipedia.org/wiki/Absorbance). So, in conventional practice, greater sample dilu-

tions and shorter optical path lengths are required to force the absorbance range to lower values, even if 

this means poorer signal-to-noise ratio and measurement precision at the low end.  
 

It is true that the non-linearity caused by polychromicity can be reduced by operating the instrument at 

the highest resolution setting (reducing the instrumental slit width). However, this has a serious unde-

sired side effect: in dispersive instruments, reducing the slit width to increase the spectral resolution 

degrades the signal-to-noise substantially. It also reduces the number of atoms or molecules that are 

measured. Here is why: UV/visible absorption spectroscopy is based on the absorption of photons of 

light by molecules or atoms resulting from transitions between electronic energy states. It is well 

known that the absorption peaks of molecules are wide bands, not monochromatic lines, because the 

molecules are undergoing vibrational and rotational transitions as well as electronic ones and are also 

under the perturbing influence of their environment. This is the case also in atomic absorption spectros-

copy: the absorption "lines" of gas-phase free atoms, although much narrower that molecular bands, 

nevertheless have a finite non-zero width, mainly due to their velocity (temperature or Doppler broad-

ening) and due to collisions with the matrix gas (pressure broadening). A macroscopic collection of 

molecules or atoms, therefore, presents to the incident light beam a distribution of energy states and 

absorption wavelengths. Absorption results from the collective interaction of many individual atoms or 

molecules with individual photons. A purely monochromatic incident light beam would have photons 

all the same energy, ideally corresponding to the maximum of the energy distribution of the collection 

of atoms or molecules being measured. But in fact, many of the atoms or molecules in the optical light 

path would have an energy slightly greater or less than the average and would thus not be measured. If 

the bandwidth of the incident beam is increased, more of those non-average atoms or molecules would 

be available to be measured and more transmitted photons would reach the detector, but then the simple 

calculation of absorbance as log10(Io/I) no longer results in a linear response to concentration.  
 

Numerical simulations show that the optimum signal-to-noise ratio is typically achieved when the spec-

tral resolution of the instrument matches the width of the analyte absorption, but under those condi-

tions using the conventional log10(Io/I) absorbance would result in very substantial non-linearity over 

the higher range of absorbance values because of the “polychromicity” error. This non-linearity has its 

origin in the spectral domain (intensity vs wavelength), not in the calibration domain (absorbance vs 

concentration). Therefore, it should be no surprise that curve fitting in the calibration domain, for ex-

ample fitting the calibration data with a quadratic or cubic fit, would not be the best solution, because 

there is no theory that says that the deviations from linearity would be expected to be exactly quadratic 

http://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html#BestAbsorbance
http://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html#BestAbsorbance
http://en.wikipedia.org/wiki/Absorbance
http://en.wikipedia.org/wiki/Monochromator
https://terpconnect.umd.edu/~toh/models/AAMeasurement.html
https://terpconnect.umd.edu/~toh/models/AAMeasurement.html
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html


Page | 275  

or cubic. A more rigorous theory-based approach would be to perform the curve fitting in the spectral 

domain, where the source of the non-linearity arises. This is possible with modern absorption spectro-

photometers that use array detectors, which have many tiny detector elements that slice up the spec-

trum of the transmitted beam into many small wavelength segments, rather than detecting the sum of 

all those segments with one big photo-tube detector, as older instruments do. An instrument with an 

array detector typically uses a slightly different optical arrangement, as shown by the simplified dia-

gram above: the light travels first through the sample and then to the polychromator and array detector. 

The spectral resolution is determined by both the entrance slit width and by the width of optical detec-

tor elements (or by the number of those elements that are added up to determine the transmitted intensi-

ty). 
 

The TFit method sidesteps the above problems by calculating the absorbance in a completely different 

way. It starts with the reference spectra (an accurate absorption spectrum for each analyte, also required 

by the multilinear regression methods). It normalizes the reference spectra to unit height, multiplies 

each by an adjustable coefficient – usually starting with the conventional log10(Io/I) absorbance as a 

first guess - adds them up, computes the antilog, and convolutes it with the previously-measured slit 

function. The result, representing the instrumentally broadened transmission spectrum, is compared to 

the observed transmission spectrum. The program adjusts the coefficients (one for each unknown com-

ponent in the mixture) until the computed transmission model is a least-squares best fit to the observed 

transmission spectrum. The best-fit coefficients are then equal to the absorbances that would have been 

determined under ideal optical conditions. The program also compensates for unabsorbed stray light 

and changes in background intensity (background absorption). These calculations are performed by the 

function fitM, which is used as a fitting function for Matlab's iterative non-linear fitting func-

tion fminsearch. It sounds complicated but, in fact, takes only a fraction of a second to compute. The 

https://terpconnect.umd.edu/~toh/spectrum/fitM.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/10-Diode-array-spectrophotometer.jpg


Page | 276  

TFit method gives measurements of absorbance that are much closer to the "true" peak absorbance that 

would have been measured in the absence of stray light and polychromatic light errors. More im-

portant, it allows linear and wide dynamic range measurements to be made even if the slit width of the 

instrument is increased to optimize the signal-to-noise ratio. From a historical perspective, by the time 

Pierre Bouguer formulated what became to be known as the Beer-Lambert law in 1729, the logarithm 

was already well known, having been introduced by John Napier in 1614. The additional mathematical 

work needed to compute the absorbance, log(Io/I), rather than the simpler relative absorption, (Io-I)/Io, 

was justified because of the better 

linearity of absorbance with respect 

to concentration and optical path 

length. Moreover, the log calculation 

could easily be performed simply 

even in those days by a slide-rule 

type graduated scale. Certainly, by 

today's standards, the calculation of a 

logarithm is considered completely 

routine. In contrast, the TFit method 

presented here is admittedly more 

mathematically complex than com-

puting a logarithm and cannot be 

done without the aid of software (at 

least a spreadsheet) and at least some 

low-end miniaturized computational 

hardware. However, it offers a fur-

ther improvement in linearity beyond that achieved by the logarithmic calculation of absorbance, and it 

additionally allows the small slit width limitation to be loosened. The figure on the right above com-

pares the dynamic range of simple relative absorption (blue x), single-wavelength logarithmic absorb-

ance (red dots), multilinear regression or CLS method (cyan +) based on absorbance, and the TFit 

method (green o) over a 104 range of absorbances. (This plot was created by the Matlab/Octave 

script TFitCalCurveAbs.m). 
 

Bottom line: It’s important to understand that the TFit method does not reject the Beer-Lambert Law; 

in fact; it is based on that law. The TFit method simply calculates the absorbance in a different 

way that does not require the assumption that stray light and polychromatic radiation effects are zero. It 

allows larger slit widths and shorter focal lengths to be used, resulting in greater light intensity and sig-

nal-to-noise ratios while still achieving a much wider linear dynamic range than previous methods, thus 

requiring fewer standards to properly define the calibration curve and avoiding the need for non-linear 

calibration models. Keep in mind that the log(Io/I) absorbance calculation is a 165-year-old simplifica-

tion that was driven by the need for mathematical convenience (and limited also by the mathematical 

skills of the college students to whom this subject is typically first presented), not by the desire to op-

timize linearity and signal-to-noise ratio. It dates from the time before electronics and computers, when 

the only computational tools were pen and paper and slide rules, and when a method such as described 

here would have been completely unimaginable. That was then; this is now. Tfit is the 21st century way 

https://en.wikipedia.org/wiki/Logarithm#History
https://terpconnect.umd.edu/~toh/spectrum/Spectronic20Meter.jpeg
https://terpconnect.umd.edu/~toh/spectrum/Spectronic20Meter.jpeg
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#spreadsheet
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RaspberryPi
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RaspberryPi
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RaspberryPi
https://terpconnect.umd.edu/~toh/spectrum/TFitCalCurveAbs.m
https://www.aps.org/publications/apsnews/201108/physicshistory.cfm
https://www.aps.org/publications/apsnews/201108/physicshistory.cfm
https://terpconnect.umd.edu/~toh/spectrum/TFitCalCurveAbs.png


Page | 277  

to do quantitative absorption spectrophotometry. > end(soapbox) 
 

Note 1: The TFit method compensates for the non-linearity caused by unabsorbed stray light and the 

polychromatic light effect, but other potential sources of non-linearity remain, specifically, chemical 

effects, such as photolysis, equilibrium shifts, temperature and pH effects, binding, dimerization, 

polymerization, molecular phototropism, fluorescence, etc. A well-designed quantitative analytical 

method is designed to minimize those effects. 
 

Note 2: In practical applications, the information required by the Tfit method may not be known exact-

ly, but a reasonable estimate is better than nothing. For example, even an imperfect estimate of the in-

strumental bandwidth and/or stray light is better than simply assuming that they are zero.  

Spreadsheet implementation 
  The Tfit method can also be implemented in an Excel or Calc spreadsheet; it is a bit more cumber-

some that the Matlab/Octave implementation, but it works. The shift-and-multiply method is used for 

the convolution of the reference spectrum with the slit function, and the "Solver" add-in for Excel and 

Calc is used for the iterative fitting of the model to the observed transmission spectrum. It is very 

handy, but not essential, to have a "macro" capability to automate the process. 

(See http://peltiertech.com/Excel/SolverVBA.html#Solver2 for more info about setting up macros and 

solver on your version of Excel).  

  TransmissionFittingTemplate.xls (screen image) is an empty template; all you have to do is to enter 

the data in the cells marked by a gray background: wavelength (Column A), observed absorbance of 

the sample (Column B), the high-resolution reference absorbance spectrum (Column D), the stray light 

(A6) and the slit function used for the observed absorbance of the sample (M6-AC6). 

(TransmissionFittingTemplateExample.xls (screen image) is the same template with example data en-

tered.  
 

  TransmissionFittingDemoGaussian.xls (screen image) is 

a demonstration with a simulated Gaussi-

an absorption peak with a variable peak position, width, 

and height, plus added stray light, photon noise, and de-

tector noise, as viewed by a spectrometer with a triangular 

slit function. You can vary all the parameters and com-

pare the best-fit absorbance to the true peak height and to 

the conventional log(1/T) absorbance.  
 

All of these spreadsheets include a macro, activated by 

pressing Ctrl-f, that uses the Solver function to perform 

the iterative least-squares calculation (see page 311). 

However, if you prefer not to use macros, you can do it 

manually by clicking the Data tab, Solver, Solve, and 

then OK. 

https://en.wikipedia.org/wiki/Soapbox
https://terpconnect.umd.edu/~toh/spectrum/TFit.html#TheFITMfunction
http://peltiertech.com/Excel/SolverVBA.html#Solver2
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplate.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplateExample.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplateExample.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingDemoGaussian.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetDemoGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/macro1.txt
https://terpconnect.umd.edu/~toh/spectrum/TFitCalibrationCurve.png


Page | 278  

TransmissionFittingCalibrationCurve.xls (screen image) is a demonstration spreadsheet that includes 

another Excel macro that constructs calibration curves comparing the TFit and conventional log(1/T) 

methods for a series of 9 standard concentrations that you can specify. To create a calibration curve, 

enter the standard concentrations in AF10 - AF18 (or just use the ones already there, which cover a 

10,000-fold concentration range from 0.01 to 100), then press Ctrl-f to run the macro. In this spread-

sheet the macro does a lot more than in the previous example: it automatically goes through the first 

row of the little table in AF10 - AH18, extracts each concentration value in turn, places it in the con-

centration cell A6, recalculates the spreadsheet, takes the resulting conventional absorbance (cell J6) 

and places it as the first guess in cell I6, brings up the Solver to compute the best-fit absorbance for that 

peak height, places both the conventional absorbance and the best-fit absorbance in the table in AF10 - 

AH18, then goes to the next concentration and repeats for each concentration value. Then it constructs 

and plots the log-log calibration curve (shown on the right) for both the TFit method (blue dots) and the 

conventional (red dots) and computes the trend-line equation and the R2 value for the TFit method, in 

the upper right corner of the graph. Each time you press Ctrl-f it repeats the whole calibration curve 

with another set of random noise samples. (Note: you can also use this spreadsheet to compare the pre-

cision and reproducibility of the two methods by entering the same concentration 9 times in AF10 - 

AF18. The result should ideally be a straight flat line with zero slope). 

Matlab/Octave implementation: The fitM.m function  
function err = fitM(lam, yobsd, Spectra, InstFun, StrayLight) 
 

fitM is a fitting function for the Tfit method, for use with Matlab's or Octave's fminsearch function. The 

input arguments of fitM are: 
 

absorbance= vector of absorbances that are calculated to give the best fit to the transmission spectrum. 

yobsd = observed transmission spectrum of the mixture sample over the spectral range (column vector) 

Spectra = reference spectra for each component, over the same spectral range, one column/component, 

normalized to 1.00.  

InstFun = Zero-centered instrument function or slit function (column vector) 

StrayLight = fractional stray light (scalar or column vector, if it varies with wavelength) 

Note: yobsd, Spectra, and InstFun must have the same number of rows (wavelengths). Spectra must 

have one column for each absorbing component. 
 

Typical use: 
 

absorbance = fminsearch(@(lambda)(fitM(lambda, yobsd, TrueSpectrum,  

InstFun, StrayLight)), start);   

where “start” is the first guess (or guesses) of the absorbance(s) of the analyte(s); it is convenient to use 

the conventional log10(Io/I) estimate of absorbance for start. The other arguments (described above) 

are passed on to FitM. In this example, the fminsearch function returns the value of absorbance that 

would have been measured in the absence of stray light and polychromatic light errors (which is either 

a single value or a vector of absorbances, if it is a multi-component analysis). The absorbance can then 

be converted into concentration by any of the usual calibration procedures (Beer's Law, external stand-

https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.xls
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.png
https://terpconnect.umd.edu/~toh/spectrum/macro2.txt
https://terpconnect.umd.edu/~toh/spectrum/fitM.m
https://terpconnect.umd.edu/~toh/spectrum/fitM.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/models/Bracket.html
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html


Page | 279  

ards, standard addition, etc.).  
 

Here is a very simple numerical example, for a single-component measurement where the true ab-

sorbance is 1.00, using only 4-point spectra for illustrative simplicity (Naturally, array-detector sys-

tems would acquire many more wavelengths than that, but the principle is the same). In this case the 

instrument width (“InstFun”) is twice the absorption width, the stray light is constant at 0.01 (1% rela-

tive). The conventional single-wavelength estimate of absorbance is far too low:  
 

log10(1/.38696)=0.4123. In contrast, the TFit method using fitM is set up like this: 
 

yobsd=[0.56529 0.38696 0.56529 0.73496]'; 

TrueSpectrum=[0.2 1 0.2 0.058824]'; 

InstFun=[1 0.5 0.0625 0.5]'; 

straylight=.01; 

start=.4; 

absorbance=fminsearch(@(lambda)(fitM(lambda,yobsd,TrueSpectrum,InstFun, 

straylight)),start) 

This returns the correct absorbance value of 1.000. The "start" value is not critical in this case and can 

be just about any value you like, but I like to use the conventional log10(Io/I) absorbance, which is 

easily calculated and is useful as a rough but reasonable estimate of the correct value.  
 

For a multiple-component measurement, the only difference is that the variable "TrueSpectrum" 

would be a matrix rather than a vector, with one column for each absorbing component. The resulting 

"absorbance" would then be a vector rather than a single number, with one absorbance value for 

each component. (See TFit3.m below for an example of a 3-component mixture). 
 

Iterative least-squares methods are ordinarily considered to be more difficult and less reliable than the 

more common non-iterative multilinear regression methods. This can be true if there is more than one 

nonlinear variable that must be iterated, especially if those variables are correlated. However, in the 

TFit method, there is only one iterated variable (absorbance) per measured component, and reasonable 

first guesses are readily available from the conventional single-wavelength absorbance calculation or 

standard multiwavelength regression methods. As a result, the iterative least-squares method works 

very well in this case. The expression for absorbance given above for the TFit method can be compared 

to that for the weighted regression method: 
 

absorbance=([weight weight].*[Background RefSpec])\(-log10(yobsd).*weight) 
 

where RefSpec is the matrix of reference spectra of all the pure components. You can see that, in 

addition to the RefSpec and observed transmission spectrum (yobsd), the TFit method also requires a 

measurement of the Instrument function (spectral bandpass) and the stray light (which the linear 

regression methods assume to be zero), but these are characteristics of the spectrometer and need be 

done only once for a given spectrometer. Finally, although the TFit method does make the computer 

work harder, the computation time on a typical laboratory personal computer is only a fraction of a 

second (roughly 25 µsec per spectral data point per component analyzed), using Matlab as the 

computational environment. The cost of the computational hardware need not be burdensome; the 

method can be performed in Python, or in Octave (with some loss in speed), or even on a $35 single-

https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/models/Bracket.html#Multiple_Addition
https://terpconnect.umd.edu/~toh/spectrum/TFit3.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RaspberryPi


Page | 280  

board computer (see page 339) which comes with Python installed. 

Demo function for Octave or Matlab  
The tfit.m function is a self-contained command-line Matlab demonstration function that compares the 

TFit method to the single-wavelength (SingleW), simple regression (SimpleR), and weighted 

regression (WeightR) methods. The syntax is tfit(absorbance), where 'absorbance' is the true 

underlying peak absorbance (True A) of an absorber with a Lorentzian spectral profile of width 'width' 

(line 29), measured with a spectrometer with a Gaussian spectral bandpass of width 'InstWidth' (line 

30), fractional unabsorbed stray light level of 'straylight' (line 32), photon noise level of 'noise' (line 31) 

and a random Io shift of 'IzeroShift' (line 33). Plots the spectral profiles and prints the measured 

absorbances of each method in the command window. Examples: 
>> tfit(1) 

 

width = 10 

InstWidth = 20 

noise = 0.01 

straylight = 0.01 

IzeroShift = 0.01 

 

          True A    SingleW    SimpleR     WeightR    TFit 

            1      0.38292     0.54536     0.86839    1.0002 

>> tfit(10) 

            10     1.4858      2.2244      9.5123     9.9979 

 

>> tfit(100) 

           100     2.0011      3.6962      57.123     99.951 

 

>> tfit(200) 

           200     2.0049      3.7836      56.137    200.01 

 
>> tfit(.001) 

          0.001   0.00327     0.00633     0.000520    0.000976 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#RaspberryPi
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/tfit.m


Page | 281  

TFitDemo.m: Interactive demo for the Tfit method  

 

TFitDemo.m is a keypress-operated interactive explorer for the Tfit method (for Matlab or Octave), 

applied to the measurement of a single component with a Lorentzian (or Gaussian) absorption peak, 

with controls that allow you to adjust the true absorbance (Peak A), spectral width of the absorption 

peak (AbsWidth), spectral width of the instrument function (InstWidth), stray light, and the photon 

noise level (Noise) continuously while observing the effects graphically and numerically. (If the 

animation is not visible, click this link). The demo simulates the effect of photon noise, unabsorbed 

stray light, and random background intensity shifts (light source flicker). Compares observed 

absorbances by the single-wavelength, weighted multilinear regression (sometimes called Classical 

Least-squares in the chemometrics literature), and the TFit methods. To run this file, right-click 

TFitDemo.m click "Save link as...", save it in a folder in the Matlab search path, then type "TFitDemo" 

at the Matlab command prompt. With the figure window topmost on the screen, press K to get a list of 

the keypress functions. Version 2.1, November 2011, adds signal-to-noise ratio calculation and uses the 

W key to switch between Transmission and Absorbance display.  
 

In the example shown above, the true peak absorbance is shown varying from 0.0027 to 57 absorbance 

units, the absorption widths and instrument function widths are equal (which results in the optimum 

signal-to-noise ratio), the unabsorbed stray light is 0.5%, and the photon noise is 5%. (For demon-

stration purposes, the lowest 6 absorption peak shapes are Gaussian and the highest 3 are Lorentzian). 

The results below the graphs show that, at every absorbance and for either a Gaussian or a Lorentzian 

peak shape, the TFit method gives much more accurate measurements than either the single-

wavelength method or weighted multilinear regression method. 

 

  

https://terpconnect.umd.edu/~toh/spectrum/TFitDemo.m
https://terpconnect.umd.edu/~toh/spectrum/TFitAnimated.gif
https://terpconnect.umd.edu/~toh/spectrum/TFitDemo.m
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/spectrum/TFitAnimated.gif


Page | 282  

 

KEYBOARD COMMANDS 

Peak shape....Q     Toggles between Gaussian and Lorentzian  

                    absorption peak shape 

True peak A...A/Z   True absorbance of analyte at peak center, without 

                    instrumental broadening, stray light, or noise. 

AbsWidth......S/X   Width of the absorption peak 

SlitWidth.....D/C   Width of instrument function (spectral bandpass) 

Straylight....F/V   Fractional unabsorbed stray light. 

Noise.........G/B   Random noise level 

Re-measure....Spacebar   Re-measure signal with another random noise sample 

Switch mode...W     Switch between Transmission and Absorbance display 

Statistics....Tab   Prints table of statistics of 50 repeats 

Cal. Curve....M     Displays analytical calibration curve in Fig. window 2 

Keys..........K     Print this list of keyboard commands 

 

Why does the noise on the graph change if I change the instrument function (slit width 

or InstWidth)? In an absorption spectrometer using a continuum light source and a dispersive 

spectrometer, there are two adjustable apertures or slits, one before the dispersing element, which 

controls the physical width of the light beam, and one after, which controls the wavelength range of the 

light measured (and which, in an array detector, is controlled by the software reading the array 

elements). A spectrometer's spectral bandwidth ("InstWidth") is changed by changing both of those, 

which also affects the light intensity measured by the detector and thus the signal-to-noise ratio. 

Therefore, in all these programs, when you change InstWidth, the photon noise is automatically 

changed accordingly just as it would in a real spectrophotometer. The detector noise, in contrast, 

remains the same. I am also assuming that the detector does not become saturated or overloaded if the 

slit width is increased.  

Statistics of methods compared (TFitStats.m, for Matlab or Octave) 
This is a simple script that computes the statistics of the TFit method compared to single- wavelength 

(SingleW), simple regression (SimpleR), and weighted regression (WeightR) methods. Simulates pho-

ton noise, unabsorbed stray light, and random background intensity shifts. Estimates the precision and 

accuracy of the four methods by repeating the calculations 50 times with different random noise sam-

ples. Computes the mean, relative percent standard deviation, and relative percent deviation from true 

absorbance. You can easily change the parameters in lines 19 - 26. The program displays its results in 

the MATLAB command window.  

In the sample output shown below, the program has computed results for true absorbances of 0.001 and 

100, demonstrating that the accuracy and the precision of the TFit method are superior to the other 

methods over a 10,000-fold range.  

This statistics function is included as a keypress command (Tab key) in TFitDemo.m.  

 

 

 

https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/spectrum/TFitStats.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/TFitDemo.m


Page | 283  

Results for true absorbances of 0.001 
 

   True A    SingleW   SimpleR   WeightR   TFit  
MeanResult = 

    0.0010    0.0004    0.0005    0.0006    0.0010  
 

PercentRelativeStandardDeviation = 

  1.0e+003 * 

    0.0000    1.0318    1.4230    0.0152    0.0140  
 

PercentAccuracy = 

    0.0000  -60.1090  -45.1035  -38.6300    0.4898 

 

 

Results for true absorbances of 100 
 

MeanResult = 

  100.0000    2.0038    3.7013   57.1530   99.9967 
 

PercentRelativeStandardDeviation = 

         0    0.2252    0.2318    0.0784    0.0682 
 

PercentAccuracy = 

         0  -97.9962  -96.2987  -42.8470   -0.0033 

 

As you can see, the Tfit method offers improved accuracy and precision. 

Comparison of analytical curves (TFitCalDemo.m, for Matlab or Octave)  
TFitDemo.m is a demonstration function that compares the analytical curves for single-wavelength, 

simple regression, weighted regression, and the TFit method over any specified absorbance range 

(specified by the vector “absorbancelist” in line 20). Simulates photon noise, unabsorbed stray light, 

and random background intensity shifts. Plots a log-log scatter plot with each repeat measurement plot-

ted as a separate point (so you can see the scatter of points at low absorbances). The parameters can be 

changed in lines 20 - 27.  

In the sample result shown below, analytical curves for the four methods are computed over a 10,000-

fold range, up to a peak absorbance of 100, demonstrating that the TFit method (shown by the green 

circles) is much more nearly linear over the whole range than the single-wavelength, simple regression, 

or weighted regression methods. The wide linearity range of Tfit is especially important in regulated 

laboratories where anything but linear least-squares fits to the calibration curve are discouraged. 
 

This calibration curve function is included as a keypress command (M key) in TFitDemo.m. 

https://terpconnect.umd.edu/~toh/spectrum/TFitCalDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/RegulatedLabRules.txt
https://terpconnect.umd.edu/~toh/spectrum/TFitDemo.m


Page | 284  

 
Comparison of the simulated analytical curves for single-wavelength, simple regression, weighted 

regression, and TFit methods over a 10,000-fold absorbance range, created by TFitCalDemo.m. 

Application to a three-component mixture  
 

The application of absorption spectroscopy to mixtures of absorbing components requires the adoption 

of one additional assumption: that of additivity of absorbances, meaning that the measured absorbance 

of a mixture is equal to the sum of the absorbances of the separate components. In practice, this 

requires that the absorbers do not interact chemically; that is, that they do not react with themselves or 

with the other components or modify any property of the solution (e.g., pH, ionic strength, density, etc.) 

that might affect the spectra of the other components. These requirements apply equally to the 

conventional multi-component methods (page 184) as well as to the T-Fit method.  
 

https://terpconnect.umd.edu/~toh/spectrum/TFitCalDemo.m
https://terpconnect.umd.edu/~toh/spectrum/TFitCalCurve.png


Page | 285  

 
 

Figure No. 1 window: Click to enlarge 
 

 
 

Figure No. 2 window: Click to enlarge 
 

 

TFit3.m is a Matlab/Octave demonstration of the T-Fit method applied to the multi-component 

absorption spectroscopy of a mixture of three absorbers. The adjustable parameters are the absorbances 

of the three components (A1, A2, and A3), the spectral overlap between the component spectra 

("Sepn"), the width of the instrument function ("InstWidth"), and the noise level ("Noise"). TFit3 

compares quantitative measurement by weighted regression and TFit methods and simulates photon 

noise, unabsorbed stray light, and random background intensity shifts. Note: After executing this m-file, 

slide the "Figure No. 1" and "Figure No.2" windows side-by-side so that they do not overlap. Figure 

window 1 shows a log-log scatter plot of the true vs. measured absorbances, with the three absorbers 

plotted in different colors and symbols. Figure window 2 shows the transmission spectra of the three 

absorbers plotted in the corresponding colors. As you use the keyboard commands (below) in Figure 

No. 1, both graphs change accordingly.  
 

In the sample calculation shown above, component 2 (the small dip shown in blue) is almost 

completely buried by the stronger absorption bands of components 1 and 3 on either side and has a 

much weaker peak absorbance (0.1) than the other two components (3 and 5, respectively). Even in this 

challenging case, the TFit method gives a result (T2=0.101) within 1% of the correct value (A2=0.1). 

In fact, over most combinations of the three concentrations, the TFit method works better (although, of 

course, nothing works if the spectral difference between the components is too small).  

   Note: in this program, as in all the above, when you change InstWidth, the photon noise 

automatically changes accordingly just as it would in a real variable-slit dispersive spectrophotometer 

with a white light source. You can also download the newer self-contained keyboard-operated version 

(TFit3Demo.m) that works in Matlab or in recent versions of Octave: 

  

https://terpconnect.umd.edu/~toh/spectrum/TFit3a.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3a.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3a.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3a.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3b.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3b.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3b.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3b.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3.m
https://terpconnect.umd.edu/~toh/models/CLS.html
https://terpconnect.umd.edu/~toh/models/CLS.html
https://terpconnect.umd.edu/~toh/spectrum/TFit3Demo.m
https://terpconnect.umd.edu/~toh/spectrum/TFit3Demo.m
https://terpconnect.umd.edu/~toh/spectrum/TFit3a.GIF
https://terpconnect.umd.edu/~toh/spectrum/TFit3b.GIF


Page | 286  

KEYSTROKE COMMANDS (Matlab or Octave) 

A1           A/Z   Increase/decrease true absorbance of component 1 

A2           S/X   Increase/decrease true absorbance of component 2 

A3           D/C   Increase/decrease true absorbance of component 3 

Sepn         F/V   Increase/decrease spectral separation of the  

                    components 

InstWidth    G/B   Increase/decrease width of instrument function  

                    (spectral bandpass) 

Noise        H/N   Increase/decrease random noise level when  

                    InstWidth = 1 

Peak shape   Q     Toggles between Gaussian and Lorentzian  

                    absorption peak shape 

Table        Tab   Print table of results 

             K     Print this list of keyboard commands 

Sample table of typical results (displayed by pressing the Tab key): 
--------------------------------------------------------------- 

                 True        Weighted        TFit 

              Absorbance    Regression      method 

Component 1      3             2.06          3.001 

Component 2      0.1           0.4316        0.09829 

Component 3      5             2.464         4.998 

 

 

  



Page | 287  

Case Studies and Numerical Experiments. 

Can smoothed noise be mistaken for an actual signal? 

 Here are two examples that show that 

the answer to this question is yes. The 

first example is shown on the left. This 

shows iSignal (page 371) displaying a 

computer-generated 4000-point signal 

consisting of pure random noise that has 

been smoothed with a 19-point P-spline 

smooth. The upper window shows a tiny 

slice of this signal that looks like a 

Gaussian peak with a calculated SNR 

over 1000. Only by looking at the entire 

signal (bottom window) do you see the 

true picture; that “peak” is just part of 

the noise, smoothed so that it looks nice. 

Do not fool yourself. 
 

The second example is a simple series of 

three Matlab commands that use the 

'randn' function to generate a 10000-point data set containing only normally-distributed white noise. 

Then it uses 'fastsmooth.m' to smooth that noise, resulting in a 'signal' with a standard deviation of 

about 0.3 and a maximum value around 1.0. That signal is then submitted to iPeak (page 248). If the 

peak detection criteria (e.g., AmpThreshold and SmoothWidth) are set too low, many peaks will be 

found. But setting the AmpThreshold to 3 times the standard deviation (3 x 0.3 = 0.9) will greatly re-

duce the incidence of these false peaks. 

>> noise=randn(1,10000); 

>> signal=fastsmooth(noise,13); 

>> ipeak([1:10000;signal],0,0.6,1e-006,17,17) 

  

The peak identification function, which identifies peaks based on their exact x-axis peak position and a 

stored table of previously identified peak positions, is even less likely to be fooled by random noise, 

because in addition to the peak detection criteria of the findpeaks algorithm, any detected peak must 

also match closely to a peak position in the table of known peaks. 

Signal or Noise?  
The client’s experimental signal in this case study was unusual because it did not look like a typical 

signal when plotted; in fact, it looked a lot like noise at first glance. The figure below compares the raw 

experimental signal (bottom) with the same number of points of normally-distributed white noise (top) 

with a mean of zero and a standard deviation of 1.0 (obtained from the Matlab/Octave 'randn' function).  

https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#idpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#idpeaks
https://terpconnect.umd.edu/~toh/spectrum/SmoothedNoise.png


Page | 288  

 

As you can see, the main difference is that the signal has more large 'spikes', especially in a positive 

direction. This difference is evident when you look at the descriptive statistics of the signal and the 

randn function: 

DESCRIPTIVE STATISTICS Raw signal random noise (randn function) 

Mean 0.4 0 

Maximum 38 about 5 - 6 

Standard Deviation (STD) 1.05 1.0 

Inter-Quartile Range (IQR) 1.04 1.3489 

Kurtosis 38 3 

Skewness 1.64 0 

You can see that the standard deviations of these two are nearly the same, but the other statistics (espe-

cially the kurtosis and skewness) indicate that the probability distribution of the signal is far 

https://www.socialresearchmethods.net/kb/statdesc.php
http://www.une.edu.au/WebStat/unit_materials/c4_descriptive_statistics/determine_skew_kurt.html
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#PDF
https://terpconnect.umd.edu/~toh/spectrum/JComparison.png


Page | 289  

from normal; there are far more positive spikes in the signal than expected for pure noise. Most of these 

turned out to be the peaks of interest for this signal; they look like spikes only because the length of 

the signal (over 1,000,000 points) causes the 

peaks to be compressed into one screen pixel 

or less when the entire signal is plotted on 

the screen. In the figures on the left, iSignal 

(page 371) is used to "zoom in" on some of 

the larger of these peaks (using the cursor 

arrow keys). The peaks are very sparsely 

separated (by an average of 1000 half-widths 

between peaks) and are well above the level of background noise (which has a standard deviation of 

roughly 0.9 throughout the signal).  
 

The researcher who obtained this signal said 

that a 'good' peak was 'bell-shaped', with an 

amplitude above 5 and a width of 500-1000 

x-axis units. So that means that we can ex-

pect the signal-to-background-noise ratio to 

be at least 5/0.9 = 5.5. You can see in the 

three example peaks on the left that the 

peak widths do indeed meet those expectations. The interval between adjacent x-axis points is 25, so 

that means that we can expect the peaks to have about 20 to 40 points in their widths. Based on that, we 

can expect that the positions, heights, and 

widths of the peaks should be able to be 

measured fairly accurately using least-squares 

methods (which reduce the uncertainty of 

measured parameters by about the square root 

of the number of points used - about a factor 

of 5 in this case). However, the noise appears 

to be signal-dependent; that is, the noise on 

the top of the peaks is distinctly greater than the noise on the baseline. The result is that the actual sig-

nal-to-noise (S/N) ratio of peak parameter measurement for the larger peaks will not be as good as 

might be expected based on the ratio of the peak height to the noise on the background. Most likely, the 

total noise in this signal is the sum of two major components, one with a fixed standard deviation of 0.9 

and the other roughly equal to 10% of the peak height. 

To automate the detection of large numbers of peaks, we can use the findpeaksG or iPeak (page 411) 

functions. Reasonable values of the input arguments AmplitudeThreshold, SlopeThreshold, Smooth-

Width, and FitWidth for those functions can be estimated based on the expected peak height (5) and 

width (20 to 40 data points) of the "good" peaks. For example, using AmplitudeThreshold=5, 

SlopeThreshold=.001, SmoothWidth=25, and FitWidth=25, these functions detect and measure 76 

peaks above an amplitude of 5 and with an average peak width of 523. The interactive iPeak function 

(page 411) is especially convenient for exploring the effect of these peak detection parameters and for 

http://en.wikipedia.org/wiki/Normal_distribution
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak


Page | 290  

graphically inspecting the peaks that it finds. Ideally, the objective is to find a set of peak detection ar-

guments that detect and accurately measure all the peaks that you would consider 'good' and skip all the 

'bad' ones. But the criteria for good and bad peaks is at least partly subjective, so it is usually best to err 

on the side of caution and avoid skipping 'good' peaks at the risk of including a few 'bad' peaks in the 

mix, which can be weeded out manually based on unusual position, height, width, or appearance.  
 

Of course, it must be expected that the values of the peak position, height, and width given by the 

findpeaksG or iPeak functions will only be approximate and will vary depending on the exact setting of 

the peak detection arguments; the noisier the data, the greater the uncertainty in the peak parameters. In 

this regard, the peak-fitting functions peakfit.m and ipf.m usually give more accurate results, because 

they make use of all the data across the peak, not just the top of the peak as do findpeaksG and iPeak. 

For example, compare the results of the peak near x=3035200 measured with iPeak (click to view) and 

with peakfit (click to view). Also, the peak fitting functions are better for dealing with overlapping 

peaks and for estimating the uncertainty of the measured peak parameters, using the bootstrap options 

of those functions. For example, the largest peak in this signal has an x-axis position of 2.8683e+007, a 

height of 32, and a width of 500. The bootstrap method determines that the standard deviations are 4, 

0.92, and 9.3, respectively.  
 

Because the signal in the case study was so large (over 1,000,000 points), the interactive programs such 

as iPeak, iSignal, and ipf may be sluggish in operation, especially if your computer is not fast computa-

tionally or graphically. If this is a serious problem, it may be best to break the signal up into two or 

more segments and deal with each segment separately, then combine the results. Alternatively, you can 

use the condense function to average the entire signal into a smaller number of points by a factor of 2 

or 3 (at the risk of slightly reducing peak heights and increasing peak widths), but then you should re-

duce SmoothWidth and FitWidth by the same factor to compensate for the reduced number of data 

points across the peaks. Run testcondense.m for a demonstration of the condense function. 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/peak30353.png
https://terpconnect.umd.edu/~toh/spectrum/peak30353.png
https://terpconnect.umd.edu/~toh/spectrum/peakfit30353.png
https://terpconnect.umd.edu/~toh/spectrum/peakfit30353.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/condense.m
https://terpconnect.umd.edu/~toh/spectrum/testcondense.m


Page | 291  

Buried treasure  

The experimental signal in this case study had several narrow spikes rising above a seemingly flat base-

line. The experimenter said that the spikes were artifacts. 

               

Using iSignal (page 371) to investigate the signal, I found that the visible positive spikes were single 

points of large amplitude (1x106), whereas the regions between the spikes were not really flat but con-

tained many bell-shaped peaks that were so much smaller (by a factor of 1000) that they were not even 

visible at first. For example, using iSignal to zoom in to the region around x=26300, you can see one of 

those bell-shaped peaks with a small single-point negative-going spike artifact near its peak. 

 

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/Case2large.png
https://terpconnect.umd.edu/~toh/spectrum/Case2Figure2.png


Page | 292  

Most of the peaks in this signal had narrow spikes like this; such artifacts are common in some experi-

mental signals. They are easy to eliminate by using a median filter. The iSignal function (page 371) has 

such a filter, activated by the “M” key. The result (on the next page) shows that the single-point spike 

artifacts have been eliminated, with little effect on the character of the bell-shaped peak. 

 

Other filter types, like most forms of smoothing (page 41), would be far less effective than a median 

filter for this type of artifact and would distort the peaks.  
 

The negative spikes in this signal turned out to be steep steps, which can either be reduced by using 

iSignal's slew-rate limit function (the ` key) or manually eliminated by using the semicolon key (;) to 

set the selected region between the dotted red cursor lines to zero. Using the latter approach, the entire 

cleaned-up signal is shown below. The remaining peaks are all positive, bell-shaped and have ampli-

tudes from about 6 to about 750. 

 

http://en.wikipedia.org/wiki/Median_filter
https://terpconnect.umd.edu/~toh/spectrum/iSignal
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
http://en.wikipedia.org/wiki/Slew_rate
https://terpconnect.umd.edu/~toh/spectrum/Case2Figure3.png
https://terpconnect.umd.edu/~toh/spectrum/Case2y2.png


Page | 293  

iPeak (page 411) can automate measurements of all the peak positions and heights for the entire 

signal at once, using the peak detection settings shown at the bottom of the screen shot below.  

 

If required, individual peaks can be measured more accurately by fitting the whole peak with 

iPeak's “N” key (page 411) or with peakfit.m or ipf.m (page 411). The peaks are all slightly 

asymmetrical; they fit an exponentially-broadened Gaussian model (page 224) to a fitting error 

less than about 0.5%. The smooth residual plots suggest that the signal was smoothed before the 

spikes were introduced and that the noise increases with the signal amplitude (because these is 

little or noise on the baseline).  

 

Note that fitting with an exponentially-broadened Gaussian model gives the peak parameters of the 

Gaussian before broadening. iSignal (page 371) and iPeak (page 411) estimate the peak parameters of 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/Case2Figure6.png
https://terpconnect.umd.edu/~toh/spectrum/Case2Figure7.png


Page | 294  

the broadened peak. As before, the effect of the broadening is to shift the peak position to larger values, 

reduce the peak height, and increase the peak width.  

Position  Height  Width   Area  error   

isignal  16871  788.88  32.881  27612         S/N Ratio = 172 

ipeak    16871  785.34  33.525  28029 

peakfit  16871  777.9   33.488  27729  1.68% Gaussian model       

peakfit  16863  973.72  27.312  28308  0.47% Exponentially-broadened Gaussian  

 

The Battle Rounds: a comparison of methods  

This numerical experiment demonstrates the application of several techniques described in this book to 

the quantitative measurement of a peak that is buried in an unstable background, a situation that com-

monly occurs in the quantitative analysis applications of various forms of spectroscopy, process moni-

toring, and remote sensing. The objective is to derive a measure of peak amplitude that varies linearly 

with the actual peak amplitude but that is minimally affected by the changes in the background and by 

the random noise. In this example, the peak to be measured is located at a fixed location in the center of 

the recorded signal, at x=100 and has a fixed shape (Gaussian) and width (30). The background, on the 

other hand, is highly variable, both in amplitude and in shape. The numerical simulation shows six su-

perimposed recordings of the signal with six different peak amplitudes and with randomly varying 

background amplitudes and shapes (top row left in the following figures). The methods that are com-

pared here include smoothing (page 41), differentiation (page 61), classical least-squares multicompo-

nent method (page 184), and iterative non-linear curve fitting (page 195).  
 

CaseStudyC.m is a self-contained Matlab/Octave demo function that demonstrates this case. To run it, 

download it, place it in the search path, and type “CaseStudyC” at the command prompt. Each time you 

run it, you will get the same series of true peak amplitudes (set by the vector “SignalAmplitudes”, in 

line 12) but a different set of background shapes and amplitudes. The background is modeled as a 

Gaussian peak of randomly varying amplitude, position, and width; you can control the aver-

age amplitude of the background by changing the variable “BackgroundAmplitude” and the aver-

age change in the background by changing the variable “BackgroundChange”.  
 

The five methods compared in the figures that follow are: 

1: Top row center. A simple zero-to-peak measurement of the smoothed signal, which assumes 

that the background is zero. 
 

2: Top row right. The difference between the peak signal and the average background on both 

sides of the peak (both smoothed), which assumes that the background is flat. 
 

3: Bottom row left. A derivative-based method, which assumes that the background is very 

broad compared to the measured peak. 
 

4: Bottom row center. Classical least-squares (CLS), which assumes that the background is a 

peak of known shape, width, and position (the only unknown being the height). 
 

5: Bottom row right. iterative non-linear curve fitting (INLS), which assumes that the 

background is a peak of known shape but unknown width and position. This method can track 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudyC.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html


Page | 295  

changes in the background peak position and width (within limits) if the measured peak and the 

background shapes are independent of the concentration of the unknown. 

These five methods are listed roughly in the order of increasing mathematical and geometrical com-

plexity. They are compared below by plotting the actual peak heights (set by the vector “SignalAmpli-

tudes”) against the measure derived from that method, fitting those data to a straight line, and compu-

ting the coefficient of determination, R2., which is 1.0000 for a perfectly linear plot. 

 

For the first test (shown in the figure above), both “BackgroundAmplitude” and “BackgroundChange” 

are set to zero, so that only the random noise is present. In that case, all the methods work well, with R2 

values all very close to 0.9999. With a 10x higher noise level (click to view), all methods still work 

about equally well, but with a lower coefficient of determination R2, as might be expected. 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudy0noisy.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudy0.png


Page | 296  

 

For the second test (shown in the figure immediately above), “BackgroundAmplitude”=1 and “Back-

groundChange”=0, so the background has significant amplitude variation but a fixed shape, position, 

and width. In that case, the first two methods fail, but the derivative, CLS, and INLS methods work 

well. 

 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudy1.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudy2.png


Page | 297  

For the third test, shown in the figure above, “BackgroundAmplitude”=1 and “BackgroundChange” 

=100, so in this case the background varies in position, width, and amplitude (but remains broad com-

pared to the signal). Here, the CLS method fails as well, because it assumes that the background varies 

only in amplitude. However, if we go one step further (click to view) and set “BackgroundChange”= 

1000, the background shape is now so unstable that even the INLS method fails, but the derivative 

method still remains effective as long as the background is broader than the measured peak, no matter 

what its shape. On the other hand, if the width and position of the measured peak changes from sample 

to sample, the derivative method will fail and the INLS method is more effective (click to view), as 

long as the fundamental shape of both measured peak and the background are both known (e.g. Gaussi-

an, Lorentzian, etc.)  
 

Not surprisingly, the more mathematically complex methods perform better, on average. Fortunately, 

software can "hide" that complexity, in the same way, for example, that a hand-held calculator hides 

the complexity of long division or calculating square roots. 

 

Ensemble averaging patterns in a continuous signal  

Ensemble averaging is a powerful method of reducing the effect of random noise in experimental sig-

nals when it can be applied. The idea is that the signal is repeated, preferably many times, and all the 

repeats are averaged. The signal builds up, and the noise gradually averages towards zero, as the num-

ber of repeats increases. 

   An important requirement is that the repeats be aligned or synchronized so that in the absence of ran-

dom noise, the repeated signals would line up exactly. There are two ways of managing this:  

(a) the signal repeats are triggered by some external event and the data acquisition can use that trigger 

to synchronize the signals, or  

(b) the signal itself has some feature that can be used to detect each repeat, whenever it occurs. 

   The first method (a) has the advantage that the signal-to-noise (S/N) ratio can be arbitrarily low and 

the average signal will still gradually emerge from the noise if the number of repeats is large enough. 

However, not every experiment has a reliable external trigger. 
    

The second method (b) can be used to average repeated patterns in one continuous signal without an 

external trigger that corresponds to each repeat, but the signal must then contain some feature (for ex-

ample, a peak) with a signal-to-noise ratio large enough to detect reliably in each repeat. This method 

can be used even when the signal patterns occur at random intervals when the timing of the repetitions 

is not of interest. The interactive peak detector iPeak 6 (page 411) has a built-in ensemble averaging 

function (Shift-E) that can compute the average of all the repeating waveforms. It works by detecting a 

single peak in each repeat to synchronize the repeats. 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudy3.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudy4.png
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak


Page | 298  

 

               

The Matlab script iPeakEnsembleAverageDemo.m (on http://tinyurl.com/cey8rwh) demonstrates this 

idea, with a simulated signal that contains a re-

peated underlying pattern of two overlapping 

Gaussian peaks, 12 points apart, with a 2:1 

height ratio, both of width 12. These patterns 

occur at random intervals, and the noise level is 

about 10% of the average peak height. Using 

iPeak (page 411) shown above left), you adjust 

the peak detection controls to detect only one 

peak in each repeat pattern, zoom in to isolate 

any one of those repeat patterns, and press Shift-

E. In this case, there are about 60 repeats, so the 

expected signal-to-noise (S/N) ratio improve-

ment is sqrt(60) = 7.7. You can save the averaged pattern (above right) into the Matlab workspace as 

“EA” by typing 
 

>> load EnsembleAverage; EA=EnsembleAverage; 
 

then curve-fit this averaged pattern to a 2-Gaussian model using the peakfit.m function (figure on the 

right): 
 

peakfit([1:length(EA);EA],40,60,2,1,0,10) 

 
Position   Height    Width    Area 

 32.54     13.255    12.003   169.36  

 44.72      6.7916   12.677    91.69 

You will see a big improvement in the accuracy of the peak separation, height ratio, and width, com-

pared to fitting a single pattern in the original x,y signal: 

>> peakfit([x;y],16352,60,2,1,0,10) 

  

http://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.m
http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.png
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverage.png
https://terpconnect.umd.edu/~toh/spectrum/FitEnsembleAverage.png


Page | 299  

Harmonic Analysis of the Doppler Effect  

The wav file “horngoby.wav” (Ctrl-click to 

open) is a 2-second recording of the sound of a 

passing automobile horn, exhibiting the famil-

iar Doppler effect. The sampling rate is 22000 

Hz. Download this file and place it in your 

Matlab path. You can then load this into the 

Matlab workspace as the variable “doppler” 

and display it using iSignal (page 371): 

t=0:1/21920:2; 

load horngoby.mat 

 isignal(t,doppler); 

Within iSignal, you can switch to frequency 

spectrum mode by pressing Shift-S and zoom 

in on different portions of the waveform using 

the cursor keys, so you can observe the downward frequency shift and measure it quantitatively. (Actu-

ally, it is much easier to hear the frequency shift - press Shift-P to play the sound - than to see it graph-

ically. The frequency shift is rather small on a percentage basis, but human hearing is very sensitive to 

small pitch (frequency) changes). It’s easier to see if you re-plot the data to stretch out the frequency 

region around the fundamental frequency or one of the harmonics. I used iSignal to zoom in on three 

slices of this waveform and then I plotted the frequency spectrum (Shift-S) near the beginning (plotted 

in blue), middle (green), and end (red) of the sound. The frequency region between 150 Hz and 550 Hz 

are plotted in the figure below: 

 
The group of peaks near 200 is the fundamental frequency of the lowest note of the horn and the group 

http://terpconnect.umd.edu/~toh/spectrum/horngoby.wav
http://en.wikipedia.org/wiki/Doppler_shift
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
http://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
http://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/earsens.html
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/earsens.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
http://en.wikipedia.org/wiki/Fundamental_frequency
https://terpconnect.umd.edu/~toh/spectrum/CarHornSpectrum3slices.png


Page | 300  

of peaks near 400 is the second harmonic. (Pitched sounds have a harmonic structure of 1, 2, 3... times 

a fundamental frequency). The group of peaks near 250 is the fundamental frequency of the next higher 

note of the horn and the group of peaks near 500 is its second harmonic. (Car and train horns often 

have two or three harmonious notes sounded together). In each of these groups of harmonics, you can 

clearly see that the blue peak (the spectrum measured at the beginning of the sound) has a high-

er frequency than the red peak (the spectrum measured at the end of the sound). The green peak, taken 

in the middle, has an intermediate frequency. The peaks are ragged because the amplitude and fre-

quency vary over the sampling interval, but you can still get good quantitative measures of the frequen-

cy of each component by curve fitting to a Gaussian peak model using peakfit.m or ipf.m (page 411):  

Peak        Position    Height     Width     Area 

Beginning   206.69    3.0191e+005  0.81866   2.4636e+005 

Middle      202.65    1.5481e+005  2.911     4.797e+005 

End         197.42    81906        1.3785    1.1994e+005 

The estimated precision of the peak position (i.e. frequency) measurements is about 0.2% relative, 

based on the bootstrap method, good enough to allow accurate calculation of the frequency shift (about 

4.2%) and of the speed of the vehicle and to demonstrate that the measured ratio of the second harmon-

ic to the fundamental for these data is 2.0023, which is very close to the theoretical value of 2. 

 

Measuring spikes  

Spikes, narrow pulses with a width of only one or a few points, are sometimes encountered in signals as 

a result of an electronic “glitch” or stray pickup from nearby equipment, and they can easily be elimi-

nated by the use of a “median” filter.  
 

But it is possible that in some experiments the spikes themselves might be the important part of the sig-

nal and that it is required to count or measure them. This situation was encountered in a research appli-

cation by one of my clients, and it brings up some interesting twists on the usual procedures. In that 

application the spikes were caused by grains of wind-blown beach sand striking the diaphragm of a mi-

crophone element, accompanied by more-or-less sinusoidal waveforms, possibly caused by wind whis-

tling through the equipment or by the calls of shore birds. The objective was to count the sane grain 

impacts and ignore the other, possibly louder, sounds. 
 

   As a numerical simulation of this situation, the Matlab/Octave script SpikeDemo1.m creates a wave-

form (top panel of the figure below) in which a series of spikes are randomly distributed in time, con-

taminated by two types of noise: white noise and a large-amplitude oscillatory interference simulated 

by a swept-frequency sine wave. The objective is to count the spikes and locate their position on the x 

(time) axis. Direct application of findpeaks or iPeak (page 411) to the raw signal does not work well. 

http://www.physicsclassroom.com/class/sound/Lesson-4/Fundamental-Frequency-and-Harmonics
http://en.wikipedia.org/wiki/Train_horn
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#spikes
http://terpconnect.umd.edu/~toh/spectrum/SpikeDemo1.m/


Page | 301  

                    

   A single-point spike, called a delta function in mathematics, has a power spectrum that is flat; that is, 

it has equal power at all frequencies, just like white noise. But the oscillatory interference, in this case, 

is in a specific range of frequencies, which opens some interesting possibilities. One approach would 

be to use a Fourier filter, for example, a notch or band-reject filter, to remove the troublesome oscilla-

tions selectively. But if the objective of the measurement is only to count the spikes and measure their 

times, a simpler approach would be to (1) compute the second derivative (which greatly amplifies the 

spikes relative to the oscillations), (2) smooth the result (to limit the white noise amplification caused 

by differentiation), then (3) take the absolute value (to yield positive-pointing peaks). This can be done 

in a single line of nested Matlab/Octave code: 
 

y1=abs(fastsmooth((deriv2(y)).^2,3,2)); 

 

The result, shown the lower panel of the figure on the left above, is an almost complete extraction of 

the spikes, which can then be counted with findpeaksG.m or peakstats.m or iPeak.m (page 411): 

 

P=ipeak([x;y1],0,0.1,2e-005,1,3,3,0.2,0); 

The second example, SpikeDemo2.m, is even more difficult. In this case the oscillatory interference is 

caused by two fixed-frequency sine waves at a higher frequency, which completely obscures the spikes 

in the raw signal (top panel of the left figure below). In the power spectrum (bottom panel, in red), the 

oscillatory interference shows as two sharp peaks that dominate the spectrum and reach to y=106, 

whereas the spikes show as the much lower broad flat plateau at about y=10. In this case, use can be 

made of an interesting property of sliding-average smooths, such as the boxcar, triangular, and Gaussi-

an smooths; their frequency responses exhibit a series of deep cusps at frequencies that are inversely 

proportional to their filter widths. So, this opens the possibility of suppressing specific frequencies of 

oscillatory interference by adjusting the filter widths until the cusps occur at or near the frequency of 

the oscillations. Since the signal, in this case, consists of spikes that have a flat power spectrum, they 

are simply smoothed by this operation, which will reduce their heights and increase their widths, but 

will have little or no effect on their number or x-axis positions. In this case, a 9-point P-spline smooth 

puts the first (lowest frequency) cusp right in between the two oscillatory frequencies. 

https://terpconnect.umd.edu/~toh/spectrum/InteractiveFourierFilter.htm
https://terpconnect.umd.edu/~toh/spectrum/iFIlterNotch1.png
https://terpconnect.umd.edu/~toh/spectrum/iFIlterNotch1.png
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Smoothing
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Smoothing
http://en.wikipedia.org/wiki/Absolute_value
http://www.mathworks.com/help/matlab/ref/abs.html
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/deriv2.m
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
http://terpconnect.umd.edu/~toh/spectrum/SpikeDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
http://en.wikipedia.org/wiki/Cusp_%28singularity%29
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo1.png
https://terpconnect.umd.edu/~toh/spectrum/SpikeSpectrum1.png


Page | 302  

                 

In the figure on the right, you can see the effect of applying this filter; the spikes, which were not even 

visible in the original signal, are now cleanly extracted (upper panel), and you can see in the power 

spectrum (right lower panel, in red) that the two sharp peaks of oscillatory interference are reduced by 

about a factor of 1,000,000! (Note: the frequency spectra are plotted on a log-log scale). This operation 

can be performed by a single command-line function, adjusting the smooth width (the second input ar-

gument, here a 9) by trial and error to minimize the oscillatory interference: 
 

y1=fastsmooth(y,9,3); 

 

If the interference varies in frequency across the signal, you could use a segmented smooth rather than 

the standard fastsmooth. Alternatively, the segmented Fourier Spectrum (page 101) could be used to 

visualize this signal, and a Fourier filter (page 124) in “notch” mode could be employed to specifically 

eliminate the interfering frequencies. The extracted peaks could then be counted using any of the peak 

finding functions, such as: 
 

P=findpeaksG(x,y1,2e-005,0.01,2,5,3); 

or 

P=findpeaksplot(x,y1,2e-005,0.01,2,5,3); 

or 
PS=peakstats(x,y1,2e-005,0.01,2,5,3,1); 

The simple script “iSignalDeltaTest” demonstrates the power spectrum of the smoothing and differen-

tiation functions of iSignal (page 371) by applying them to a delta function. Change the smooth type, 

smooth width, derivative order and other functions to see how the power spectrum changes. 

 

Fourier deconvolution vs curve fitting (they are not the same)  

Some experiments produce peaks that are distorted by being convoluted by processes that make peaks 

less distinct and modify peak position, height, and width. Exponential broadening is one of the most 

common of these processes. Fourier deconvolution and iterative curve fitting are two methods that can 

help to measure the true underlying peak parameters. Those two methods are conceptually distinct be-

https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#SegmentedSmooth
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpect.m
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo3.png
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo4.png
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/findpeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/peakstats.m
https://terpconnect.umd.edu/~toh/spectrum/iSignalDeltaTest.m
https://en.wikipedia.org/wiki/Dirac_delta_function
https://terpconnect.umd.edu/Tom/Dropbox/SPECTRUM/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/Tom/Dropbox/SPECTRUM/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo2a.png
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo2b.png


Page | 303  

cause, in Fourier deconvolution, the underlying peak shape is unknown but the nature and width of the 

broadening function (e.g., exponential) is assumed to be known; whereas in iterative least-squares 

curve fitting it is just the reverse: the underlying peak shape (i.e., Gaussian, Lorentzian, etc.) must be 

known, but the width of the broadening process is initially unknown.  

In the script shown below and the resulting graphic shown above (Download this script), the underlying 

signal (uyy) is a set of four Gaussians with peak heights of 1.2, 1.1, 1, 0.9 located at x=10, 20, 30, 40 

and peak widths of 3, 4, 5, 6, but in the observed signal (yy) these peaks are broadened exponentially 

by the exponential function cc, resulting in shifted, shorter, and wider peaks, and then a little constant 

white noise is added after the broadening. The deconvolution of cc from yy successfully removes the 

broadening (yydc), but at the expense of a substantial noise increase. However, the extra noise in the 

deconvoluted signal is high-frequency weighted ("blue") and so is easily reduced by smoothing and has 

less effect on least-square fits than does white noise. (For a greater challenge, try adding more noise in 

line 6 or use a bad estimate of time constant in line 10). To plot the recovered signal overlaid with the 

underlying signal: plot(xx, uyy, xx, yydc). To plot the observed signal overlaid with the 

underlying signal: plot(xx,uyy,xx,yy). Excellent values for the original underlying peak posi-

tions, heights, and widths can be obtained by curve-fitting the recovered signal to four Gaussi-

ans: [FitResults,FitError]= peakfit([xx;yydc],26,42,4,1,0,10). With ten 

times the previous noise level (Noise=.01), the values of peak parameters determined by curve fitting 

are still quite good, and even with 100x more noise (Noise=0.1) the peak parameters are more accurate 

than you might expect for that amount of noise (because that noise is blue). Visually, the noise is so 

great that the situation looks hopeless, but the curve fitting works well. 

 

     

 

 

 

https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo.m
https://terpconnect.umd.edu/~toh/spectrum/uyyvsyy.png
https://terpconnect.umd.edu/~toh/spectrum/uyyvsyydc.png
https://terpconnect.umd.edu/~toh/spectrum/uyyvsyydc.png
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/uyyvsyydc.png
https://terpconnect.umd.edu/~toh/spectrum/uyyvsyy.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/peakfitxxyydc.png
https://terpconnect.umd.edu/~toh/spectrum/10xMoreNoise.png
https://terpconnect.umd.edu/~toh/spectrum/100xMoreNoise.png
https://terpconnect.umd.edu/~toh/spectrum/100xMoreNoise.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo.png


Page | 304  

xx=5:.1:65; 

% Underlying Gaussian peaks with unknown heights, positions, and widths. 

uyy=modelpeaks2(xx,[1 1 1 1],[1.2 1.1 1 .9],[10 20 30 40],[3 4 5 6],... 

[0 0 0 0]); 

% Observed signal yy, with noise added AFTER the broadening convolution  

Noise=.001; % <---Try more noise to see how this method handles it. 

yy=modelpeaks2(xx,[5 5 5 5],[1.2 1.1 1 .9],[10 20 30 40],[3 4 5 6],... 

[-40 -40 -40 -40])+Noise.*randn(size(xx)); 

% Compute transfer function, cc,  

cc=exp(-(1:length(yy))./40); % <---Change exponential factor here 

% Attempt to recover original signal uyy by deconvoluting cc from yy 

% It is necessary to zero-pad the observed signal yy as shown here. 

yydc=deconv([yy zeros(1,length(yy)-1)],cc).*sum(cc); 

% Plot and label everything 

subplot(2,2,1);plot(xx,uyy);title('Underlying signal, uyy'); 

subplot(2,2,2);plot(xx,cc);title('Exponential transfer function, cc') 

subplot(2,2,3);plot(xx,yy);title('observed broadened, noisy signal, yy'); 

subplot(2,2,4);plot(xx,yydc);title('Recovered signal, yydc') 

 

An alternative to the above deconvolution approach is to curve fit the observed signal directly with 

an exponentially broadened Gaussian (shape number 5):  

[FitResults,FitError] = peakfit([xx;yy],26,50,4,5,40,10).  

Both methods give good values of the peak parameters, but the deconvolution method is considerably 

faster because curve fitting with a simple Gaussian model is faster than fitting with an exponentially 

broadened peak model, especially if the number of peaks is large. Also, if the exponential factor is not 

known, it can be determined by curve fitting one or two of the peaks in the observed signal, using ipf.m 

(page 411), adjusting the exponential factor interactively to get the best fit. Note that you must give 

peakfit a reasonably good value for the time constant ('extra'), the input argument right after the 

peakshape number. If the value is too far off, the fit may fail completely, returning all zeros. A little 

trial and error suffice. Alternatively, you could try to use peakfit.m version 7 with the independent var-

iable exponent broadened Gaussian shape number 31 or 39, to measure the time constant as an iterated 

variable (to understand the difference, see example 39). If the time constant is expected to be 

the same for all peaks, better results will be obtained by using shape number 31 or 39 initially to meas-

ure the time constant of an isolated peak (preferably one with a good S/N ratio), then apply that fixed 

time constant in peak shape 5 to all the other groups of overlapping peaks. 

 

Digitization noise - can adding noise really help?  

Digitization noise, also called quantization noise, is an artifact caused by the rounding or truncation of 

numbers to a fixed number of figures. It can originate in the analog-to-digital converter that converts an 

analog signal to a digital one, or in the circuitry or software involved in transmitting the digital signal 

to a computer, or even in the process of transferring the data from one program to another, as in copy-

ing and pasting data to and from a spreadsheet. The result is a series of non-random steps of equal 

height. The frequency distribution is white, because of the sharpness of the steps, as you can see by ob-

serving the power spectrum. 

https://terpconnect.umd.edu/~toh/spectrum/modelpeaks2.m
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Exponential_broadening
https://terpconnect.umd.edu/~toh/spectrum/yyExpGfit.png
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Examples
https://en.wikipedia.org/wiki/Quantization_%28signal_processing%29
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://terpconnect.umd.edu/~toh/spectrum/DigitizationNoiseSpectrum.png


Page | 305  

   

The figure on the left, top panel, shows the effect of integer 

digitization on a sine wave with an amplitude of +/- 10. 

Ensemble averaging, which is usually the most effective of 

noise reduction techniques, does not reduce this type of 

noise (bottom panel) because it is non-random.  
 

Interestingly, if additional random noise is present in the 

signal, then ensemble averaging becomes effective in re-

ducing both the random noise and the digitization noise. In 

essence, the added noise randomizes the digitization, al-

lowing it to be reduced by ensemble averaging. Moreover, 

if the noise already in the signal is too low, it can be bene-

ficial to add additional noise artificially! Seriously. The 

script RoundingError.m illustrates this effect, as shown the 

animation on the right above, which shows the digitized 

sine wave with gradually increasing amounts of added 

random noise in line 8 (generated by the randn.m func-

tion) followed by ensemble averaging of 100 repeats (in 

lines 17-20). Look closely at the waveform in this anima-

tion as it changes in response to the random noise addi-

tion shown in the title. You can clearly see how the noise 

starts out mostly quantization noise but then quickly de-

creases as small but increasing amounts of random noise 

are added before the ensemble averaging step, then even-

tually increases as too much noise is added. The optimum 

standard deviation of random noise is about 0.36 times 

the quantization size, as you can demonstrate by adding lesser or greater amounts via the varia-

ble Noise in line 6 of this script. Note that this works only for ensembled averaged signals where the 

https://terpconnect.umd.edu/~toh/spectrum/RoundingError.m
https://terpconnect.umd.edu/~toh/spectrum/RoundingError.gif
https://terpconnect.umd.edu/~toh/spectrum/DigitizationNoise.png
https://terpconnect.umd.edu/~toh/spectrum/DigitizationNoise2.png
https://terpconnect.umd.edu/~toh/spectrum/RoundingError.gif
https://terpconnect.umd.edu/~toh/spectrum/DigitizedSpeech.png


Page | 306  

random noise is added before the quantization.  
 

 An audible example of this idea is illustrated by the Matlab/Octave script DigitizedSpeech.m, which 

starts with an audio recording of the spoken phrase "Testing, one, two, three", previously recorded at 

44000 Hz and saved in WAV format (TestingOneTwoThree.wav) and in .mat format (testing123.mat), 

rounds off the amplitude data progressively to 8 bits (256 steps; sound link), shown on the previous 

page, 4 bits (16 steps; sound link), and 1 bit (2 steps; sound link), and then the 2-step case again with 

random white noise added before the rounding (2 steps + noise; sound link), plots the waveforms and 

plays the resulting sounds, demonstrating both the degrading effect of rounding and the remarkable im-

provement caused by adding noise. (Click on these sound links to hear the sounds on your comput-

er). Although the computer program, in this case, does not perform an explicit ensemble averaging op-

eration as does RoundingError.m, it is likely that the neurons of the hearing center of your brain pro-

vide that function by virtue of their response time and memory effect. 

 

How low can you go? Performance with very low signal-to-noise 

ratios. 

This is a numerical experiment comparing several techniques described in this book applied to the 

quantitative measurement of a peak that is buried in an excess of random noise, where the signal-to-

noise (S/N) ratio is below 2. (Ordinarily, an S/N ratio of 3 or better is desired for reliable detection). 
 

The Matlab/Octave script LowSNRdemo.m performs the simulations and calculations and compares 

the results graphically, focusing on the behavior of each method as the S/N ratio approaches zero. Four 

methods are compared: 
 

(1) smoothing, followed by the peak-to-peak measure of the smoothed signal (page 41);  
 

(2) a peak finding method based on findpeakG  (page 232); 
 

(3) unconstrained iterative least-squares fitting (INLS) based on peakfit.m (page 195); 
 

(4) constrained classical least-squares fitting (CLS) based on the cls2.m function (page 184);  
 

The measurements are carried out over a range of peak heights for which the S/N ratio varies from 0 to 

2. The noise is random, constant, and white. Each time you run the script, you get the same set of un-

derlying signals but independent samples of the random noise. 
 

 Results for the initial values in the script are shown in the plots and in the table on the next page, both 

of which are created by the script  LowSNRdemo.m. The graphs on the left show correlation plots of 

the measured peak height vs the real peak height, which should ideally be a straight line with a slope of 

1, an intercept of zero, and an R-squared of 1. As you can see, the simplest smoothed-peak method 

(upper left) is completely inadequate, with a low slope (because smoothing reduces peak height) and a 

high intercept (because even smoothed noise has a non-zero peak-to-peak value). The findpeaks func-

tion (upper right) works OK for height for higher peak heights but fails completely below an S/N ratio 

of 0.5 because the peak height falls below the amplitude threshold setting. In comparison, the two least-

squares techniques work much better, reporting much better values of slope, intercept of zero, and R-

https://terpconnect.umd.edu/~toh/spectrum/DigitizedSpeech.m
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/testing123.mat
https://terpconnect.umd.edu/~toh/spectrum/s256.wav
https://terpconnect.umd.edu/~toh/spectrum/s8.wav
https://terpconnect.umd.edu/~toh/spectrum/s2.wav
https://terpconnect.umd.edu/~toh/spectrum/s2n.wav
https://terpconnect.umd.edu/Tom/Dropbox/SPECTRUM/RoundingError.m
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/cls2.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks


Page | 307  

squared. But if you look closely at the low end of the peak height range, near x=zero, you can see that 

the values reported by the unconstrained fit (lower left) occasionally stray from the line, whereas the 

constrained fit (lower right) decrease gracefully all the way to zero every time you run the script. Es-

sentially the reason why it is even possible to make measurements at such low S/N ratios is that the da-

ta density is very high: that is, there are many data points in each signal (about 1000 points across the 

half-width of the peak with the initial script values). The results are summarized in the table below.  

 
 

Number of points in half-width of peak: 1000 

Method         Height Error     Position Error 

Smoothed peak    21.2359%        120.688% 

findpeaksG.m     32.3709%        33.363% 

peakfit.m        2.7542%         4.6466% 

cls2.m           1.6565%   
 

The height errors are reported as a percentage of the maximum height (initially 2). (For the first three 

methods, the peak position is also measured, and its relative accuracy is reported. The constrained clas-

sical least-squares fitting does not measure peak position but rather assumes that it remains fixed at the 

initial value of 100). You can see that the CLS method has a slight advantage in the accuracy, but you 

must consider also that this method works well only if the peak shape, position, and width are known. 

The unconstrained iterative method can track changes in peak position and width.  
 

You can change several of the factors in this simulation to test the robustness of these methods. Search 

for the word 'change' in the comments for values that can be changed. Reduce MaxPeakHeight (line 8) 

to make the problem harder. Change peak position and./or width (lines 9 and 10) to show how the CLS 

https://terpconnect.umd.edu/Tom/Dropbox/SPECTRUM/CurveFittingB.html
https://terpconnect.umd.edu/Tom/Dropbox/SPECTRUM/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.png


Page | 308  

method fails. As usual, the more you know, the better your results. Change the increment (line 4) to 

change the data density; more data is always better.  
 

(Surprisingly, as we will see on page 332, Measurement Calibration, it is not even necessary to have an 

accurate peak shape model in order to get a good correlation between measured and actual height). 
  

LowSNRdemo.m also computes the power spectrum of the signal and the amplitude (square root of the 

power) of the fundamental, where most of the power of a broad Gaussian peak falls, and plots it 

in Figure window(2). The correlation to peak height is like the CLS method, but the intercept is high-

er because there is a non-zero quantity of noise even in that one frequency slice of the power spectrum.  
 

We are now, in the 21st century, into the era of "big data", where high-speed automated data systems 

can acquire, store, and process greater quantities of data than ever before. As this little example shows, 

greater quantities of data allow researchers to probe deeper and measure smaller effects than previous-

ly.  

 

Signal processing in the search for extraterrestrial intelligence 

The signal detection problems facing those who search the sky for evidence of extraterrestrial civiliza-

tions or interesting natural phenomena are enormous. Among those problems are the fact that we do not 

know much about what to expect: we do not know exactly where to look in the sky, or what frequen-

cies might be used, or the possible forms of the transmissions. Moreover, astronomers do not want to 

confuse the many powerful sources of natural and terrestrial sources of interfering signals for genuine 

extraterrestrial ones. There is also the massive computer power required, which drove the development 

of specialized hardware and software as well as, until recently, distributed computation over thousands 

of Internet-connected personal computers across the world using the former SETI@home computation-

al screen-saver. Although some of the computational techniques used in this search are more sophisti-

cated than those covered in this book, they begin with the basic concepts covered here. 

One of the reoccurring themes of this book has been that the more you know about your data, the more 

likely you are to obtain a reliable measurement. In the case of possible extraterrestrial signals, we do 

not know much, but we do know a few things.  
 

We do know that electromagnetic radiation over a wide range of frequencies is used for long-distance 

transmission on earth and between earth and satellites and probes far from earth. Astronomers already 

use radio telescopes to receive natural radiation from vast distances. To look at different frequencies 

simultaneously, Fourier transforms of the raw telescope signals can be computed over multiple time 

segments. On page 94, I showed a simulation that demonstrated how hard it is to see a periodic compo-

nent in the presence of an equal amount of random noise and yet how easy it is to pick it out in the fre-

quency spectrum.  
 

Also, transmissions from extraterrestrial civilizations might be in the form of groups of pulses, so their 

detection and verification are also part of SETI signal processing. Interestingly, triplets and other 

groups of equally spaced pulses appear in the Fourier transforms of high-frequency carrier waves that 

are amplitude or frequency modulated (like AM or FM radio). Of course, there is no reason to assume, 

https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Calibration
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemoFigure2.png
http://setiathome.ssl.berkeley.edu/
http://astronomyonline.org/Astrobiology/HowSETIWorks.asp
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html#SignalAndNoise
https://terpconnect.umd.edu/~toh/spectrum/iPowerAnimated.gif
https://en.wikipedia.org/wiki/Modulation


Page | 309  

nor to reject, that extraterrestrial civilizations might use the same methods of communication as our-

selves.  
 

One thing that we know for sure is that the earth rotates around its axis once a day and that it revolves 

around the sun once a year. So, if we look at a fixed direction out from the earth, the distant stars will 

seem to move in a predictable pattern, whereas terrestrial sources will remain fixed on earth. The huge 

Arecibo Observatory dish in Puerto Rico (sadly no longer operational) was fixed in position and was 

often used to look in one selected direction for extended periods of time. The field of view of this tele-

scope is such that a point source at a distance takes 12 seconds to pass, as the earth rotates. As SETI 

says:  
 

“Radio signals from a distant transmitter should get stronger and then weaker as the telescope's focal 

point moves across that area of the sky. Specifically, the power should increase and then decrease with 

a bell-shaped curve (a Gaussian curve). Gaussian curve-fitting is an excellent test to determine if a ra-

dio wave was generated 'out there' rather than a simple source of interference somewhere here on Earth 

since signals originating from Earth will typically show constant power patterns rather than curves”. 
 

 Also, any observed 12-second peaks can be re-examined with another focal point shifted towards the 

west to see if it repeats with the expected time and duration.  
 

 We also know that there will be a Doppler shift in the frequencies observed if the source is moving 

relative to the receiver; this is observed with sound waves as well as with electromagnetic waves like 

radio or light. Because the earth is rotating and revolving at a known and constant speed, we can accu-

rately predict and compensate for the Doppler shift caused by earth's motion (this is called “de-

chirping” the data).  

  

https://en.wikipedia.org/wiki/Arecibo_Observatory
https://www.nature.com/articles/d41586-020-03421-y
https://setiathome.berkeley.edu/sah_glossary/gaussians.php
https://setiathome.berkeley.edu/sah_glossary/gaussians.php
https://www.google.com/?ion=1&espv=2#q=seti%20gaussian
https://setiathome.berkeley.edu/sah_glossary/gaussian_graphs.php
https://en.wikipedia.org/wiki/Doppler_effect
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#F
http://coolcosmos.ipac.caltech.edu/cosmic_classroom/cosmic_reference/redshift.html
http://coolcosmos.ipac.caltech.edu/cosmic_classroom/cosmic_reference/redshift.html
https://setiathome.berkeley.edu/sah_glossary/chirping.php
https://setiathome.berkeley.edu/sah_glossary/chirping.php


Page | 310  

Why measure peak area rather than peak height?   

This simulation examines more closely the 

question of measuring peak area rather than 

peak height to reduce the effect of peak 

broadening, which commonly occurs in 

chromatography, for reasons that are dis-

cussed previously, and also in some forms of 

spectroscopy. Under what conditions the 

measurement of peak area might be better 

than peak height? 
 

 The Matlab/Octave script “HeightVsArea.m” 

simulates the measurement of a series of 

standard samples whose concentrations are 

given by the vector 'standards'. Each standard 

produces an isolated peak whose peak height 

is directly proportional to the corresponding value in 'standards' and whose underlying shape is a 

Gaussian with a constant peak position ('pos') and width ('wid'). To simulate the measurement of these 

samples under typical conditions, the script changes the shape of the peaks (by exponential broadening) 

and adds a variable baseline and random noise. You can control, by means of the variable definitions in 

the first few lines of the script, the peak beginning and end, the sampling rate 'deltaX' (increment be-

tween x values), the peak position and width ('pos' and 'wid'), the sequence of peak heights ('stand-

ards'), the baseline amplitude ('baseline') and its degree of variability ('vba'), the extent of shape change 

('vbr'), and the amount of random noise added to the final signal ('noise'). 
 

The resulting peaks are shown in the figure above. The script prepares a series of “calibration curves” 

plotting the values of 'standard' against the measured peak heights or areas for each measurement 

method. The measurement methods include peak height in Figure window 2, peak area in Figure win-

dow 3, and curve fitting height and area in Figures 4 and 5, respectively. These plots should ideally 

have an intercept of zero and an R2 of 1.000, but the slope is greater for the peak area measurements 

because the area has different units and is numerically greater than peak height. All the measurement 

methods are baseline corrected; that is, they include code that attempts to compensate for changes in 

the baseline (controlled by the variable 'baseline'). 
 

With the initial values of 'baseline', 'noise', 'vba', and 'vbr', you can clearly see the advantage of peak 

area measurements (figure 3) compared to peak height (figure 2). This is primarily because of the vari-

ability of peak shape broadening ('vbr') and to the averaging out of random noise in the computation of 

area. 

https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/HeightVsArea.m
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure4.png
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure5.png
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure1.png


Page | 311  

  
Figure window 2: measuring peak height               Figure window 3: measuring peak area 

If you set 'baseline', 'noise', 'vba', and 'vbr' all to zero, you've simulated a perfect world in which all 

methods work perfectly. 
 

Curve fitting can measure both peak height and area; it is not even absolutely necessary to use an accu-

rate peak shape model. Using a simple Gaussian model in this example works much better for peak ar-

ea (Figure window 5) than for peak height (Figure window 4) but is not significantly better than a sim-

ple peak area measurement (Figure window 3). The best results are obtained if an exponentially broad-

ened Gaussian model (shape 31 or 39) is used, using the code in line 30, but that computation takes 

longer. Moreover, if the measured peak overlaps another peak significantly, curve fitting both of those 

peaks together can give much more accurate results that other peak area measurement methods. 

 

Using macros to extend the capability of spreadsheets 

Both Microsoft Excel and OpenOffice Calc can automate repetitive tasks using “macros”, which are 

saved sequences of commands or keystrokes that are stored for later use. Macros can be most easily 

created using the built-in “Macro Recorder”, which will literally watch all your clicks, drags, and key-

strokes and record them for later playback. Or you can write or edit your macros in the macro language 

of that spreadsheet (VBA in Excel; Python or JavaScript in Calc). Or you can do both: use the macro 

recorder first, then edit the resulting code manually to modify it. That is what I usually do. 
 

To enable macros in Excel, go to the File tab > Options. On the left-side pane, select Trust Center, 

and then click Trust Center Settings. In the Trust Center dialog box, click Macro Settings on the left, 

select Enable all macros and click OK. Then perform your spreadsheet operations, and when finished, 

click Stop Recording and save the spreadsheet. Thereafter, simply pressing your Ctrl-key shortcut will 

run the macro and perform all the spreadsheet operations that you recorded. 
  

Here I will demonstrate two applications in Excel using macros with the Solver function. (See 

http://peltiertech.com/Excel/SolverVBA.html#Solver2 for information about setting up macros and 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure5.png
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure4.png
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#Matlab
http://peltiertech.com/Excel/SolverVBA.html#Solver2
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure2.png
https://terpconnect.umd.edu/~toh/spectrum/AppendixLfigure3.png


Page | 312  

solver on your version of Excel). 
 

A previous section (page 197) described the use of the “Solver” function applied to the iterative fitting 

of overlapping peaks in a spreadsheet. The steps listed there can easily be captured with the macro re-

corder and saved with the spreadsheet. However, a different macro will be needed for each different 

number of peaks, because the block of cells representing the “Proposed Model” will be different for 

each number of peaks. For example, the template “CurveFitter2Gaussian.xlsm” includes a macro 

named 'fit' for a 2-peak fit, activated by pressing Ctrl-f. Here is the text of that macro: 

 

Sub fit() 

' 

' fit Macro 

' 

' Keyboard Shortcut: Ctrl+f 

' 

SolverOk  

SetCell:="$C$12", MaxMinVal:=2, ValueOf:=0, ByChange:="$C$8:$D$9",  

   Engine:=1, EngineDesc:="GRG Nonlinear" 

SolverSolve 

End Sub 
 

 You can see that the text of the macro uses only two macro instructions: "SolverOK" and "Solv-

erSolve". SolverOK specifies all the information in the "Solver Parameters" dialog box in its input ar-

guments: 'SetCell' sets the objective as the percent fitting error in cell C12, 'MaxMinVal' is set to the 

second choice (Minimum), and 'ByChange' specifies the table of cells representing the proposed model 

(C8:D9) whose values are to be changed to minimize the objective in cell C12. The last argument sets 

the Solver engine to 'GRC Nonlinear', the best Solver engine for iterative peak fitting. Finally, "Solv-

erSolve" starts the Solver engine running. You could easily modify this macro for curve fitter templates 

with other numbers of peaks just by changing the cells referenced in the 'ByChange' argument, 

e.g., C8:E9 for a 3-peak fit. In this case, though, it is probably just as easy to use the macro recorder to 

record a macro for each curve fitter template. 
  

A more elaborate example of a spreadsheet using a macro is demonstrated by the spreadsheet called 

TransmissionFittingCalibrationCurve.xls (screen image) that creates a calibration curve for a series of 

standard concentrations in the TFit method, which was previously described on page 277. Here's a por-

tion of that macro: 

    Range("AF10").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

    Range("A6").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

    Calculate 

    Range("J6").Select 

    Selection.Copy 

    Range("I6").Select 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2Gaussian.xlsm
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.xls
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.png


Page | 313  

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 

    Calculate 

    SolverOk SetCell:="$H$6", MaxMinVal:=2, ValueOf:=0, ByChange:="$I$6", 

Engine:=1 _ 

        , EngineDesc:="GRG Nonlinear" 

    SolverOk SetCell:="$H$6", MaxMinVal:=2, ValueOf:=0, ByChange:="$I$6", 

Engine:=1 _ 

        , EngineDesc:="GRG Nonlinear" 

    SolverSolve userFinish:=True 

    SolverSolve userFinish:=True 

    SolverSolve userFinish:=True 

    Range("I6:J6").Select 

    Selection.Copy 

    Range("AG10").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 

        :=False, Transpose:=False 
 

The macro in this spreadsheet repeats this chunk of code several times, once for each concentration in 

the calibration curve (changing only the "AF10" in the first line to pick up a different concentration 

from the "Results table" in column AF). This macro uses several additional instructions, to select rang-

es ("Range...Select"), copy ("Selection.Copy") and paste ("Selection.PasteSpecial Paste:= xlPasteVal-

ues") values from one place to another and re-calculate the spreadsheet ("Calculate"). Each click, menu 

selection, or keypress that you make creates one or more lines of macro text. The syntax is wordy but 

quite explicit and clear; you can learn quite a bit just by recording various spreadsheet actions and 

looking at the resulting macro text. Or at least that’s the way I learned it. 

It's worth noting that additional way to create Excel functions and macros has become available since 

December of 2022: using an artificial intelligence conversational chatbot such as ChatGPT (page 443). 

Once you have a free account on https://chat.openai.com/, or on any of the more recently introduced 

chatbots, you can simply ask “Write an Excel macro to…”, and describe clearly what you want, refer-

ring to cells and ranges in the usual way, and the chatbot will type out a solution that you can simply 

copy and paste into your Excel worksheet. More help. 

 

  

https://chat.openai.com/
https://www.google.com/search?rlz=1C1CHBF_enUS932US932&q=chatGPT+excel+macros&spell=1&sa=X&ved=2ahUKEwjdtqnF6dj8AhUJRjABHXFPCGwQBSgAegQIBhAB&biw=1210&bih=709&dpr=1.25


Page | 314  

Random walks and baseline correction 

The random walk was mentioned in the section on signals and noise (page 23) as a type of low-

frequency ("pink") noise. Wikipedia says: "A random walk is a mathematical formalization of a path 

that consists of a succession of random steps. For example, the path traced by a molecule as it travels in 

a liquid or a gas, the tracks of a foraging animal, superstring behavior, the price of a fluctuating stock, 

and the financial status of a gambler can all be modeled as random walks, although they may not be 

truly random in reality."  Random walks describe and serve as a model for many kinds of unstable be-

havior. Whereas white, 1/f, and blue noises are tethered to a mean value to which they tend to return, 

random walks are more aimless and often drift off in one or another direction, possibly never to return. 

Numerically, a random walk can be modeled as the cumulative sum of some random process, for ex-

ample the 'randn' function. The graph below compares a 200-point sample of white noise (computed as 

'randn' and shown in blue) to a random walk (computed as a cumulative sum, often called 'cumsum', 

and shown in red). Both samples are scaled to have the same standard deviation, but their behavior is 

vastly different. The random walk has much more low-frequency behavior, and in this case it wanders 

off beyond the amplitude range of the white noise. This type of random behavior is very disruptive to 

the measurement process, distorting the shapes of peaks and causing baselines to shift and making them 

hard to define. Worse, it cannot be reduced significantly by smoothing (as shown by 

NoiseColorTest.m). In this particular example, the random walk has an overall positive slope and a 

"bump" near the middle that could be confused for a real signal peak (it is not; it is just random noise). 

But another sample might have very different behavior. Unfortunately, this behavior is sometimes ob-

served in experimental signals.  
 

  To demonstrate the measurement difficulties, the script RandomWalkBaseline.m is a numerical exper-

iment that creates a Gaussian peak with randomly variable position and width, on a random walk base-

line, with a relatively good signal-to-noise ratio of 15. The peak is measured by least-squares curve fit-

ting methods using peakfit.m with two different methods of baseline correction to handle the random 

walk: 

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://en.wikipedia.org/wiki/Random_walk
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest.m
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaseline.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkVsWhiteNoise.png


Page | 315  

(Method a) a single-component Gaussian model (shape 1) with BaselineMode set to 1 

(meaning a linear baseline is first interpolated from the edges of the data segment and 

subtracted from the signal): peakfit([x;y],0,0,1,1,0,10,1);   
 

(Method b) a 2-component model, the first being a Gaussian (shape 1) and the second a linear 

slope (shape 26), with BaselineMode set to 1: peakfit([x;y],0,0,2,[1 26],[0 

0],10,0).  

In this case, the fitting error is lower for the second method, especially if the peak falls near the edges 

of the data range. 

          

But the relative percent errors of the peak parameters show that the first method gives a lower error for 

position and width, at least in this case. On average, the peak parameters are about the same.  

       Position Error  Height Error   Width Error 

Method a:  0.2772       3.0306           0.0125 

Method b:  0.4938       2.3085           1.5418| 
 

You can compare this to WhiteNoiseBaseline.m which has a similar signal and S/N ratio, except that 

the noise is white. Interestingly, the fitting error with white noise is greater, but the parameter errors 

(peak position, height, width, and area) are lower, and the residuals are more random and less likely to 

produce false noise peaks. This is because the random walk noise is very highly concentrated at low 

frequencies where the signal frequencies usually lie, whereas white noise also has considerable power 

at higher frequencies, which increases the fitting error but does comparatively little damage to signal 

measurement accuracy. This may be counter-intuitive, but it is important to realize that fitting error 

does not always correlate with peak parameter error. Bottom line: the random walk is troublesome. 
 

Depending on the type of experiment, an instrumental design based on modulation techniques may help, 

and ensemble averaging multiple measurements can help with any type of unpredictable random noise, 

which is discussed in the very next section.  

https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaselineMethod1.png
https://terpconnect.umd.edu/~toh/spectrum/WhiteNoiseBaseline.m
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Frequency
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaselineMethod1.png
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaselineMethod2.png


Page | 316  

Modulation and synchronous detection. 

In some experimental 

designs it may be bene-

ficial to apply the tech-

nique of modulation, in 

which one of the con-

trolled independent vari-

ables is oscillated in a 

periodic fashion, and 

then detecting the result-

ing oscillation in the measured signal. Such an instrumental design can reduce or eliminate some types 

of noise and drift. 

A simple example is the optical measurement sys-

tems pictured above. A light source illuminates 

a test object (DUT = “Device Under Test”) and the 

resulting light from the test object is measured by 

the photodetector. Depending on the objective of the 

experiment and the arrangement of the parts, the 

detector might measure the light transmitted 

by, reflected by, scattered by, or excited by the light 

beam. A spinning optical chopper rapidly and re-

peatedly interrupts the light beam falling on the test 

object so that the photodetector sees an oscillating 

signal, and the following electronic system is de-

signed to measure only the oscillating component 

and to ignore the constant component. The ad-

vantage of this arrangement is that any interfering 

signals introduced after the chopper - such as con-

stant light emitted by the test object itself, or ambi-

ent light that leaks in from the outside, or any con-

stant background signal generated by the photode-

tector itself - are not oscillating in sync with the 

chopper and are thus rejected. This works best if the 

electronics are synchronized to the chopper frequen-

cy. That's exactly the function of the lock-in ampli-

fier, an electronic circuit that receives a synchroniz-

ing reference signal directly from the chopper to 

guarantee synchronization even if the chopper fre-

quency were to vary. The lock-in amplifier is sometimes viewed as a "black box" with seemingly mag-

ical abilities, but in fact, it is performing a rather simple (but very useful) operation, as shown in this 

https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=modulation
http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf
http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf
https://en.wikipedia.org/wiki/Optical_chopper
https://www.google.com/search?q=lock-in+amplifier
https://www.google.com/search?q=lock-in+amplifier
https://terpconnect.umd.edu/~toh/spectrum/OpticalChopper.png
https://terpconnect.umd.edu/~toh/spectrum/AmplitudeModulation2.png


Page | 317  

simulation and by the interactive simulation on https://terpconnect.umd.edu/~toh/models/lockin.html 

and described in T. C. O'Haver, "Lock-in Amplifiers," J. Chem. Ed. 49, March and April (1972). 

AmplitudeModulation.m is a Matlab/Octave script that simulates modulation and synchronous detec-

tion, in which the signal created when the light beam scans the test sample is modeled as a Gaussian 

band ('y'), whose parameters are defined in the first few lines of the script. The graph on the previous 

page compares the signal at the different points in the apparatus. As the wavelength of the light beam 

hitting the test object is slowly scanned, the light beam is periodically interrupted by the spinning 

chopper, represented as a square wave defined by the bipolar vector 'reference', which switches be-

tween +1 and -1, shown in the top panel on the left. This is called amplitude modulation. The modula-

tion frequency is many times faster than the rate at which the wavelength is scanned. The light emerg-

ing from the sample, therefore, shows a finely chopped Gaussian ('my'), shown in the second panel on 

the left. But the total signal seen by the detector also includes an unstable background intro-

duced after the modulation ('omy'), such as lighted emitted by the sample itself or detector background, 

which in this simulation this is modeled as a random walk (page 314), which seriously distorts the sig-

nal, shown in the third panel. The detector signal is then sent to a lock-in amplifier that is synchronized 

to the reference waveform. The essential action of the lock-in is to multiply the signal by the bipolar 

reference waveform, inverting the signal when the light is off and passing it unchanged when the light 

is on. This causes the unmodulated background signal to be converted into a bipolar square wave, 

whereas the modulated signal is not affected because it is "off" when the reference signal is negative. 

The result ('dy') is shown in the 4th panel. Finally, this signal is low-passed filtered by the last stage in 

the lock-in amplifier to remove the modulation frequency, resulting in the recovered signal peak 'sdy' 

shown in the bottom panel. In effect, the modulation transforms the signal to a higher frequency ('fre-

quency' in line 44) where low-frequency weighted noise on the baseline (line 50) is less intense. 

These various signals are compared in the figure on the right. The underlying Gaussian signal peak ('y') 

is shown as the blue line, and the contaminating back-

ground ('baseline') is shown in black, in this case, 

modeled as a random walk. The total signal ('oy') that 

would have been seen by the detector if modulation 

were not used is shown in green. The signal distortion 

is evident, and any attempt to measure the signal peak 

in that signal would be greatly in error. The signal 'sdy' 

recovered by the modulation and lock-in system is 

shown in red and overlaid with the original signal peak 

'y' in blue for comparison. The fact that the blue and 

red line are so close to each other indicates the extent 

to which this method is successful. To make a more 

quantitative comparison, this script also uses the peak-

fit.m function, which employs a least-squares method 

to measure the peak parameters in the original unmod-

ulated total signal (green line) and in the modulated 

https://terpconnect.umd.edu/~toh/models/lockin.html
https://terpconnect.umd.edu/~toh/spectrum/AmplitudeModulation.m
https://en.wikipedia.org/wiki/Low-pass_filter
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/AmplitudeModulation.png


Page | 318  

recovered signal (blue) and to compute the relative percent error in peak position, width, and width by 

both methods: 

SignalToNoiseRatio = 4 

Relative % Error:   Position         Height         Width  

               Original:      8.07                23.1              13.7 

           Modulated:      0.11                0.22              1.01 

Each time you run it you will get the same signal peak but a very different random walk background. 

The S/N ratio will vary from about 4 to 9. It is not uncommon to see a 100-fold improvement in peak 

height accuracy with modulation, as in the example shown here. (If you wish, you can change the sig-

nal peak parameters and the noise level in the first few code lines of this simulation. For an even great-

er challenge, change line 47 to "baseline=10.*noise + cumsum(noise);" to make the 

noise a mixture of white and random walk drift, which results in a really ugly raw signal; you can see 

that the white noise makes it through the synchronous detector but is reduced by the smoothing low 

pass filter in the last stage). In effect, the low-pass filter determines the frequency bandwidth of the 

lock-in system, but it also increases the response time to step changes (as in the Morse Code example).  
 

This improvement in measurement accuracy works only because the dominant random error, in this 

case, is: 
 

    (a) introduced after the modulation, and  

    (b) a mostly low-frequency noise.  

If the noise were white, there would be no improvement, because white noise is the same at all frequen-

cies; in fact, there would be a slight reduction in precision because the chopper blocks half of the light 

on average. If the sample (device under test) generates an "absorption" peak that starts a some positive 

value and then dips down to a lower value before returning, the demodulated output will be a negative-

going peak rather than a positive peak (see AmplitudeModulationAbsorption.m). 
 

In a computer-interfaced experimental system, you may not actually need a physical lock-in amplifier. 

It is possible to simulate the effect in software, as is done in this numerical experiment. You would  

need two input channels of the analog-to-digital converter, one for the modulated sample signal and 

one for the modulation reference signal, and then, in software,  invert the total modulated sample signal 

whenever the reference signal is "off".  
 

In some spectroscopic applications another useful type of modulation is “wavelength modulation”, in 

which the wavelength of the light source oscillates over the wavelength region of an emission or 

absorption peak in the spectrum (reference 32); this has often been used in atomic emission and 

absorption spectroscopy (references 25, 26) and in tunable diode laser spectroscopy applied to the 

measurement of gases such as methane, water vapor, and carbon dioxide, especially in remote sensing, 

where the sample may be far from the detector. Less commonly, modulation techniques are also applied 

in “AC” (alternating current) electrochemistry and in spectroelectrochemistry. 

 

https://terpconnect.umd.edu/~toh/spectrum/UglySignal.png
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html#MorseCode
https://terpconnect.umd.edu/~toh/spectrum/AmplitudeModulationAbsorption.m
https://terpconnect.umd.edu/~toh/models/modspec.html
http://www.umu.se/digitalAssets/120/120419_wms.pdf
https://books.google.com/books?id=Q6CjAgAAQBAJ&pg=PA319&lpg=PA319&dq=electrochemical+modulation+lock-in+amplifier&source=bl&ots=SjGwnVJU8X&sig=uOaGPyxG6VHWkNrYik_X_aNLfCM&hl=en&sa=X&ved=0ahUKEwi2oeSwhofOAhUHrD4KHaEwB_UQ6AEIRjAI#v=onepage&q=electrochemical%20modulation%20lock-in%20amplifier&f=false
http://pubs.acs.org/doi/abs/10.1021/ac00280a040


Page | 319  

Measuring a buried peak 
This simulation explores the problem of measuring the height of a small peak (a "child peak") that is 

buried in the tail of a much stronger overlapping peak (a "parent peak"), in the especially challenging 

case that the smaller peak is not even visible to the unaided eye. Three different measurement tools will 

be explored: iterative least-squares, classical least-squares regression, and peak detection, using the 

Matlab/Octave tools peakfit.m, cls.m, or findpeaksG.m, respectively. (Alternatively, you could use the 

corresponding spreadsheet templates).  
 

In this example the larger peak is located at x=4 and has a height of 1.0 and a width of 1.66; the smaller 

measured peak is located at x=5 and has a height of 0.1; both have a width of 1.66. Of course, for the 

purposes of this simulation, we pretend that we do not necessarily know all these facts and we will try 

to find methods that will extract such information as possible from the data, even if the signal is noisy. 

The measured peak is small enough and close enough to the stronger overlapping peak (separated by 

less than the width of the peaks) that it never 

forms a maximum in the total signal. So, 

it looks like there is only one peak, as shown 

on the figure on the right. For that reason, the 

findpeaks.m function (which automatically 

finds peak maxima) will not be useful by itself 

to locate the smaller peak. Simpler methods for 

detecting the second peak also fail to provide a 

way to measure the smaller second peak, such 

as inspecting the derivatives of the signal (the 

smoothed fourth derivative shows some 

evidence of asymmetry, but that could just be 

due to the shape of the larger peak), or Fourier 

self-deconvolution to narrow the peaks so they 

are distinguishable, but that is unlikely to be successful with this much noise. Least-squares methods 

work better when the signal-to-noise ratio is poor, and they can be fine-tuned to make use of available 

information or constraints, as will be demonstrated below. 
  

The selection of the best method will depend on what is known about the signal and the constraints that 

can be imposed; this will depend on your knowledge of your experimental signal. In this simulation 

(performed by the Matlab/Octave script SmallPeak.m), the signal is composed of two Gaussian peaks 

(although that can be changed if desired in line 26). The first question is: is there more than one peak 

there? If we perform an unconstrained iterative fit of a single Gaussian to the data, as shown in the 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/functions.html#spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/SmoothedFourthDerivative.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothedFourthDerivative.png
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/SmallPeak.m
https://terpconnect.umd.edu/~toh/spectrum/SingleGaussian.png


Page | 320  

figure on the right, it shows little or no evidence of a second peak - the residuals look random. (If you 

could reduce the noise, or if you ensemble-averaged even as few as 10 repeat signals, then the noise 

would be low enough to see evidence of a second peak). However, as it is, there is nothing that pops 

out at you suggesting a second peak. 

But suppose we suspect that there should be 

another peak of the same Gaussian shape 

just on the right side of the larger peak. We 

can try fitting a pair of Gaussians to the data 

(figure on the right), but in this case, there is 

so much random noise that the fit is not 

stable. When you run SmallPeak.m, the 

script performs 20 repeat fits (“NumSignals” 

in line 20) with the same underlying peaks 

but with 20 different random noise samples, 

revealing the stability (or instability) of each 

measurement method. The fitted peaks in 

Figure window 1 bounce around all over the 

place as the script runs. (If the animation is 

not visible, click this link). The fitting error 

is on average lower than the single-Gaussian fit, but that by itself does not mean that the peak 

parameters so measured will be reliable; it could just be "fitting the noise". If it were isolated all by 

itself, the small peak would have an S/N ratio of about 5 and it could be measured to a peak height 

precision of about 3%, but the presence of the larger interfering peak makes the measurement much 

more difficult. (Hint: After running SmallPeak.m the first time, spread out all the figure windows so 

they can all be seen separately and do not overlap. That way you can compared the stability of the 

different methods more easily.) 
 

But suppose that we have reason to expect that the two peaks will have the same width, but we do not 

know what that width might be. We could try an equal width Gaussian fit (peak shape #6, shown in 

Matlab/Octave Figure window 2); the resulting fit is much more stable and shows that a small peak is 

located at about x=5 on the right of the bigger peak, shown below on the left. On the other hand, if we 

know the peak positions beforehand, but not the widths, we can use a fixed-position Gaussian fit (shape 

#16) shown on the right (Figure window 3). In the very common situation where the objective is to 

measure an unknown concentration of a known component, then it is possible to prepare standard 

samples where the concentration of the sought component is high enough for its position or width to be 

determined with certainty.  

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#EnsembleAveraging
https://terpconnect.umd.edu/~toh/spectrum/SingleGaussianLowerNoise.png
https://terpconnect.umd.edu/~toh/spectrum/SmallPeak.m
https://terpconnect.umd.edu/~toh/spectrum/UnconstrainedFit.gif
https://terpconnect.umd.edu/~toh/spectrum/SmallPeakByItself.png
https://terpconnect.umd.edu/~toh/spectrum/UnconstrainedFit.gif


Page | 321  

   

So far all these examples have used iterative peak fitting with at least one peak parameter (position 

and/or width) unknown and determined by measurement. If, on the other hand, all the peak parameters 

are known except the peak height, then the faster and more direct classical least-squares regres-

sion (CLS) can be employed (Figure window 4). In this case, you need to know the peak position and 

width of both the measured and the larger interfering peaks (the computer will calculate their heights). 

If the positions and the heights really are constant and known, then this method gives the best stability 

and precision of measurement. It is also computationally faster, which might be important if you have 

lots of data to process automatically.  
   

The problem with CLS is that it fails to give accurate meas-

urements if the peak position and/or width changes without 

warning, whereas two of the iterative methods (uncon-

strained Gaussian and equal-width Gaussian fits) can adapt 

to such changes. It some experiments it quite common to 

have small, unexpected shifts in the peak position, especially 

in chromatography or other flow-based measurements, 

caused by unexpected changes in temperature, pressure, flow 

rate or other instrumental factors. In SmallPeaks.m, such x-

axis shifts can be simulated using the variable "xshift" in line 

18. It is initially zero, but if you set it to something greater 

(e.g., 0.2) you will find that the equal-width Gaussian fit 

(Figure window 2) works better because it can keep up with the changes in x-axis shifts. 

But with a greater x-axis shift (xshift=1.0) even the equal-width fit has trouble. Still, if we know the 

separation between the two peaks, it is possible to use the findpeaksG function to search for and locate 

the larger peak and to use that to calculate the position of the smaller peak. Then the CLS method, with 

the peak positions so determined for each separate signal, shown in Figure window 5 and labeled 

"findpeaksP" in the table below, works better. Alternatively, another way to use the findpeaks results is 

a variation of the equal-width iterative fitting method in which the first guess peak positions (line 82) 

are derived from the findpeaks results, shown in Figure window 6 and labeled "findpeaksP2" in the ta-

ble below. That method does not depend on accurate knowledge of the peak widths, only their equality. 

https://terpconnect.umd.edu/~toh/spectrum/FixedPositions.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/EqualWidth.png
https://terpconnect.umd.edu/~toh/spectrum/FixedPositions.png
https://terpconnect.umd.edu/~toh/spectrum/cls.png


Page | 322  

Each time you run SmallPeaks.m, all these methods are computed multiple times (“NumSignals”, set in 

line 20) and compared in a table giving the average peak height accuracy of all the repeat runs:  
 

xshift=0 

Unconstr. EqualW  FixedP FixedP&W findpeaksP findpeaksP2 

35.607    16.849  5.1375  4.4437   13.384     16.849 

 

xshift=1 

Unconstr. EqualW  FixedP FixedP&W findpeaksP findpeaksP2 

31.263    44.107  22.794  46.18    10.607     10.808 

The bottom line is this: the more you know about your signals, the better you can measure them. A sta-

ble signal with known peak positions and widths is the most precisely measurable in the presence of 

random noise ("FixedP&W"), but if the positions or widths vary from measurement to measurement, 

different methods must be used, and precision is degraded because more of the available information is 

used to account for changes other than the ones you want to measure. 

Signal and Noise in the Stock Market (updated) 

From a signal-to-noise perspective, the stock market is an interesting example. A national or global 

stock market is an aggregation of large numbers of buyers and sellers of shares in publicly traded 

companies. They are described by stock market indexes, which are computed as the weighted average 

of many selected stocks. For example, the S&P 500 index is computed from the stock valuations of 500 

large US companies. Millions of individuals and organizations participate in the buying and selling of 

stocks daily, so the S&P 500 index is a prototypical "big data" conglomerate, reflecting the overall 

value of 500 of the largest companies in the largest stock market on earth. Individual stocks can fail or 

fall drastically in value, but the market indexes average out the performance of hundreds of companies. 
 

A plot of the yearly value, V, of the S&P 500 index vs time, T, for the 75-year period from 1950 to 2024 

is shown in the following graphs. 

   Each plot contains 75 data points, one for each year, shown in red. The graph on the left plots the 

http://us.spindices.com/indices/equity/sp-500
https://terpconnect.umd.edu/~toh/spectrum/SandPfrom1950.xlsx


Page | 323  

value V on linear coordinates and the graph on the right plots the natural logarithm of V, ln(V). There 

are considerable up-and-down fluctuations in the value over time that can be related to historical 

events: the oil crisis of the 1970s, the tech boom and bust of 2000, the subprime mortgage crisis of 

2008, the trade wars of 2019 and the Coronavirus pandemic of 2020. Still, the long-term trend of the 

value is upwards – by 2024 the value was over 250 times greater than its value in 1950. This is basical-

ly why people invest in the stock market, because on average, over the long run, stock values eventual-

ly go up, almost always more than inflation (which has been about 3.5% per year since 1950). 
 

The most common way to model this overall long-term increase with time is based on the equation for 

compound interest that predicts the growth of investments that have a constant rate of return, such as 

savings accounts or certificates of deposit: 

                                              V = S*(1 + R)T 
 

where V is the value, S is the starting value, R is the annual rate of return, and T is time. By itself, this 

expression would yield a smooth upward curving exponential curve, without any the peaks and dips. 

We can use curve fitting (pages 158 and 195) to determine how well this model fits the actual S%P. 

This can be done in two ways: 
 

(1) directly, using the iterative curve fitting method, shown on the left above, or 

(2) by taking the logarithm of the values and fitting a straight line to the transformed data, shown on 

the right above. 
 

The best fits to the S&P data are shown in the graphs by the smooth blue lines. FitSandPto2024.m is a 

Matlab/Octave script that performs both calculations using the data in SandPfrom1950.mat or in 

SandPfrom1950.xlsx. When applied to the S&P 500 index data, the annual rate of return R is about 

0.08 (or 8%), but interestingly these two methods give slightly different results, even though the exact 

same data are used for both. Moreover, both methods yield the same rate if they are applied to 

noiseless synthetic data calculated from the above expression. How can this be? This difference 

between methods is caused by the irregularities in the stock data that deviate from a smooth line - in 

other words, the noise - and it is exacerbated by the large range of the value data V over time and by 

the fact that the average return from 1950 to 1983 is lower than that from 1983 to 2024.  
 

You might be wondering how good those data are at predicting the stock market trends. Over the short 

term, such predictions are often not very accurate. For example, the trend line (blue line) in the left-

hand plot on page 322 predicts that the value of the S&P in 2024 should be 5000. In fact, by the 4th of 

July 2024, the value was 5600, or about 12% higher than the prediction. This, however, is not out of the 

ordinary; a glance at the graphs above will show that individual values have occasionally fallen at least 

that far above (or below) the best-fit line. 
 

From the point of view of curve fitting, the deviation from a smooth curve described by the compound 

interest expression is just noise. But from the point of view of the stock market investor, those 

deviations can be both an opportunity and a warning. Naturally, most investors would like to know how 

the stock market will behave in the future, but that requires extrapolation beyond the range of the 

available data, which is always uncertain and dangerous. But still, it is most likely (but not certain) that 

http://www.investopedia.com/terms/e/exponential-growth.asp
http://www.investopedia.com/terms/e/exponential-growth.asp
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Transforming
https://terpconnect.umd.edu/~toh/spectrum/FitSandP.m
https://terpconnect.umd.edu/~toh/spectrum/SandPfrom1950.mat
https://terpconnect.umd.edu/~toh/spectrum/SandPfrom1950.xlsx


Page | 324  

the long-term behavior of the market (say, over a period of 10 years or more) will be like the past - that 

is, growing exponentially at about the same rate as before but with unpredictable fluctuations similar to 

what has occurred in the past.  
 

There are several notable features of this "noise". First, the deviations are roughly proportional to 

V and thus relatively equal when plotted on a log scale. Second, there are numerous instances over the 

years when there is a sharp dip followed by a slower recovery close to the previous value. And 

conversely, every peak is eventually followed by a dip. The conventional advice in investing is to "buy 

low" (on the dips) and "sell high" (on the peaks). But of course, the problem is that you cannot reliably 

determine in advance exactly where the peaks and dips will fall; you have only the past to guide you. 

Still, if the current market value is much higher than the long-term trend, it will likely fall, and if the 

market value is much lower than the long-term trend, it will likely rise, eventually. The only thing you 

can predict is that, in the long run, the market will eventually rise. This is the reason that it is so 

important to save for retirement by investing in the stock market, starting as soon as possible: over a 

30-year working life, the market is essentially guaranteed to rise substantially. The most painless way 

to do this is with your employer's 401k or 403b automatic payroll withdrawal plan. You cannot invest 

in the stock market as a whole, but you can invest in index mutual funds or exchange-traded funds 

(ETFs), which are collections of stocks that are constructed to match or track the components of a 

market index. Such funds typically have very low management fees, an important factor in selecting an 

investment. Other mutual funds attempt to “beat the market” by carefully buying and selling stocks to 

create a return that is greater than the overall market indexes; some are temporarily successful in doing 

that, but they charge higher management fees. Mutual funds and ETFs are much less risky investments 

than individual stocks. "Day traders", investors who buy and sell stocks and other securities multiple 

times over a single day, often do not perform well, because the market is propelled in the long run by 

business cycles, new businesses, and new technologies that do not change over a single day. Minute-to-

minute changes are mostly noise. 
 

Some companies periodically distribute payouts to investors called “dividends”. Those dividends are 

independent of the day-to-day variations in stock price, so even if the stock value drops temporarily, 

you still get the same dividend. For that reason, it is important that you set your investment account 

https://terpconnect.umd.edu/~toh/spectrum/StockMarketInvestmentSpreadsheet.png


Page | 325  

to “automatically reinvest dividends”, so when the share price drops, the dividends are buying shares at 

the lower price. The S&P 500 index values used above, called price returns, did not include dividend 

reinvestment. If you calculated the total returns with dividends reinvested, the returns would have 

been substantially higher, closer to 11% (https://en.wikipedia.org/wiki/S%26P_500_Index#Versions). 

With an average total annual return of 11% (assuming dividend reinvestment), and starting with an 

investment of $170 the first month - that's less than $6 a day - and increasing that amount 5% each year, 

you could accumulate over $600,000 over a 30-year working life, or $1,000,000 if you continued 

investing an additional 5 years or if you began 5 years earlier, as shown by the spreadsheet graphic 

above. You might call this a “get rich slow” scheme. And that is starting at just $6 per day, about the 

cost of a fancy coffee at Starbucks. Think about that the next time you see a line of young people 

waiting to order their daily coffee. The hard part is not so much giving up the coffee as is finding a 

keeping a steady job that allows you to make routine automatic contributions to your retirement 

account over the long haul. Becoming a millionaire by the time you retire is possible, but it’s not 

exciting; rather, it is slow and plodding. 
 

To illustrate how much influence stock market volatility fluctuation (“noise”) has on the market gains, 

the Matlab/Octave script SnPsimulation.m adds proportional noise (page 29) to the compound interest 

calculation to mimic the S&P data, performs the two curve fitting methods described above, repeats the 

allocations over and over with independent samples of proportional noise, and then calculates the mean 

and the relative standard deviation (RSD) of the rates of return. A typical result is: 
 

TrueRateOfReturn = 0.08       

                          Measured Rate  RSD 

Coordinate transformation:   0.078        3% 

Iterative curve fitting:     0.077        6% 
 

As you can see, the two methods do not agree perfectly. The return calculated by the iterative method is 

lower in this case, but it could just have easily been the other way. The fact is that the standard devia-

tions are large, and the iterative method always has a higher standard deviation, because it weights the 

higher values more heavily, where deviations from the line are higher, whereas the log transformation 

method weights the data more evenly. Even with this uncertainty, investing in a stock market index 

fund almost always performs better in the long run than more predictable investments such as savings 

accounts or certificates of deposit (CDs), which have much lower rates of return. When stocks drop, 

even for well-known reasons, some investors buy shares at reduced prices, and when stocks rise, espe-

cially when they hit all-time highs, some investors sell shares to "lock in their gains". This behavior has 

been consistent throughout the decades and acts as a natural brake on the fluctuations of the market.  

In investing in the stock market, it is important to focus on the long-term trends and not to be 

frightened by the short-term up and down fluctuations, even though most of the news coverage 

understandably emphasizes the short-term. This is similar to distinguishing between weather and 

climate; the large and dramatic short-term weather variations are newsworthy and tend to disguise the 

much smaller long term climate warming that is slowly melting the icecaps and raising the sea levels 

(whether it is caused by human activity or by natural causes alone or by a combination of both). 

Everyone talks about changes in the weather, but the climate changes so slowly that it is easy to 

conclude that it stays the same. The hour hand on the clock is never seen to move. If you are young and 

https://dqydj.com/sp-500-return-calculator/
https://en.wikipedia.org/wiki/S%26P_500_Index#Versions
https://terpconnect.umd.edu/~toh/spectrum/InvestmentExample.xls
https://terpconnect.umd.edu/~toh/spectrum/SnPsimulation.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Spectroscopy
https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html
https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html
https://oceanservice.noaa.gov/facts/sealevel.html


Page | 326  

have many years ahead, keep your investment in stock funds, which have the best returns. As you get 

older, you can gradually shift to lower risk but lower return investments, such as high-yield savings 

accounts, certificates of deposit (CDs), money market accounts, Treasury securities and other bond 

funds. Stocks perform better because they profit from advances in infrastructure and technology.  

For a spreadsheet template that allows you to calculate the possible returns on long-term investments in 

stock market mutual funds, see https://terpconnect.umd.edu/~toh/simulations/Investment.html. 

Measuring signal-to-noise ratio in complex signals 

In the section “Signals and Noise” on page 23, I said: “The quality of a signal is often expressed as the 

signal-to-noise (S/N) ratio, which is the ratio of the true signal amplitude ... to the standard deviation of 

the noise.” That is a simple enough statement but automating the measurement of signal and the noise 

in real signals is not always straightforward. Sometimes it is difficult to separate or distinguish between 

the signal and the noise, because it depends not only on the numerical nature of the data, but also on the 

objectives of the measurement. 
 

For a simple DC (direct current) signal, for example, measuring a fluctuating voltage, the signal is just 

the average voltage value and the noise is its standard deviation. This is easily calculated in a 

spreadsheet or in Matlab/Octave: 
 

>> signal=mean(NoisyVoltage); 

>> noise=std(NoisyVoltage); 

>> SignalToNoiseRatio=signal/noise 
 

But usually, things are more complicated. 

For example, if the signal is a rectangular 

pulse (as in the figure on the right) with 

constant random noise, then the simple 

formulation above will not give accurate 

results. If the signal is stable enough that 

you can get two successive signal 

recordings m1 and m2 that are identical except for the noise, then you can simply subtract the signal 

out: the standard deviation of the noise is then given by sqrt((std(m1-m2)2)/2), where “std” is the 

standard deviation function (because random noise adds quadratically). But not every signal source is 

stable and repeatable enough for that to 

work perfectly. Alternatively, you can try 

to measure the average signal just over the 

top of the pulse and the noise only over 

the baseline interval before and/or after 

the pulse. That is not so hard to do by 

hand, but it is harder to automate with a 

computer, especially if the position or width of the pulse changes. It is basically the same for smooth 

peak shapes like the commonly encountered Gaussian peak (as in the figure on the right). You can 

estimate the height of the peak by smoothing it and then taking the maximum of the smoothed peak as 

the signal: max(fastsmooth(y,10,3)), but the accuracy would degrade if you chose too high or too 

https://terpconnect.umd.edu/~toh/simulations/Investment.html
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://en.wikipedia.org/wiki/Standard_deviation
http://www.eso.org/~ohainaut/ccd/sn.html
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/RectPulseExample.png
https://terpconnect.umd.edu/~toh/spectrum/GaussPulseExample.png


Page | 327  

low a smooth width. And clearly, all this depends on having a well-defined baseline in the data where 

there is only noise. It does not work if the noise varies with the amplitude of the peak. 

In many cases, curve fitting can be helpful. For example, you could use peak fitting or a peak detector 

to locate multiple peaks and measure their peak heights and their S/N ratios on a peak-to-peak basis, by 

computing the noise as the standard deviation of the difference between the raw data and the best-fit 

line over the top part of the peak. That is how iSignal (page 371) measures S/N ratios of peaks. Also, 

iSignal has baseline correction capabilities that allow 

the peak to be measured relative to the baseline. 
 

Curve fitting also works for complex signals of 

indeterminate shape that can be approximated by 

a high-order polynomial or as the sum of a number of 

basic functions such as Gaussians, as in the real-data 

example shown on the right. In this case, an increasing 

number of Gaussians are used to fit an experimental 

data set to the point where the residuals are random and 

unstructured. The residuals (shown in blue below the 

graph) are then just the noise remaining in the signal, 

whose standard deviation is easily computed using 

the built-in standard deviation function in a spreadsheet 

("STDEV") or in Matlab/Octave ("std"). In this 

example, the standard deviation of the residuals is 111 and the maximum signal is 40748, so the percent 

relative standard deviation of the noise is 0.27% and the S/N ratio is 367. (The positions, heights, and 

widths of the Gaussian components, usually the main results of the curve fitting, are not used in this 

case; curve fitting is used only to obtain a measure the noise via the residuals). The advantage of this 

approach over simply subtracting two successive measurements of the signal is that it adjusts for slight 

changes in the signal from measurement to measurement. The only assumption is that the signal is a 

smooth, low-frequency waveform that can be fitted with a polynomial or a collection of basic peak 

shapes and that the noise is random and mostly high-

frequency compared to the signal. But do not use too 

high a polynomial order or too many model peaks, 

otherwise you are just "fitting the noise". 

 

With periodic signal waveforms, the situation is a bit 

more complicated. As an example, consider the audio 

recording of the spoken phrase "Testing, one, two, three" 

(click to download in .mat format or in WAV format). 

The Matlab/Octave script PeriodicSignalSNR.m loads 

the audio file into the vector variable named “waveform”, 

then computes the average amplitude of the waveform 

(the “envelope”) by smoothing (page 41) the absolute 

value of the waveform: 
 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Matlab
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/testing123.mat
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/PeriodicSignalSNR.m
https://terpconnect.umd.edu/~toh/spectrum/FiveGaussians.png
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThreeEnvelope.png


Page | 328  

envelope = fastsmooth(abs(waveform), SmoothWidth, SmoothType); 

The result is plotted on the left, where the waveform is in blue and the envelope is in red. The signal is 

easy to measure as the maximum or perhaps the average of the waveform, but the noise is not so 

evident. The human voice is not reproducible enough to get a second identical recording to subtract out 

the signal. Still, there will often be gaps in 

the sound, during which the background 

noise will be dominant. In an audio (voice 

or music) recording, there will typically be 

such gaps at the beginning, when the 

recording process has already started but 

the sound has not yet begun, and possibly 

at other short periods when there are 

pauses in the sound. The idea is that, by 

monitoring the envelope of the sound and 

noting when it falls below some adjustable 

threshold value, we can automatically 

record the noise that occurs in those gaps, 

whenever they may occur in a recording.  
 

In PeriodicSignalSNR.m, this operation is 

done in lines 26-32, and the threshold is 

set in line 12. The threshold value must be optimized for each recording. When the threshold value is 

set to 0.015 in the "Testing, one, two, three" recording, the resulting noise segments are located and 

marked in red in the plot on the right. The program determines the average noise level in this recording 

simply by computing the standard deviation of those segments (line 46), then computes and prints out 

the peak-to-peak S/N ratio and the RMS (root mean square) S/N ratio. 
 

PeakToPeak_SignalToNoiseRatio = 143.7296 

RMS_SignalToNoiseRatio = 12.7966 

The frequency distribution of the noise is also 

determined (lines 60-61) and shown in the figure 

on the left, using the PlotFrequencySpectrum 

function, or you could have used iSignal (page 371) 

in the frequency spectrum mode (Shift-S). The 

spectrum of the noise shows a strong component 

very near 60 Hz, which is almost certainly due 

to power line pickup (the recording was made in the 

USA, where AC power is 60 Hz); this suggests that 

better shielding and grounding of the electronics 

might help to clean up future recordings. The peak 

at 20 Hz is harder to attribute: perhaps it is the low 

hum of a fan or an air conditioner. The lack of 

strong components at 100 Hz and above (where the human voice occurs) suggests that the vocal sounds 

have been effectively cut out at this amplitude threshold setting. The script can be applied to other 

https://terpconnect.umd.edu/~toh/spectrum/PeriodicSignalSNR.m
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThreeBackgroundRed.png
https://terpconnect.umd.edu/~toh/spectrum/FrequencySpectrum.png


Page | 329  

sound recordings in WAV format simply by changing the file name and time axis in lines 8 and 9. 

Dealing with wide-ranging signals: segmented processing  

To facilitate the inspection of very large and complex signals, it is useful to be able to “zoom in” to 

different parts of the x-axis range, which can be done with the interactive Matlab tools iSignal (page 

371), iPeak (page 250), and ipf.m (page 412) or by the Matlab/Octave function segplot.m (page 464). 

Sometimes an experimental signal will vary so much across its x-axis range that it is impossible to find 

a single setting for operations like smoothing or peak detection that is optimized for all regions of the 

signal. It is always possible to break up the signal into pieces and treat each separately, for example 

using segplot, but in some cases, it is easier to use a single segmented application over the entire signal. 

That's the idea behind the Matlab/Octave functions and the Excel spreadsheet templates in this section. 
 

SegmentedSmooth.m, illustrated on the right, is a segmented variant of fastsmooth.m, which can be 

useful if the widths of the peaks or the noise level varies substantially across the signal. The syntax is 

that same as fastsmooth.m, except that the second input argument "smoothwidths" can be a vector: 

[SmoothedSignal,SmoothMatrix] = SegmentedSmooth (Y, smoothwidths, 

type, ends). The function divides Y 

into several equal-length regions defined 

by the length of the vector 'smoothwidths', 

then smooths each region with a smooth 

of type 'type' and width defined by the 

elements of vector 'smoothwidths'. In the 

simple example in the figure on the right, 

smoothwidths = [31 52 91], which 

divides up the signal into three regions 

and smooths the first region with 

smoothwidth 31, the second with 51, and 

the last with 91. Any number and sequence 

of smooth widths can be used. It optionally 

returns ‘SmoothMatrix’ consisting of all 

segments assembled into a matrix. Type 

"help SegmentedSmooth" for other 

examples.   
 

DemoSegmentedSmooth.m demonstrates the operation with different signals consisting of noisy 

variable-width peaks that get progressively wider, like the figure on the right. FindpeaksSL.m is the 

same thing for Lorentzian peaks. 
 

SegmentedSmoothTemplate.xlsx is a segmented multiple-width data smoothing spreadsheet template, 

which is functionally like SegmentedSmooth.m. In this version, there are 20 segments. 

SegmentedSmoothExample.xlsx is an example spreadsheet with data (graphic). A related spreadsheet 

GradientSmoothTemplate.xlsx (graphic) performs a linearly increasing (or decreasing) smooth width 

across the entire signal, given only the start and end values, automatically generating as many segments 

https://terpconnect.umd.edu/~toh/spectrum/segplot.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Matlab
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.png
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothExample.png
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothDemo.png


Page | 330  

are necessary. Of course, as is usual with spreadsheets, you will have to modify these templates for 

your number of data points, usually by inserting rows somewhere in the middle and then drag-copying 

down from above the insert, plus you may have to change the x-axis range of the graph. (In contrast, 

the Matlab/Octave functions do that automatically). 
 

SegmentedFouFilter.m is a segmented version of FouFilter.m that applies different center frequencies 

and widths to different segments of the signal. The syntax, [ffSignal,ffMatrix] = SegmentedFou-

Filter(y,samplingtime,centerFrequency,filterWidth,shape,mode), is like FouFilter.m except 

that the two input arguments centerFrequency and filterWidth must be vectors with the values of cen-

terFrequency of filterWidth for each segment. The signal is divided equally into several segments de-

termined by the length of centerFrequency and filterWidth, which must be equal in length. Optionally 

returns ffMatrix of all segments assembled into a matrix. Type help SegmentedFouFilter for help and 

examples; the figure on the left shows Example 2. It may help to visualize the signal by using a related 

function, PlotSegFreqSpect.m, which creates and displays a time-segmented Fourier power spectrum 

(see page 100 and following).  
 

findpeaksSG.m is a variant of the findpeaksG 

function, with the same syntax, except that the 

four peak detection parameters can be vectors, di-

viding up the signal into regions that are optimized 

for peaks of different widths. Any number of seg-

ments can be declared, based on the length of the 

SlopeThreshold input argument. (Note: you need 

only enter vectors for those parameters that you 

want to vary between segments; to allow any of 

the other peak detection parameters to remain un-

changed across all segments, simply enter a single 

scalar value for that parameter; only the 

SlopeThreshold must be a vector). In the example 

shown on the left, the script TestPrecision-

FindpeaksSG.m creates a noisy signal with three 

peaks of widely different widths, measures the peak positions, heights and widths of each peak using 

findpeaksSG, and prints out the percent relative standard deviations of parameters of the three peaks in 

100 measurements with independent random noise. 

With 3-segment peak detection parameters, 

findpeaksSG reliably detects and accurately measures 

all three peaks. In contrast, findpeaksG, tuned to the 

middle peak (using line 26 instead of line 25), 

measures the first and last peaks poorly. You can also 

see that the precision of peak parameter measurements 

gets progressively better (smaller relative standard de-

viation) the larger the peak widths, simply because 

there are more data points in those peaks. (You can 

https://terpconnect.umd.edu/~toh/spectrum/SegmentedFouFilter.m
https://terpconnect.umd.edu/~toh/spectrum/FouFilter.m
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpect.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaskSG.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaskSG.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaskSG.png
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksSb.png


Page | 331  

change any of the variables in lines 10-18).  
 

A related function is findpeaksSGw.m which is like the above except that is uses wavelet denoising 

(page 133) instead of smoothing. It takes the wavelet level rather than the smooth width as an input ar-

gument. The script TestPrecisionFindpeaksSGvsW.m compares the precision and accuracy for peak 

position and height measurement for both the findpeaksSG.m and findpeaksSGw.m functions. 
 

findpeaksSb.m is a segmented variant of the findpeaksb.m function. It has the same syntax as 

findpeaksSb, except that the arguments "SlopeThreshold", "AmpThreshold", "smoothwidth", 

"peakgroup", "window", "PeakShape", "extra", "NumTrials", "BaselineMode", and "fixedparameters" 

can all be optionally scalars or vectors with one entry for each segment. This allows the function to 

handle widely varying signals with peaks of very different shapes and widths and backgrounds. In the 

example on the right, the Matlab/Octave script DemoFindPeaksSb.m creates a series of Gaussian peaks 

whose widths increase by a factor of 25 and that are superimposed in a curved baseline with random 

white noise that increases gradually across the signal. In this example, four segments are used, chang-

ing the peak detection and curve fitting values so that all the peaks are measured accurately. 
 

SlopeThreshold = [.01 .005 .002 .001]; 

AmpThreshold = 0.7; 

SmoothWidth = [5 15 30 35]; 

FitWidth = [10 12 15 20]; 

windowspan = [100 125 150 200]; 

peakshape = 1; 

BaselineMode = 3; 
 

The script also computes the relative percent error of the measurement of peak position, height, width, 

and area for each peak. 
 

measurepeaks.m is an automatic peak detector peaks of arbitrary shape. It is based on findpeaksSG, 

with which it shares the first 6 input arguments; the four peak detection arguments can be vectors to 

accommodate signals with peaks of widely varying widths. It returns a table containing the peak 

number, peak position, absolute peak height, peak-valley difference, perpendicular drop area, and 

tangent skim area of each peak it detects. If the last input argument ('plots') is set to 1, it will plot the 

entire signal with numbered 

peaks and will also plot the 

individual peaks with the peak 

maximum, valley points, and 

tangent lines marked (as 

shown on the right). Type 

“help measurepeaks” and try 

the examples there or run 

testmeasurepeaks.m (graphic 

animation). The related 

functions autopeaks.m and 

autopeaksplot.m are similar, 

except that the four peak 

detection parameters can be omitted and the function will calculate estimated initial values. 

https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSGvsW.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.gif
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.gif
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png


Page | 332  

 

The script HeightAndArea.m tests the accuracy of peak height and area measurement with signals that 

have multiple peaks with variable width, noise, background, and peak overlap. Generally, the values for 

absolute peak height and perpendicular drop area (page 143) are best for peaks that have no 

background, even if they are slightly overlapped, whereas the values for peak-valley difference and for 

tangential skim area are better for isolated peaks on a straight or slightly curved background. Note: this 

function uses smoothing (specified by the SmoothWidth input argument) only for peak detection; it 

performs its measurements on the raw unsmoothed y data. If the raw data are noisy, it may be best to 

smooth the y data yourself before calling measurepeaks.m, using any smooth function of your choice. 
 

Other segmented functions. The same segmentation code used in SegmentedSmooth.m (lines 53-65) 

can be applied to other functions simply by editing the first line in the first for/end loop (line 59) to 

refer to the function that you want to apply in a segmented fashion. For example, segmented peak 

sharpening can be useful when a signal has multiple peaks that vary in width, and segmented 

deconvolution can be useful when a signal has multiple peaks that vary in width or tailing vary 

substantially across the signal: SegExpDeconv(x,y,tc) deconvolutes y with a vector of exponential 

functions whose time constants are specified by the vector tc. SegExpDeconvPlot.m is the same except 

that it plots the original and deconvoluted signals and shows the divisions between the segments by 

vertical magenta lines. 

Measurement Calibration 

Most scientific measurements involve the use of instruments that measures something else and converts 

it to the desired measure. Examples are simple weight scales (which first measure the compression of a 

spring), common thermometers (which measure thermal expansion), pH meters (which measure a 

voltage), and most devices for measuring your heart rate, hemoglobin in blood, CO2 in air, or sugar in 

wine grape juice (all of which measure a light beam). These instruments are single purpose, designed to 

measure one quantity, and automatically convert what they first measure into the desired quantity and 

display it directly. But to ensure accuracy, such instruments can be calibrated, that is, used to measure 

one or more calibration standards of known accuracy, such as a standard weight or a sample that is 

carefully prepared to a known temperature, pH, or sugar content. Most are pre-calibrated at the factory 

for the measurement of a specific substance in a specific type of sample. 
 

Analytical calibration. In contrast to single-purpose measurements, general purpose chemical analysis 

instruments are used to measure the quantity of many different chemical components in various types 

of samples. These methods include various kinds of spectroscopy, chromatography, and electro-

chemistry, or combination techniques like “GC-mass spec”. These must also be calibrated, but because 

those instruments can be used to measure a wide range of compounds or elements, they must be 

calibrated by the user for each substance and for each type of sample. Usually, this is accomplished by 

carefully preparing (or purchasing) one or more “standard samples” of known concentration, such as 

solution samples in a suitable solvent. Each standard is inserted or injected into the instrument, and the 

resulting instrument readings are plotted against the known concentrations of the standards, using least-

squares calculations to compute the slope and intercept, as well as the standard deviation of the slope 

(sds) and intercept (sdi). Then the "unknowns" (that is, the samples whose concentrations are to be 

https://terpconnect.umd.edu/~toh/spectrum/HeightAndArea.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#segmented
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#segmented
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconvPlot.m
https://en.wikipedia.org/wiki/Calibration
https://en.wikipedia.org/wiki/Gas_chromatography%96mass_spectrometry
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#MathDetails
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#MathDetails


Page | 333  

determined) are measured by the instrument and their signals are converted into concentrations with the 

aid of the calibration curve. If the calibration is linear, the sample concentration C of any unknown is 

given by (A - intercept) / slope, where A is the measured signal (height or area) of that unknown. The 

predicted standard deviation in the sample concentration is C*SQRT((sdi/(A-intercept))^2 + 

(sds/slope)^2) by the rules for propagation of error. All these calculations are done in the spreadsheet 

template CalibrationLinear.xls. In some cases the thing measured cannot be detected directly but must 

undergo a chemical reaction that makes it 

measurable; in that case, the exact same 

reaction must be carried out on all the 

standard solutions and unknown sample 

solutions. 
 

Various calibration methods are used to 

compensate for problems such as random 

errors in standard preparation or instrument 

readings, interferences, drift, and non-

linearity in the relationship between 

concentration and instrument reading. For 

example, the standard addition calibration 

technique can be used to compensate 

for multiplicative interferences. I have 

prepared a series of “fill-in-the-blanks” 

templates for various calibrations methods, 

with instructions, as well as a series of spreadsheet-based simulations of the error propagation in 

widely-used analytical calibration methods, including a step-by-step exercise. 
 

Calibration and signal processing. Signal processing often intersects with calibration. For example, if 

you use smoothing or filtering (page 41) to reduce noise, or differentiation (page 61) to reduce the 

effect of background, or measure peak area to reduce the effect of peak broadening (page 137), or 

use modulation to reduce the effect of low-frequency drift (page 316), then you must use the exact 

same signal processing for both the standard samples and the unknowns; the choice of signal 

processing technique can have a big impact on the magnitude and even on the units of the resulting 

processed signal (e.g. in the derivative technique and in choosing between peak height and peak area). 
 

PeakCalibrationCurve.m is a Matlab/Octave example of this. This script simulates the calibration of 

a flow injection system that produces signal peaks that are related to an underlying concentration or 

amplitude ('amp'). In this example, six known standards are measured sequentially, resulting in six 

separate peaks in the observed signal. (We assume that the detector signal is linearly proportional to the 

concentration at any instant). To simulate a more realistic measurement, the script adds four sources of 

"disturbance" to the observed signal: 
 

a. random white noise added to all the signal data points, controlled by the variable "Noise";  
 

b. background - broad curved background of random amplitude, tilt, and curvature, controlled 

by "background";  
 

https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/models/CalibrationLinear.xls
https://en.wikipedia.org/wiki/Matrix_%28chemical_analysis%29
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html#Drift
https://terpconnect.umd.edu/~toh/models/Bracket.html#Background
https://terpconnect.umd.edu/~toh/models/Bracket.html#Background
https://terpconnect.umd.edu/~toh/models/Bracket.html#Multiple_Addition
https://terpconnect.umd.edu/~toh/models/Bracket.html#Multiple_Addition
https://terpconnect.umd.edu/~toh/models/Bracket.html#Background
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html#Instructions
https://terpconnect.umd.edu/~toh/models/Bracket.html
https://terpconnect.umd.edu/~toh/spectrum/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/models/Bracket.html#assignment
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Modulation
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html#Spectroscopy
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#HeightWidth
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve.m
https://en.wikipedia.org/wiki/Flow_injection_analysis
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve.png


Page | 334  

c. broadening - exponential peak broadening that varies randomly from peak to peak, controlled 

by "broadening";  
 

d. a final smoothing before the peaks are measured, controlled by "FinalSmooth". 

The script uses measurepeaks.m as an internal function to determine the absolute peak height, peak-

valley difference, perpendicular drop area, and tangent skim area (page 139). It plots separate calibra-

tion curves for each of these measures in Matlab Figure windows 2-5 against the true underlying ampli-

tudes (in the vector "amp"), fitting the data to a straight line and computing the slope, intercept, and R2. 

(If the detector response were non-linear, a quadratic or cubic least squares would work better). The 

slope and intercept of the best-fit line are different for the different methods, but if the R2 is close to 

1.000, a successful measurement can be made. (If all the random disturbances are set to zero in lines 

33-36, the R2 values will all be 1.000. Otherwise, the measurements will not be perfect, and some 

methods will result in better measurements - R2 closer to 1.000 - than others). Here is a typical result: 

Peak   Position  PeakMax  Peak-val.  Perp drop  Tan skim  

 1     101.56    1.7151   0.72679    55.827     11.336 

 2     202.08    2.1775   1.2555     66.521     21.425 

 3     300.7     2.9248   2.0999     58.455     29.792 

 4     400.2     3.5912   2.949      66.291     41.264 

 5     499.98    4.2366   3.7884     68.925     52.459 

 6     601.07    4.415    4.0797     75.255     61.762 

 R2 values:             0.9809   0.98615    0.7156     0.99824 
 

In this case, the tangent skim method works 

best, giving a linear calibration curve (shown 

on the right) with the highest R2.  
 

In this type of application, the peak heights 

and/or area measurements do not actually have 

to be accurate, but they must be precise. That 

is because the objective of an analytical meth-

od such as flow injection or chromatography 

is not to measure the peak heights and areas, 

but rather to measure concentrations, which is 

why calibration curves are used. Figure win-

dow 6 shows the correlation plot between the 

measured tangent skim areas and the actual 

true areas under the peaks in the signal shown 

above, right; the slope of this plot shows that the tangent skim areas are about 6% lower than the true 

areas, but that does not make a difference in this case because the standards and the unknown samples 

are measured the same way. In some other applications, you may need to measure the peak heights 

and/or areas accurately, in which case curve fitting is generally the best way to go. 
 

If the peaks partly overlap, the measured peak heights and areas may be affected. To reduce the prob-

lem, it may be possible to reduce the overlap by using peak sharpening methods, for example 

https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/TrueVsMeasuredAreas.png
https://terpconnect.umd.edu/~toh/spectrum/TrueVsMeasuredAreas.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve2.png


Page | 335  

the derivative method, deconvolution or the power transform method, as demonstrated by the self-

contained Matlab/Octave function PowerTransformCalibrationCurve.m. 

 Curve fitting the signal data. Ordinarily in curve fitting methods, such as the classical least-

squares (CLS) method and in iterative nonlinear least-squares, the selection of a model shape is very 

important. However, in the quantitative analysis applications of curve fitting, where the peak height or 

area measured by curve fitting is used only to determine the concentration of the substance that created 

the peak by constructing a calibration curve, having the exact model shape is surprisingly uncriti-

cal. The Matlab/Octave script PeakShapeAnalyti-

calCurve.m shows that, for a single isolated peak 

whose shape is constant and independent of con-

centration, if the wrong model shape is used, the 

peak heights measured by curve fitting will be 

inaccurate, but that error will be exactly the 

same for the unknown samples and the known 

calibration standards, so the error will “cancel 

out” and the measured concentrations will still be accurate, provided you use the same inaccurate mod-

el for both the known standards and the unknown 

samples. In the example shown on the right above, 

the peak shape of the actual peak is Gaussian (blue 

dots), but the model used to fit the data is Lo-

rentzian (red line). That is an intentionally bad fit 

to the signal data; the R2 value for the fit to the sig-

nal data is only 0.962 (a poor fit by the standards 

of measurement science). The result of this is that 

the slope of the calibration curve (shown on the 

left) is greater than expected; it should have been 

10 (because that's the value of the “sensitivity” in 

line 18), but it is 10.867 in the figure on the left. 

Nevertheless, the calibration curve is linear and its 

R2 value is 1.000, meaning that the analysis should 

be accurate. (So, curve fitting is actually applied twice in this type of application, once using iterative 

curve fitting to fit the signal data, and then again using polynomial curve fitting to fit the calibration 

data). 
 

Despite all this, it is still better to use an accurate model peak shape for the signal data, because the 

percent fitting error or the R2 of the signal fit can be used as a warning that something unexpected is 

wrong, such as an increase in noise or the appearance of an interfering peak from a foreign substance.  

Numerical precision of computer software 

Computations carried out by computer software with non-integer numbers have a natural limit to the 

precision with which they can be represented; for example, the number 1/3 is represented as 

0.3333333..., using a large but finite number of “3”s, whereas theoretically there is an infinite string of 

https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/PowerTransformCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve.m
https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve.m
https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve2.png
https://terpconnect.umd.edu/~toh/spectrum/WrongShape.png


Page | 336  

“3”s in the decimal representation of 1/3. It is the same with irrational numbers such as "pi" and the 

square root of 2; they can never have an exact decimal representation. In principle, these tiny errors 

could accumulate in a very complex multiple-step calculation and could conceivably become a 

significant source of error. In most applications to scientific computation, however, these limits will be 

minuscule compared to the errors and random noise that is already present in most real-world 

measurements. But it is best to know what those numerical limits are, under what circumstances they 

might occur, and how to minimize them. 

Multicomponent spectroscopy. Probably the 

most common calculation where numerical 

precision is an issue is in the matrix methods 

that are used in multicomponent spectroscopy. 

In the derivation of the Classical Least-squares 

(CLS) method, the matrix inverse is used to 

solve large systems of linear equations. The 

matrix inverse is a standard function in 

programming languages such as Matlab, 

Octave, Python, Wolfram's Mathematica, and 

in spreadsheets. But if you use that function in 

Matlab, the function name (“inv”) is 

automatically flagged by the editor with the 

following warning: 
 

“For solving a system of linear equations, the inverse of a matrix is 

primarily of theoretical value. Never use the inverse of a matrix to 

solve a linear system Ax=b with x=inv(A)*b, because it is slow and 

inaccurate.... Instead of multiplying by the inverse, use matrix 

right division (/) or matrix left division (\). That is: Replace 

inv(A)*b with A\b ... [and]...replace b*inv(A) with b/A” 

 

"Slow and inaccurate"? Scary words! But, really, how serious a problem is this in actual applications? 

To answer that question, the numerical experiment RegressionNumericalPrecisionTest.m applies the 

CLS method to a mixture of two very closely-spaced noiseless overlapping Gaussian peaks (blue and 

green lines in the figure on the left) using three different mathematical formulations of the least-squares 

calculation that give different results. The difficulty of such a measurement depends on the ratio of the 

peak separation to the peak half-width; small ratios mean very highly overlapped peaks which are hard 

to measure accurately. In this example the separation-to-width ratio is 0.0033, which is very small; this 

is equivalent to trying to measure a mixture of two absorption spectroscopy peaks that are 300 nm wide 

and separated by only 1 nm, a tiny difference that you would not even notice with the naked eye. The 

results of this script show that the matrix inverse ("inv") method does indeed have an error thousands 

of times larger than the method using matrix division, but even the matrix division error is still very 

small. Practically, the difference between these methods is unlikely to be significant when applied to 

real experimental data, because even the tiniest bit of signal instability would produce a far greater 

error (like that caused by small changes in the temperature of the sample or by random noise in the 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html#cls
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html#cls
https://www.mathsisfun.com/algebra/matrix-inverse.html
https://terpconnect.umd.edu/~toh/spectrum/RegressionNumericalPrecisionTest.m
https://terpconnect.umd.edu/~toh/spectrum/RegressionNumericalPrecisionTest.png


Page | 337  

signal, which you can simulate in line 15). So basically, that warning message is the voice of a 

mathematician or computer programmer, not that of an experimental scientist.  
 

Analog-to-digital resolution. Potentially more significant than the computer's numerical resolution is 

the resolution of the analog-to-digital converter (ADC) that is used to convert analog signals (e.g., 

voltage) to a number. The numerical experiment RegressionADCbitsTest.m demonstrates this, with two 

slightly overlapping Gaussian bands with a large (50-fold) difference in peak height (blue and green 

lines in the figure on the right, peaking at 500 and 550 nm respectively); in this case the separation to 

width ratio is 0.25, much larger (i.e. easier) than the previous example. For this example, the simulation 

shows that the relative percent error of peak height measurement is 0.19% for the larger peak and 6.6% 

for the smaller peak. You can change the 

resolution of the simulated analog-to-

digital converter in the number of bits 

(line 9). The amplitude resolution of 

an analog-to-digital converter is 2 raised 

to the power of the number of bits. 

Common ADC resolutions are 10, 12, and 

14 bits, corresponding to resolutions of 

one part in 1024, 4096 and 16384, 

respectively. Of course, the effective 

resolution for the smaller peak, in this 

case, is 50 times less, and you cannot 

simply turn up the pre-amplifier on the 

smaller peak without overloading the ADC for the larger one. Surprisingly, if most of the noise in the 

signal is this kind of digitization noise, it may help to add some additional random noise (specified in 

line 10 in this script), as was seen on page 304. 
  

Differentiation. Another application where you can 

see numerical precision noise is in differentiation, 

which involves the subtraction of very nearly equal 

adjacent numbers in a data series. The Matlab/Octave 

numerical experiment 

DerivativeNumericalPrecisionDemo.m shows how 

the numerical precision limits of the computer affect 

the first through fourth derivatives of a Gaussian band 

that is very finely sampled (over 16,000 points in the 

half-width in this case) and that has no added noise. 

The plot on the left shows the four waveforms on the 

right, and their frequency spectra are shown in the 

figure just below. The numerical precision limit of the computer creates random noise at very high 

frequencies, which are emphasized by differentiation. In the frequency spectra below, the big low-

frequency bump near a frequency of 10-2 is the signal and everything above that is numerical 

noise. The lower-order derivatives are seldom a problem, but by the time you reach the fourth 

https://terpconnect.umd.edu/~toh/spectrum/RegressionADCbitsTest.m
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/DerivativeNumericalPrecisionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DemoADCNumericalNoise.png
https://terpconnect.umd.edu/~toh/spectrum/DerivativeNumericalPrecisionFigure1.png


Page | 338  

derivative, those noise frequencies approach the strength of the signal frequencies, as you can see in the 

frequency spectrum of the fourth derivative in the lower right. But this noise is only a very high-

frequency noise, so smoothing with as little as a 3-point sliding average smooth removes most of 

it (click to view).  
 

An alternative derivative method based on the Fourier Transform (page 84) has slightly lower 

numerical errors but is seldom used in practice (reference 88). The fundamental difference between the 

two is that the finite difference method works locally, on one small segment of the data at a time, 

whereas the FT method works globally because each frequency in the Fourier representation extends 

throughout the entire time domain. The Matlab/Octave script FDvsFTderivative.m compares the  

numerical errors of finite difference (FD) and Fourier transform (FT) methods of differentation. It 

creates a very broad, finely sampled Gaussian peak and then computes its fourth derivative both ways. 

(The noise is casued only by software numerical resolutiion limitations). The result (graphic) is that the 

numerical errors are lower for the FT method near the peak but are greater far from the peak center. 
 

Smoothing. Finally, there might potentially be a numerical problem with the fastsmooth algorithm, 

covered in the section on smoothing, because it is a recursive algorithm that uses the results of a 

previous step in the calculation to calculate the next step. The numerical precision of fastsmooth.m is 

shown by the numerical experiment script FastsmoothNumericalPrecisionTest.m. Even for 4000-point 

P-spline smooth applied to a 100,000-point signal, the numerical noise relative standard deviation is 

only 0.00027%, and most of that occurs in the edges of the signal (first 4% and last 4% of the points); 

the error over 90% of the signal is orders of magnitude less, a negligible problem in practical cases.  

https://terpconnect.umd.edu/~toh/spectrum/DerivativeNumericalPrecisionFigure3.png
https://terpconnect.umd.edu/~toh/spectrum/FDvsFTderivative.m
https://terpconnect.umd.edu/~toh/spectrum/FFDvsFTderivative.png
http://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/FastsmoothNumericalPrecisionTest.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeNumericalPrecisionFigure2.png


Page | 339  

Miniaturized signal processing: The Raspberry Pi Family 

Signal processing does not necessarily require 

expensive computer systems. The Raspberry Pi is a 

family of small but remarkably capable single-board 

computers that range in cost between $10 and $80. 

Most models are about the size of a deck of cards. 

Most have several USB ports, general-purpose 

input-output pins, HDMI port, Ethernet port, audio 

jack and composite video, interfaces for a video 

camera, micro-SD card slot for mass storage, a 

graphics core, Wireless LAN, and Bluetooth. You 

can get them with a bunch of installed software, including a version of the Linux operating system, a 

Web browser, the complete LibreOffice suite, Wolfram's Mathematica (screenshot), several 

programming languages and various utilities. These are installed by default on the Raspberry 

Pi's operating system installer. (The smallest and cheapest models are ideal in situations where they 

might be damaged or lost, as in rocket or balloon-borne experiments). There are many starter packs 

available that bundle all the required bits and pieces. 
 

You can easily build a complete low-cost Windows 10 computer from a Raspberry Pi version 4 ($70) 

which comes built into a full keyboard; you need only a USB-C 5 volt power supply, a TV/monitor 

with an HDMI input, and a mouse (all of which you might find at a second-hand shop), and a mini SD 

card (8 to 16 Gbytes) for mass storage (which you can buy with all the software already installed, or 

use a blank one to which you can download the free software yourself). For educational purposes, the 

Pi has been used as a low-cost alternative for school computer labs, using its included software for both 

Office-type applications (Writer word processor, Calc spreadsheet, etc.), and for programming 

instruction, such as Python (page 434), C, C++, Java, Scratch, Ruby, etc.  

 

Single-board versions are ideal for “headless” applications (meaning without a monitor, keyboard, or 

mouse) which, after being set up, are accessed only remotely via WiFi or Bluetooth, using Putty (for 

command-line UNIX-style access) or using a graphical desktop sharing system such as RealVNC (free 

for Windows, Mac, IOS, and Android), which reproduces the entire graphical desktop on your local 

device, complete with a pop-up virtual keyboard. Typical applications are as a network file server, 

weather station, media center or as a networked security camera. It can also share files with Windows.  
 

For scientific data acquisition and signal processing applications, the Pi version of Linux has all the 

"usual" UNIX terminal commands for data gathering, searching, cleaning and summarizing. In addition, 

there are many add-on libraries for Python, including SciPi, NumPy, and Matplotlib, all of which are 

free downloads (page 434). Allen B. Downey's PDF book "Think DSP" has many examples of Python 

code in traditional engineering applications. Add-on hardware devices available at low cost include 

video cameras and a piggyback sensor board that reads and displays sensor data from several built-in 

sensors: gyroscope, accelerometer, magnetometer, barometer, temperature, relative humidity. (It is 

based on the same hardware that at the time of this writing was in orbit on the International Space 

Station).  

https://www.pishop.us/product-category/raspberry-pi/raspberry-pi-boards/current-pi-boards/
https://en.wikipedia.org/wiki/LibreOffice
http://www.wolfram.com/raspberry-pi/?source=footer
https://terpconnect.umd.edu/~toh/spectrum/MathematicaRaspberryPi.png
https://www.raspberrypi.org/help/faqs/#softwareRun
https://www.raspberrypi.org/downloads/noobs/
https://www.amazon.com/s?k=RASPBERRY+PI+starter+packs&i=electronics&crid=1H8GRFYPCXMOA&sprefix=raspberry+pi+starter+packs%2Celectronics%2C57&ref=nb_sb_noss
https://www.raspberrypi.org/forums/viewtopic.php?t=74176
http://www.putty.org/
https://www.realvnc.com/
https://www.howtogeek.com/139433/how-to-turn-a-raspberry-pi-into-a-low-power-network-storage-device/
https://www.raspberryweather.com/
http://lifehacker.com/5929913/build-a-xbmc-media-center-with-a-35-raspberry-pi
https://pimylifeup.com/raspberry-pi-security-camera/
http://raspberrypihq.com/how-to-share-a-folder-with-a-windows-computer-from-a-raspberry-pi/
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=raspberry+pi+laboratory+measurement+science&*
http://practical-data-science.blogspot.com/2012/09/basic-unix-shell-commands-for-data.html
https://www.embeddedrelated.com/showarticle/197.php
http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
http://greenteapress.com/thinkdsp/thinkdsp.pdf
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.amazon.com/Raspberry-Pi-Sense-HAT-AstroPi/dp/B014HDG74S
https://pythonhosted.org/sense-hat/api/
http://issabove.com/iss-above-and-the-raspberry-pi/
http://issabove.com/iss-above-and-the-raspberry-pi/


Page | 340  

My signal-processing spreadsheets (page 489) run just fine on the version of Calc that comes with the 

Pi, as do the calibration worksheets (page 447) and my analytical instrument models (page 350).  

 For school applications, Element14 markets several different educational kits and activities based on 

the Raspberry Pi models.

  
 

Octave 3.6 can run directly on some Raspberry Pi versions; the screen above shows Octave 3.6 running 

within the Pi's built-in graphical user interface (showing off the 3D graphic “surf” function).  
 

There are many laboratory and field applications, especially in combination with an Arduino micro-

controller. But if none of the available Raspberry Pi models are sufficiently fast for your signal-

processing needs, then you use the Pi only for data acquisition and transfer the data to a faster computer. 

(For MATLAB users, there is a MATLAB Support Package for Raspberry Pi Hardware that supports 

this. Alternatively, you could simply have the Raspberry Pi save data or results in a shared folder that is 

accessed via Wi-Fi from another computer). 
 

Python (page 437) is the primary programming language that comes with the Raspberry Pi. Matlab 

programmers can use ChatGPT to convert their code to Python (page 443). As a comparison, here is a 

real-time example of data acquisition and plotting on a Raspberry Pi, using the commercially available 

add-on Sense Hat board to measure its own temperature as it warms up, using a program written in 

Python. Click for real-time animation. (If you do not have a Sense Hat, here's a modification of the 

same Python program that plots the running average of random numbers, using the same autoscaling 

graphic technique, showing a result that gradually settles down closer and closer to the average the 

longer you let it run). This Matlab/Octave script does the same thing at the same speed, but in this 

particular case the Matlab/Octave script length is substantially shorter. (For a more extensive 

comparison of Python to Matlab for several different signal processing tasks, see page 434). 
 

Other competing systems include the BeagleBoard and the LattePanda, a tiny $130 Windows-10 

computer board with 2 Gbytes RAM and 32 Gbytes flash storage. Many similar products are available. 

Batch processing 

In situations where you have a large volume of similar types of data to process, it is useful to automate 

the process. Let us assume that you have already acquired reams of data in the form of multiple text 

files or numerical data files of some standardized format that are stored in a known directory (folder) 

https://terpconnect.umd.edu/~toh/spectrum/functions.html#spreadsheets
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/models/index.html
https://community.element14.com/products/raspberry-pi/?ICID=menubar_products_raspberryPi#pifragment-18557=4
http://wiki.octave.org/Rasperry_Pi
https://www.raspberrypi.org/blog/the-raspberry-pi-in-scientific-research/
https://create.arduino.cc/projecthub/sankarCheppali/interfacing-arduino-with-raspberry-pi-6d9870
https://create.arduino.cc/projecthub/sankarCheppali/interfacing-arduino-with-raspberry-pi-6d9870
https://www.mathworks.com/help/supportpkg/raspberrypiio/examples/getting-started-with-matlab-support-package-for-raspberry-pi-hardware.html
https://www.mathworks.com/help/supportpkg/raspberrypiio/examples/getting-started-with-matlab-support-package-for-raspberry-pi-hardware.html
http://raspberrypihq.com/how-to-share-a-folder-with-a-windows-computer-from-a-raspberry-pi/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://terpconnect.umd.edu/~toh/spectrum/temptime.html
https://www.amazon.com/Raspberry-Pi-Sense-HAT-AstroPi/dp/B014HDG74S
https://terpconnect.umd.edu/~toh/spectrum/temptime.py
https://terpconnect.umd.edu/~toh/spectrum/temptime.py
https://terpconnect.umd.edu/~toh/spectrum/temptime.gif
https://terpconnect.umd.edu/~toh/spectrum/RandRunningAverage.py
https://terpconnect.umd.edu/~toh/spectrum/RandRunningAverage.py
https://terpconnect.umd.edu/~toh/spectrum/RunningAverage.m
https://beagleboard.org/
https://www.newark.com/df-robot/dfr0418/lattepanda-windows-10-mini-pc/dp/79AC5536
https://www.google.com/search?q=enbedded+single+board+computers&oq=enbedded+single+board+computers&aqs=chrome..69i57j0l5.6127j0j4&sourceid=chrome&ie=UTF-8
https://terpconnect.umd.edu/~toh/spectrum/OctaveRaspberryPi.png


Page | 341  

somewhere on your computer. For example, they might be ASCII .txt (plain text) or .csv (“comma 

separated values”) files with the independent variable ('x') in the first column and one or more 

dependent variables ('y') in the other columns. There may be a variable number of data files, and their 

file names and length may be variable, but, crucially, the data format is consistent from file to file. You 

could write a Matlab script or function that will process those files one-by-one, but wouldn’t be nice if 

the computer could go through all the data files in that directory automatically, determine their file 

names, load each into the variable workspace, apply the desired processing operations (peak detection, 

deconvolution, curve fitting, wavelets, whatever), collect all the resulting terminal window output, each 

labeled with the file name, add those results to a growing "diary" file, and then go on to the next data 

file. Ideally, the program should not stop if it encounters any kind of fatal error; rather, it should 

just skip that file and go on to the next. It sounds complicated, but it is easier than it seems. 
 

BatchProcess.m is a Matlab/Octave example of just such an automated process that you can use as a 

framework for your applications. To adapt this script to your own purposes, you need only change: 
 

(a) the directory name where your data are stored on your computer – this is (“DataDirectory”) 

in line 11 of BatchProcess.m;  
 

(b) the directory name where the Matlab signal processing functions are stored on your 

computer - (“FunctionsDirectory”) in line 12; and  
 

(c) the actual processing functions that you wish to apply to each file (which in this example 

perform peak fitting using the “peakfit.m” function in lines 34 – 41, but could be anything). 
 

When it starts, the routine creates and opens a “diary” file in line 21, which will be placed in the 

FunctionsDirectory, with the file name “BatchProcess<date>.txt” (where <date> is the current date, e.g. 

12-Jun-2022). This file captures all the terminal window output during processing - in this example, I 

am using the peakfit.m function that generates a FitResults matrix (with Peak#, Position, Height, Width, 

and Area of the best-fit model), and a Goodness of Fit (GOF) matrix containing the percent fitting error 

and R2 value, for each data file in that directory. Subsequent runs of the program on the same date are 

appended to this file. On each subsequent day, a new file is begun for that day. You can also optionally 

save some of the variables in the workspace to data files; add a “save” function after the processing and 

before the “catch me” statement (type “help save” at the command prompt for options). 
 

This program uses some coding techniques that are especially useful in automated file processing. It 

uses the “function forms” of  several commands -“ls” (line 13), “diary” (line 21), and “load” (line 29) -

to allow then to accept variables computed within the program. It also uses the “try/catch/end” structure 

(lines 28, 47, 49), which prevents the program from stopping if it encounters an error on one of the data 

files. If an error occurs, it adds a line to the diary that reports the error for that file and skips to the next. 

(Note: not surprisingly, Python has a similar functions called “try..except..finally” and pydiary).  
 

After running this script, the “BatchProcess...” diary file will contain all the terminal output. Here is an 

excerpt from a typical diary file. In this example, the first two data files in the directory yielded errors, 

but the third one ("2016-08-05-RSCT-2144.txt") and all the following ones worked normally 

and reported the results of the peak fitting operations: 

https://terpconnect.umd.edu/~toh/spectrum/BatchProcess.m
https://terpconnect.umd.edu/~toh/spectrum/BatchProcess.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/try.txt
https://www.programiz.com/python-programming/exception-handling
https://pypi.org/project/pydiary/


Page | 342  

Error with file number 1. 

Error with file number 2. 

 

3: 2016-08-05-RSCT-2144.txt 

         Peak#  Position  Height     Width       Area 

            1   6594.2    0.1711    0.74403    0.13551 

            2   6595.1    0.16178    0.60463    0.1041 

   % fitting error    R2 

       2.5735      0.99483 

4: 2016-09-05-RSCT-2146.txt 

         Peak#   Position  Height    Width      Area 

            1    6594.7    0.11078   1.4432    0.17017 

            2    6595.6    0.04243   0.38252   0.01727 

   % fitting error    R2 

       4.5342      0.98182 

  

5: 2016-09-09-RSCT-2146.txt 

         Peak#   Position  Height     Width      Area 

            2    6594     0.05366    0.5515     0.0315 

            1    6594.9   0.1068     1.2622     0.1435 

   % fitting error    R2 

        3.709      0.98743 

6: .... Etc.... 
 

Note: You could optionally import the dairy file into Excel by opening an Excel worksheet, click on a 

cell, click Data > From Text, select the diary file, click to specify that spaces are to be used as column 

separators, and click Import. This will put all the collected terminal output into that spreadsheet. Ad-

ditionally, you might want to save the workspace variables (e.g., as a .mat file). 

Real-time signal processing 

All the signal processing techniques covered so far assume that you have acquired and have stored the 

data in computer memory before beginning processing. In some cases, however, it is necessary to do 

the signal processing in "real-time", that is, point-by-point as the data are acquired from the sensor or 

instrument. That requires some modification of the software, but the main conceptual ideas still apply. 

In this section we will look at ways to perform real-time data plotting, smoothing, differentiation, peak 

detection, harmonic analysis (frequency spectra), and Fourier filtering. Because the data acquisition 

details vary with each individual experimenter and instrumental setup, these demonstration scripts 

will simulate real-time data so that you can run them immediately on your computer to see how they 

work, without additional hardware. I will do this in either of two ways:  
 

(a) by using mouse-clicks to generate data points one-by-one, using Matlab's "ginput" function, or  

(b) by pre-calculating some simulated data and then accessing it point-by-point in a loop.  
 

The first method is illustrated by the simple script realtime.m. When you run this script, it displays a 

graphical coordinate system. Position your mouse pointer along the y (vertical) axis and click to enter 

data points as you move the mouse pointer up and down. The "ginput" function waits for each click of 

https://terpconnect.umd.edu/~toh/spectrum/realtime.m


Page | 343  

the mouse button, then the program records the y coordinate position and counts the number of clicks. 

Data points are assigned to the vector y (line 17), plotted on the graph as black points (line 18), and 

print out in the command window (line 19). The script realtimeplotautoscale.m is an expanded version 

that changes the graph scale as the data come in. If the number of data points exceeds 20 ('maxdisplay'), 

the x-axis maximum is re-scaled to twice that (line 32). If the data amplitude equals or exceeds ('maxy'), 

the y-axis is re-scaled to 1.1 times the data amplitude (line 36).  
 

The second method is illustrated by the script 

realtimeplotautoscale2.m, which simulates real-

time data by using pre-calculated data (loaded 

from your hard drive in line 13) that is accessed 

point-by-point in lines 25 and 26 (If the 

animation is not visible, click on the figure to 

open in a web browser). Another script, 

realtimeplotdatedtime.m, demonstrates one way 

to use Matlab's 'clock' function to record the 

date and time of each data point that is acquired 

by clicking. (You could also have the computer 

control the time of data acquisition by reading 

the clock in a loop until the desired time and 

date arrives, then take a data point). Of course, a Windows machine is hardly ideal for high-speed, 

precisely-timed data acquisition, because there are typically so many interrupts and other processes 

going on in the background, but it is adequate for low-speed applications. For higher speeds, 

specialized hardware and software are available, such as the new RP2350 Raspberry Pi microcontroller, 

which is designed specifically for real-time operation.  
 

 Smoothing. The script RealTimeSmoothTest.m demonstrates real-time smoothing (page 41), plotting 

the raw unsmoothed data as a blue line and the smoothed 

data in red. In this case, the script pre-calculates simulated 

data in line 28 and then accesses the data point-by-point in 

the processing 'for' loop (lines 30-51). The total number of 

data points is controlled by 'maxx' in line 17 (initially set 

to 1000) and the smooth width (in points) is controlled by 

'SmoothWidth' in line 20. (To do this with real-time data 

from your sensor, comment out line 29 and replace line 32 

with the code that acquires one data point from your 

sensor).  

As you can see in the screen image on the left above (link to animation), the smoothed data (in red) is 

delayed compared to the raw data, because a smoothed data point cannot be computed until a number 

of data points equal to the smooth width have been acquired - 21 points in this example. (However, 

knowing the smooth width, you can correct the recorded y-axis positions of signal features, such as 

maxima, minima, peaks, or inflection points). This particular example implements a sliding average 

smooth, but other smooth shapes can be implemented simply by uncommenting line 24 (rectangular), 

https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale2.gif
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale.m
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale2.zip
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix2.mat
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotdatedtime.m
https://www.mathworks.com/products/connections/product_detail/data-translation-daq-hardware.html
https://www.mathworks.com/products/daq.html
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothTest.zip
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmooth.gif
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#algorithms
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#algorithms


Page | 344  

25 (triangular), or 26 (Gaussian), which requires that the functions 'triangle' and 'gaussian' be in the 

Matlab/Octave search path.  
 

A practical application of a sliding average smooth like 

this is in a control system where a noisy signal turns on 

a valve, switch, or alarm signal whenever the signal 

exceeds a certain value. In the example shown in the 

figure on the right, the threshold value is 0.5 and the 

signal (blue dots) is so noisy that smoothing is required 

to prevent the signal from prematurely triggering the 

control. Too much smoothing, however, will cause an 

unacceptable delay in operation. In this case, the alarm 

is sounded at about t=160 and stops at 350. 
 

On a standard desktop PC (Intel Core i5 3 Ghz) running Windows 10 home, the smooth operation adds 

about 2 microseconds per data point to the data acquisition time (without plotting, PlottingOn=0 in line 

20) and 20 milliseconds per point (50 Hz max) with point-by-point plotting (PlottingOn=1). With 

plotting off, the script acquires, smooths, and stores the smoothed data in the variable "sy" in real-time, 

then plots the data only after data acquisition is complete, which is much faster than plotting in real-

time.   
 

Differentiation. The script RealTimeSmoothFirstDerivative.m demonstrates real-time smoothed 

differentiation (page 61), using a simple adjacent-

difference algorithm (line 47) and plotting the raw 

data as a black line and the first derivative data in red. 

The demonstration script 

RealTimeSmoothSecondDerivative.m computes the 

smoothed second derivative by using a central 

difference algorithm (line 47). Both scripts pre-

calculate the simulated data in line 28 and then access 

the data point-by-point in the processing loop (lines 

31-52). In both cases, the maximum number of points 

is set in line 17 and the smooth width is set in line 

20. Again, the derivatives are delayed compared to 

the original signal. Any derivative order can be 

calculated this way using the derivative coefficients in the Matlab/Octave derivative functions listed 

on page 73. 

 

Peak detection. The little script realtimepeak.m demonstrates simple real-time peak detection based on 

derivative zero-crossing (page 229), using mouse clicks to simulate data. Each time your mouse clicks 

form a peak (that is, go up and then down again), the program will register and label the peak on the 

graph and print out its x and y values. 
  

Peak detected at x=13 and y=7.836 

Peak detected at x=26 and y=1.707 

https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothFirstDerivative.png
https://terpconnect.umd.edu/~toh/spectrum/triangle.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothFirstDerivative.zip
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothSecondDerivative.zip
https://terpconnect.umd.edu/~toh/spectrum/realtimepeak.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm


Page | 345  

 In this case, a peak is defined as any data point that has lower amplitude points adjacent to it on both 

sides, which is determined by the nested 'for' loops in lines 31-36. Of course, a peak cannot be 

registered until the point following the peak is recorded, because there is no way to predict ahead of 

time whether that point will be lower or higher than the previous point. If the data are noisy, it is better 

to smooth the data stream before detecting the peaks, which is exactly what the Matlab/ Octave script 

RealTimeSmoothedPeakDetection.m does, which reduces the chance of false peaks due to random 

noise but has the disadvantage of delaying the peak detection further. Even better, the Matlab/Octave 

script RealTimeSmoothedPeakDetectionGauss.m uses the technique described on page 232; it locates 

the positive peaks in a noisy data set that 

rise above a set amplitude threshold 

("AmpThreshold" in line 55), performs 

a least-squares curve-fit of a Gaussian 

function to the top part of the raw data 

peak (in line 58), identifies each peak (line 

59), computes the position, height, and 

width (FWHM) of each peak from that 

least-squares fit, and prints out each peak 

found in the command window. The peak 

parameters are measured on the raw data, 

so they are not distorted by smoothing. 

The "peak" label pops up next to each 

detected peak just a fraction of a second 

after the top of the peak, but the peak times 

listed in the printed table are based on the raw data and are not delayed. In this example, the actual 

peak times are x=500, 1000, 1100, 1200, 1400. (Also note that the first visible peak, at x=300, is not 

listed because it falls below the amplitude threshold, which is 0.1 in this case. However, if that peak is 

important, you could simply set that threshold to a lower value, e.g., 0.02). Link to animation.  
 

Peak detected at x=500.1705, y=0.42004, width= 61.7559 

Peak detected at x=1000.0749, y=0.18477, width= 61.8195 

Peak detected at x=1100.033, y=1.2817, width= 60.1692 

Peak detected at x=1199.8493, y=0.36407, width= 63.8316 

Peak detected at x=1400.1473, y=0.26134, width= 58.9345 

 

The script additionally numbers the peaks and saves the peak parameters of all the peaks in a matrix 

called PeakTable, which you can interrogate as each peak is encountered if you are looking for 

particular peak patterns. See page 246 for some ideas on using Matlab/Octave notation and functions to 

do this. 
 

 

 

 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetection.zip
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetectionGauss.zip
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#FittingPeaks
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetectionGauss.gif
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetectionGauss.png


Page | 346  

Peak sharpening. The Matlab/Octave script RealTimePeakSharpening.m demonstrates real-time peak 

sharpening (page 76) using the second derivative 

technique. It uses pre-calculated simulated data 

in line 30 and then accesses the data point-by-

point in the processing loop (lines 33-55). In both 

cases the maximum number of points is set in 

line 17, the smooth width is set in line 20, and 

the weighting factor (K1) is set in line 21. In the 

example on the right, the smooth width is 101 

points, which accounts for the delay in the 

sharpened peak compared to the original. 

 

Real-Time Frequency Spectrum. The script 

RealTimeFrequencySpectrumWindow.m com-

putes and plots the Fourier frequency spectrum 

of a signal (page 91). Like the scripts above, it loads the simulated real-time data from a “.mat file” and 

then accesses the data point-by-point in the processing loop. A critical variable in this case is “Win-

dowWidth”, the number of data points taken to compute each frequency spectrum. The larger this num-

ber, the fewer the number of spectra that will be generated, but the higher will be the frequency resolu-

tion. On an average desktop PC (Intel Core i5 3 Ghz running Windows 10 home), this script generates 

about 50 spectra per second with an average data rate (points per second) of about 50,000 Hz. Smaller 

spectra (i.e. lower values of WindowWidth) generate proportionally lower average data rates (be-

cause the signal stream is interrupted more 

often to calculate and graph a spectrum). If 

the data stream is an audio signal, it is also 

possible to play the sound through the 

computer's sound system synchronized 

with the display of the frequency spectra; 

to do this, set the variable PlaySound to 

a value of 1. Each segment of the signal is 

played just before the spectrum of that 

segment is displayed, as shown on the right. 

(The sound reproduction will not be per-

fect, because of the slight delay while the 

computer computes and displays the spec-

trum before going on to the next segment). 

In this demonstration script, the data file is 

music - in fact it is an 8-second excerpt of 

an audio recording of the 'Hallelujah Chorus' from Handel's Messiah, with a sampling rate of 8192 Hz. 

This file is included as demonstration data in the Matlab distribution (handel.mat). The figure on the 

right shows one of the 70 spectra generated with a WindowWidth of 1024. You can adjust the argument 

https://terpconnect.umd.edu/~toh/spectrum/RealTimePeakSharpening.zip
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/RealTimeFrequencySpectrumWindow.zip
https://terpconnect.umd.edu/~toh/spectrum/RealTimeFrequencySpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/RealTimePeakSharpening.png


Page | 347  

of the 'pause' function for your computer to minimize this problem and to make the sound play smooth-

ly at the correct pitch.  

Real-Time Fourier Filter. The script RealTimeFourierFilter.m is a demonstration of a real-time 

Fourier filter. The script pre-computes a 

simulated signal starting in line 38, then it 

accesses the data point-by-point (lines 56, 57), 

and divides up the data stream into segments 

to compute each filtered section. The number 

of data points in each segment set by the 

variable “WindowWidth” (line 55). The larger 

this number, the fewer the number of 

segments that will be generated, but the higher 

will be the frequency resolution within each 

segment. On an average desktop PC (Intel 

Core i5 3 Ghz running Windows 10 home), 

with a window width of 1000 points, this 

script generates about 35 filtered segments per second with an average data rate (points per second) of 

about 34,000 Hz. Smaller segments (i.e., lower values of WindowWidth) generate proportionally lower 

average data rate (because the signal stream is interrupted more often to calculate and graph the filtered 

spectrum). The result of applying the filter to each segment is displayed in real-time during the data 

acquisition, and then at the end the script compares the entire raw signal input to the reassembled 

filtered output, as shown the figure above. 
 

In this demonstration, the Fourier filter is set to bandpass mode, and is used to detect a 500 Hz sine 

wave (frequency set by 'f' in line 28) that occurs in the middle third of a very noisy signal (line 32), 

from about 0.7 sec to 1.3 sec; the 500 Hz sine wave is so weak it cannot be seen at all in the raw signal 

(upper panel of the figure on the left), but it really stands out in the filtered output (lower panel). The 

filter center frequency (CenterFrequency) and width (FilterWidth) are set in lines 46 and 47.  
 

Real-time classical least squares. The classical least squares technique (page 184) can be applied in 

real time to 2D chromatography with array detectors that can acquire a complete spectrum multiple 

times per second over the entire chromatogram. This is explored in “Spectroscopy and chromatography 

combined: time-resolved Classical Least Squares” on page 358. 
 

To apply any of these examples to real-time data from your sensor or instrument, you only need the 

main processing 'for' loop, replacing the first lines after the 'for' statement with a call to a function that 

acquires a single point of raw data and assigns it to y(n). If you do not need the data plotted out point-

by-point in real-time, you can speed things up greatly by removing the “drawnow” statement at the end 

of the 'for' loop or by removing all the plotting code.  
 

In the examples here, the output of the processing operation is used to plot or to print out the processed 

data point-by-point, but of course it could also be used as the input to another processing function or to 

a digital-to-analog converter or simply to trigger an alarm if certain specified results are obtained (e.g., 

if the signal exceeds a certain value for a specified length of time, or if a peak is detected at a specified 

https://terpconnect.umd.edu/~toh/spectrum/real-time%20Fourier%20bandpass%20filter.zip
https://en.wikipedia.org/wiki/Band-pass_filter
https://terpconnect.umd.edu/~toh/spectrum/RealTimeFourierFilter.png


Page | 348  

position or height, etc.).  

Dealing with variable data arrays in spreadsheets 

When applying spreadsheet templates of the type described in this book to your own data, you will 

need to modify the templates to accommodate different numbers of data points or components. This 

can be tedious to do, especially because you need to remember the syntax of each of the spreadsheet 

functions that you want to modify. This section describes ways to construct spreadsheets that 

automatically adapt to different data sets, without your taking the time and effort to modify the 

spreadsheet formulas for each case. This involves employing some less commonly used built-in 

functions in Excel or OpenOffice Calc, such as MATCH, INDIRECT, COUNT, IF, and AND. 

The MATCH function. In signal processing using spreadsheets, it is common to have x-y arrays of 

data of variable length, such as spectra (x=wavelength, y=absorbance or intensity) or 

chromatograms (x=time, y=detector response). For example, consider this small 

array of x and y values pictured in the spreadsheet fragment on the left, which shows 

an independent variable x in column A and a dependent variable y in column B. 

Spreadsheet formulas normally refer to cells by their row and column address, but 

for an x-y data set like this, it is more natural to refer to a data point by its 

independent variable x, rather than by its row and column address. For example, 

suppose you want to select the data point corresponding to x=2, no matter what cells 

they inhabit. You can do that with the MATCH function. For example, if you enter 

the desired x value into cell B2 (e.g., 2), then MATCH(B2,A5:A11)+ROW(A5) will 

return the row number of that point, which is 6 in this case. Later, if you were to 

move or expand this table, by dragging it or by inserting or deleting rows or columns, the spreadsheet 

will automatically adjust the MATCH function to compensate, returning the new row number of the 

requested point.  

The INDIRECT function. The usual way to reference the value in a cell is to specify its row and 

column address. For example, in the array of x and y values pictured above, to refer to the contents of 

column B, row 6, you could write “=B6”, which in this case will evaluate to 5.9. This is referred to as 

“direct” addressing. In contrast, to use “indirect” addressing you can write “=INDIRECT("B"&A1)”, 

then put the number “6” in cell A1. The “&” character is simply “glue” that joins “B” to the contents of 

A1, so in that case "B"&A1 evaluates to “B6” and the result is the same as before: the contents of cell 

B6, which is 5.9. However, if you change cell A1 to 9, then "B"&A1 would evaluate to “B9”, and the 

result would be the contents of cell B9, which is 9.1. In other words, the INDIRECT function allows 

the addresses of cells to be calculated within the spreadsheet rather than being typed in as a fixed 

number. This makes it possible for spreadsheets to adjust their own addresses based on a calculated 

result, for example to adjust their calculations to fit the number of data points in that data set.  

These examples were done in what is called the “A1” reference style, where the columns are referred to 

by letters; it is also possible to use the “R1C1” reference style, where both the rows and the columns 

are referred to by numbers. For example, “=INDIRECT("R"&A2&"C"&A1,FALSE)”, with the row 

number in A2 and the columns number in A1. (The “FALSE” just means that the “R1C1” reference 

style is used). 



Page | 349  

 You can use the same technique to compute ranges of cell addresses. For example, suppose you 

wanted to compute the sum of all the numbers in column B between a specified first row and specified 

last row. If you put the first row-number in A1 and the last row-number in row A2, the address of the 

first cell would be "B"&A1 and the address of the last cell would be "B"&A2. So, you would form the 

range of cell addresses by using “&” to glue together those two addresses, with a “:” character in-

between ("B"&A1&":B"&A2). The sum would be SUM(INDIRECT("B"&A1&":B"&A2)), which is 

56. Yes, it is longer, but the advantage over direct addressing is that you can adjust the range by 

changing just two cells rather that retyping the formula. It is the same for other functions that need a 

range of cells, such as AVERAGE, MAX, MIN, STDEV, etc. For examples of its use, see page 53. 

 For functions that require two ranges, separated by a comma, you can use the same technique. Suppose 

you want to compute the slope of the linear regression line between the x values in column A and the y 

values in column B in the spreadsheet excerpt on the previous page, using the built-in SLOPE function. 

SLOPE requires two ranges, first the dependent (y) values and them the independent x values. By 

direct addressing, the slope is SLOPE(B5:B11,A5:A11). By indirect addressing, you need two separate 

“indirect” functions, one for each range, separated by a comma. Here is what it looks like all together: 

SLOPE(INDIRECT("B"&A1&":B"&A2),INDIRECT("A"&A1&":A"&A2)), where the x values are in 

column A, the y values in column B, and the first and last row numbers are in cells A1 and A2 

respectively. It works the same for the two related functions that calculate the INTERCEPT and RSQ 

(the R2 value) of the regression line. I agree that it is confusing to read at first, but it works. 

A working example. An example of the use of the MATCH and INDIRECT functions working 

together is demonstrated in the spreadsheet “SpecialFunctions.xlsx” (Graphic), which has a larger table 

of x-y data stored in columns A and B, starting in row 7. The idea here is that you can select a limited 

range of x values to work with by 

typing in the lowest x and the highest x 

value in cells B2 and B3, the two cells 

with a yellow background. The 

spreadsheet uses the MATCH functions 

in cells F2 and F3 to compute the corresponding row 

numbers, which are then used in the INDIRECT 

functions in the “Properties of selected data range” 

section to compute the maximum, average, and average 

of x and of y, and also the slope, intercept, and R2 

values of the y vs x linear regression line (page 157) 

over that selected x interval. The regression line, fitting 

only the data from x=20 to 29, is shown on red in the 

graph on the right, superimposed on the complete data 

set (blue dots). By simply changing the x-axis limits in 

cells B2 and B3, the spreadsheet and the graph re-

calculates, without your having to edit any of the cell 

formulas. Try it yourself. (By the way, you can float 

your mouse pointer over any cell with a red mark in 

upper right corner to reveal its cell formula or an 

https://en.wikipedia.org/wiki/Slope
https://terpconnect.umd.edu/~toh/spectrum/SpecialFunctions.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SpecialFunctions.png


Page | 350  

explanation). 

Columns J and K of this sheet also show how to use the “IF” and “AND” functions to copy data from 

columns A and B into columns J and K only those data points that fall between the two specific x limits.  

If desired, you can add more data to the end of columns A and B, limited only by the range of the 

MATCH functions in cells F2 and F3 (which are initially set to 1000, but that could be as large as you 

need). The total number of numerical values in the data set is computed in cell I15, using the  

“COUNT” function (which, as the name suggests, counts the number of cells in a range that contains 

numbers).  

Measuring peak location. A common signal processing operation is finding the x-axis value where the 

y-axis value is maximum. This can be broken down into three steps: (1) determine the maximum y 

value in the selected range with the MAX function; (2) determine the row number in which that 

number appears with the MATCH function, and (3) determine the value of x in that row with the 

INDIRECT function. These steps are illustrated in the same “SpecialFunctions.xlsx” spreadsheet in 

column H, rows 20-23. The result is that the maximum y (21.5) occurs at x=28. The three steps can 

even be combined into one long formula (cell H23), although this is harder to read than the formulas 

for the separate steps. The peak finder spreadsheet discussed on page 268 uses this technique. 

The LINEST function. Indirect addressing is particularly useful when using array functions such as 

LINEST (page 174) or the matrix algebra functions (page 187). The demonstration spreadsheet 

“IndirectLINEST.xls” (Graphic link) shows how this works for the multiwavelength spectroscopy 

analysis of a mixture of three overlapping components by the CLS method (page 184). The measured 

mixture spectrum is in column C, rows 29-99 and the spectra of the three pure components are in 

columns D, E, and F. Cell C12 “=COUNT(C29:C1032)” counts the number of rows of data (i.e., number 

of wavelengths) in column C starting at row 29, and cell G3 counts the number of components (in this 

case 3). These are used to determine the first and last row and column for the indirect addresses in 

LINEST in cell C17. The measured peaks heights calculated by LINEST for the three peaks are given 

in row 17, columns C, D, and E, and the predicted standard deviations are in the row below. In this 

spreadsheet the data are simulated (in columns O – U), so the true peaks heights are known and 

therefore the absolute accuracy can be calculated (row 26, C, D, and E) and compared to the predicted 

standard deviations. Press the F9 key to recalculate with an independent noise sample, which is 

equivalent to taking another measurement of the same sample. Because of the use of INDIRECT 

addressing, you can add or subtract data points at the end of columns C – E and the calculations work 

with no other changes. For examples of its use in signal processing, see page 189. 

Illuminating the invisible: Computer simulation of instruments 

Throughout this book, I have often used computer simulations to test, demonstrate, and determine the 

range of applicability and the accuracy of various signal processing techniques. The aim is to generate 

realistic computer-simulated signals by adding together  

(a) known signal component, such as one or more peaks, pulses, or sigmoidal steps,  

(b) a baseline, which may be flat, sloped, curved, or stepped, and  

https://terpconnect.umd.edu/~toh/spectrum/SpecialFunctions.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#Spreadsheet
https://terpconnect.umd.edu/~toh/spectrum/IndirectLINEST.xls
https://terpconnect.umd.edu/~toh/spectrum/IndirectLINEST.png


Page | 351  

(c) random noise, (page 23), which may be various colors (page 29) and amplitude 

dependences (page 30).  

This can be done either in Matlab/Octave, using the built-in and downloadable functions (page 461) for 

various peak shapes and types of random noise, or in spreadsheets, which can also be used to create 

attractive and intuitive user interfaces. Matlab “apps” and common spreadsheets have a built-in way to 

create a “GUI” (Graphic User Interface) with buttons, sliders, drop-down menus, etc. Some spreadsheet 

examples that I have created include  SimulatedSignal6Gaussian.xlsx, PeakSharpeningDemo.xlsx, 

PeakDetectionDemo2.xls, TransmissionFittingDemoGaussian.xls, BeersLawCurveFit2.xls, and 

RegressionDemo.xls (below, on the left). 

It is possible to make any aspect of a 

computer-generated signal randomly 

variable from measurement to 

measurement, with the aim of making 

the simulation as close as possible to 

the real signal behavior that you may 

have to measure. For example, in the 

section “The Battle Rounds: a 

comparison of methods” on page 294, 

the signal to be measured is a Gaussian 

peak located near the center of the 

recorded signal, with a fixed shape and 

width. The baseline, on the other hand, 

is highly variable, both in amplitude and in shape, and there is also added white noise. In another 

simulation, “Why measure peak area rather than peak height?”, page 310, the signal peak itself is 

subject to a variable broadening process that causes the measured peak to be shorter and wider, but 

which has no effect of the total area. In the section “Measuring a buried peak”, page 318, the signal is a 

small “child” peak that is buried under the tail of a much stronger “parent” peak. In all these cases, the 

https://terpconnect.umd.edu/~toh/spectrum/SimulatedSignal6Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CLSvsINLS.mhttps:/terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xls
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingDemoGaussian.xls
https://terpconnect.umd.edu/~toh/models/BeersLawCurveFit2.xls
https://terpconnect.umd.edu/~toh/models/RegressionDemo.xls


Page | 352  

true underlying signal is known to the software, so that, after the software measures the simulated 

observed signal with all its baseline and noise variability, it can calculate the error of measurement, 

allowing you to compare different methods or to optimize the method’s variables to obtain the best 

accuracy.  

In some cases, it may be possible to simulate important aspects of an entire measurement instrument 

system. Several examples are shown here and in https://terpconnect.umd.edu/~toh/models/. This is 

most useful if both the signal magnitude and the noise can be predicted from first principles. For 

example, in optical spectroscopy, the principles of physics and of geometrical optics can be used to 

predict the intensity of an incandescent light source, the transmission of a monochromator, and the 

signal generated by a photomultiplier, including the photon noise. When these are combined, it is 

possible to simulate the fundamental aspects of such instruments as a scanning fluorescence 

spectrometer (above) or an atomic absorption instrument (below), to predict the analytical calibration 

curves of absorption spectroscopy, to compare the theoretical signal-to-noise ratios of absorption and 

fluorescence measurement, and to predict the detection limits of atomic emission measurement of 

various elements, and the effect of slit width on signal-to-noise ratio in absorption spectroscopy 

(above). You can also simulate the operation of a lock-in amplifier (page 316), a wavelength 

modulation spectroscopy system, and even basic analog electronic and operational amplifier circuits. 

https://terpconnect.umd.edu/~toh/models/
https://terpconnect.umd.edu/~toh/models/Blackbody.html
https://terpconnect.umd.edu/~toh/models/Monochromator.html
https://terpconnect.umd.edu/~toh/models/Photomultiplier.html
https://camera.hamamatsu.com/jp/en/technical_guides/photon_shot_noise/index.html
https://terpconnect.umd.edu/~toh/models/Fluorescence.html
https://terpconnect.umd.edu/~toh/models/Fluorescence.html
https://terpconnect.umd.edu/~toh/models/AAMeasurement.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/BeersLaw.html
https://terpconnect.umd.edu/~toh/models/UVVisSNR.html
https://terpconnect.umd.edu/~toh/models/FluorescenceSNR.html
https://terpconnect.umd.edu/~toh/models/AES.html
https://terpconnect.umd.edu/~toh/models/AES.html
https://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html
https://terpconnect.umd.edu/~toh/models/lockin.html
https://terpconnect.umd.edu/~toh/models/modspec.html
https://terpconnect.umd.edu/~toh/models/modspec.html
https://terpconnect.umd.edu/~toh/ElectroSim/


Page | 353  

Note that these are not simulations of particular commercial instruments that might be used to train 

instrument operators. Rather, they are interactively manipulated mathematical models that describe 

various parts of or aspects of each system, for the purpose of illuminating hidden aspects of their 

internal operation.  

Who uses this book, its web site, documents, and software? 

Since its inception, this book and the associated web site (http://terpconnect.umd.edu/~toh/spectrum/) 

has been accessed from Internet Service Providers in at least 206 countries and several non-region-

specific categories (e.g. satellite providers). These include many countries in the developing world, 

some very small countries (e.g. Liechtenstein, the Faroe Islands), relatively isolated countries (Cuba, 

North Korea, Myanmar/Burma), and even some war-torn regions (Afghanistan, Syria, Iraq, and 

Ukraine). Government control of Internet access is often an issue. For example, I've got fewer views 

from Cuba that from many other Spanish-speaking countries with smaller populations, such as Bolivia, 

Dominican Republic, Costa Rica, Puerto Rico, Panama, and Uruguay, even though Cuba has many 

active scientists, especially in the medical and pharmaceutical fields. 
 

The first Web version went up in 1996, but I didn't start keeping track of page views until 2008; since 

then there have been over 2 million page views. The distribution of page view counts among countries 

is very long-tailed, with one-third of the views coming from the USA (except during major US 

holidays), half of the views coming from only 5 countries (USA, India, Germany, United Kingdom, and 

China) and 99% of the views coming from only 39 countries. Among the countries that have a 

relatively large number of page views relative to their populations are the USA, Germany, UK, Canada, 

Australia, Netherlands, Switzerland, Singapore, Israel, Belgium, Taiwan, South Korea, and Scandinavia. 

(Another web site of mine on a related subject, Interactive Computer Models for Analytical Chemistry 

Instruction, had got an additional 820,000 views at last count in 2017). 
 

The Internet Service Providers with the largest number of views are Comcast, Verizon FIOS, Time 

Warner, Cloudflare, At&t U-verse, Deutsche Telekom (Germany), BSNL (India), and Cox 

Communication. Most views worldwide come from Windows machines, about 20% from Linux and 

Macintosh, and 10% from mobile devices. I have made efforts to make my pages more usable from 

mobile devices like smartphones. 
 

About one-quarter of the views come directly from educational institution ISPs that have "School", 

"Ecole", "College", "Hochschule", "Univ...", "Academic", or "Institute of Technology" in their names. 

(The number of educational users is certainly larger than that because some users are no doubt 

accessing from other ISPs in homes or businesses). An analysis of 200,000 views in 2015 showed that 

the biggest educational users have been the University of California System (UCLA, Berkley, etc.), 

Indian Institute Of Technology system, the University of Texas system, Massachusetts Institute Of 

Technology, the University of Michigan, the University of Maryland (my home institution), Delft 

University of Technology (Netherlands), Stanford University, China Education And Research Network 

Center, the University Of Wisconsin System, and the University of Illinois. 
 

Many of the large national laboratories are users, including Bell Canada, Oak Ridge, Pacific Northwest, 

Lawrence Livermore, Sandia, Brookhaven, National Renewable Energy Laboratory, SLAC, Fermilab, 

http://terpconnect.umd.edu/~toh/spectrum/
http://statcounter.com/
https://terpconnect.umd.edu/~toh/spectrum/DayAfterThanksgiving.png
https://terpconnect.umd.edu/~toh/spectrum/DayAfterThanksgiving.png
https://terpconnect.umd.edu/~toh/models/
https://terpconnect.umd.edu/~toh/models/


Page | 354  

Lawrence Berkeley, NRC Canada, CERN, NIST, NASA, JPL, and NIH. 
 

The most popular pages on the site at the time of this study were Peak Finding and Measurement, 

Smoothing, Integration, Deconvolution,  InteractivePeakFitter, and Signal Processing Tools. About 50% 

of the page views originate from search engines (80% of those using Google). The most common 

search keywords used are: "peak area", "convolution", "deconvolution", "peak detection", "signal 

processing pdf", "findpeaks matlab", "Fourier filter", and "smoothing". About 40% of the traffic comes 

from direct links (bookmarks or typed URLs) and about 10% comes from referring websites, usually 

from Wikipedia or from MathWorks. Unfortunately, page loads and search terms have become almost 

completely encrypted in recent years, so I can no longer tell which pages are being viewed and what is 

being downloaded. (Interestingly, that is not the case with Interactive Computer Models for Analytical 

Chemistry Instruction, which has only 75% encryption). 
 

There were over 100,000 downloads of my software and documentation files, averaging several 

hundred file downloads per month, from both my web site and from my files on the Matlab File 

Exchange. The most commonly downloaded files are IntroToSignalProcessing.pdf, PeakFinder.zip, 

ipf12, CurveFitter....xlsx, iSignal, ipeak, PeakDetection.xlsx, and the complete site 

archive SPECTRUM.zip.  
  

What factors influence the number of page views from different countries?  The tools of data 

analysis, specifically regression (for example, using LINEST), can help answer this question. 

Obviously, one would expect that a country's population would be a factor, but it turns out that the 

correlation between page view and population is very poor, with a coefficient of determination 

(correlation coefficient or R2 value) of only 0.36 (n=163 countries; over 160,000 total page loads over 

the period from 2008 to 2017; graphic on next page). Note that because of the very large range of 

population sizes, I did a log-log correlation (page 449) to prevent the results from being totally 

dominated by the top few countries. 
 

I also investigated the effect of other factors that might be more specific to the language and subject 

matter of my particular site, including  

• the number of English speakers in each country,  

• the number of Internet users in each country, 

• the number of universities in each country, and  

• the total research and development budget of each country. 

All that information is freely available on the internet for most (but not all) of the countries (graphic 

link). By a good margin, the most influential factor was the research and development budget, for 

which the R2 value was 0.76. This is perhaps not surprising given that my site concerns a very narrow 

and specialized topic: the technical aspects of computerized scientific data processing. 
 

A log-log multilinear regression on all 5 of these factors together yielded an R2 value of 0.84 (n=53 

countries for which all 5 factors were reported), which is a modest improvement over the research and 

development budget alone. (Since these calculations were made in 2017, page views from China have 

risen substantially and are now typically second to those from the USA). 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
http://www.google.com/search?sa=t&rct=j&q=remove%20spikes%20matlab%20signal&source=web&cd=9&ved=0CGcQFjAI&url=http%3A%2F%2Fterpconnect.umd.edu%2F%7Etoh%2Fspectrum%2FSignalProcessingTools.html&ei=rZX7U6W0Dsi1iwLklIC4Bw&usg=AFQjCNFW1HUmFU01YPaIg3NKmrG_j38Edg&sig2=RDcF9fWYL4nZPDfpHcdgKQ&bvm=bv.73612305,d.cGE
https://en.wikipedia.org/w/index.php?search=%22O%27Haver%2C+T.%22&title=Special%3ASearch&fulltext=1
http://www.mathworks.com/matlabcentral/profile/authors/870532-tom-o-haver
https://terpconnect.umd.edu/~toh/models/
https://terpconnect.umd.edu/~toh/models/
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576&sort=downloads_desc
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576&sort=downloads_desc
http://firasaboulatif.free.fr/index_files/gaidaa%20book/Noise%20signal%20processing/IntroToSignalProcessing.pdf
https://terpconnect.umd.edu/~toh/spectrum/PeakFinder.zip
https://terpconnect.umd.edu/~toh/spectrum/CurveFitterStart4x100.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SPECTRUM.zip
https://terpconnect.umd.edu/~toh/spectrum/LogHitsVSLogPopulation.png
https://terpconnect.umd.edu/~toh/spectrum/SeparateFactorRegressions.png
https://terpconnect.umd.edu/~toh/spectrum/SeparateFactorRegressions.png


Page | 355  

For an Excel spreadsheet with all these data and calculations (between 2008 and 2015), see 

FinalCountriesSummary.xlsx

 

What fields of study are represented?  The users of my site include students, instructors, workers, 

and researchers in industry, environmental, medical, engineering, earth science, space, military, 

financial, agriculture, communications, and even music and linguistics. This conclusion is based 

on emails I have received, on the titles of journal articles that have cited my work, and on the ISPs of 

major web visitors. Judging from the ratio of downloads to emails, most people who have downloaded 

https://terpconnect.umd.edu/~toh/spectrum/FinalCountriesSummary.xlsx
https://terpconnect.umd.edu/~toh/spectrum/FinalCountriesSummary.xlsx
https://terpconnect.umd.edu/~toh/spectrum/papers.pdf


Page | 356  

my software do not write to me about what they are doing, which of course is completely 

understandable. Also, of the people who do write to me, most do not tell me specifically what their 

applications are, which is their prerogative. As a result, those sources give me incomplete information 

about the application areas where my programs are being applied.  A much better indication of the 

width of applications can be got by looking at the titles of the over 750 published papers and 

patents that have cited my web pages and book (page 501). 

The Law of Large Numbers 

The Law of Large Numbers is a theorem that describes large collections of numbers or observations 

that are subject to independent and identically distributed random variation, such as the result of 

performing the same experiment or measurement many times. The average of the results obtained from 

many trials should be close to the long-term value (called the “population average”) and will tend to 

become closer as more trials are performed. It is an important idea because it guarantees stable long-

term results for the averages of some random events. This is the reason gambling casinos can make so 

much money; their games are designed to give the casino a significant advantage in the long run but 

highly variable results in the short term, guaranteeing plenty of (noisy) winners that tend to encourage 

the gamblers, as well as enough (quiet) losers so that the casino can make money. And that’s why 

investors in the stock market make money in the long run, despite the unpredictable day-to-day 

variation, up one day and down the next. It’s also why it is so hard to see climate change in the much 

wilder short-term hot and cold day-to-day and year-to-year swings in the weather. 

But the idea that “the average will 

tend to become closer as more trials 

are performed” does not mean that 

the average becomes steadily and 

irreversibly closer. In fact, the 

average can wander around quite a bit 

as more data are included. Take the 

example on the left, which shows the 

running average of a set of normally-

distributed independent random 

numbers whose population average is 

1.000 and whose standard deviation is 

1.000, as more and more numbers 

from that population are averaged, up 

to 1000. (This is generated by the 

simple Matlab script RunningAverage.m). Note that the average wanders around, reaching and crossing 

over the true population average (1.000) twice in this case before ending up near 1.0 after 1000 points 

are accumulated. But if you ran this script again, the final average may not be so close to 1.0. In fact, 

the predicted standard deviation of the average of all 1000 random numbers is reduced by a factor of 

1/sqrt(1000), which is about 0.031, or 3% relative, meaning that most results will only fall within plus 

or minus 6% of the true average, that is, from 0.94 to 1.06. 

https://terpconnect.umd.edu/~toh/spectrum/papers.pdf
https://terpconnect.umd.edu/~toh/spectrum/papers.pdf
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://terpconnect.umd.edu/~toh/spectrum/RunningAverage.m
https://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_coverage
https://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_coverage


Page | 357  

The uncertainty of uncertainty.  The situation is even more variable if you wish to estimate the 

standard deviation of a population from small samples. The graphic on the left shows the Matlab script 

RunningStandardDeviation.m. 

which simulates this for the 

same population in the 

previous example. The sample 

standard deviation wanders 

around alarmingly for small 

samples and only settles down 

slowly. Even worse, the 

standard deviation for very 

small samples is biased down, 

often returning values far 

lower than usual. (For example, 

the calculated standard 

deviation of two data points 

drawn from a normal 

distribution is almost always lower that the true population standard deviation). 

There is a well-documented tendency for people to overestimate the quality of small numbers of 

measurements, sometimes referred to as hasty generalization, or insensitivity to sample size, or the 

gambler’s fallacy. This is related to the field of study of a famous pair of psychologists named Amos 

Tversky and Daniel Kahneman, who collaborated in a long-running study of human cognitive biases in 

the 1970s. They formulated a hypothesis that people erroneously tend to believe in a false “Law of 

Small Numbers”, the name they coined for the mistaken belief that a small sample drawn from a large 

population is representative of that large population. We would like to believe that scientists are 

immune to these foibles and that they always think logically and correctly. But scientists are only 

human, so it pays to be aware of this tendency, particularly when a small sample of data supports your 

favorite hypothesis. It is tempting to stop there, “while you’re ahead”. This is called "confirmation 

bias". Avoid it like the plague.  

Of course, in many practical experimental measurements, you may really be constrained to a small 

number of repeated measurements. There may be a fixed number of data points and no possibility of 

gathering more. Or the cost, in money or in time, of gathering more data may be excessive. For 

example, the process of calibrating an analytical instrument for quantitative measurement (page 332) 

may involve the preparation and measurement of several standard samples or solutions of known 

composition. If the calibration curve (the relationship between instrument reading and sample 

composition) is non-linear, it takes several different standards to define the curve, the more the better. 

But you have to consider not only cost of preparing many standards but also the cost of cleaning up and 

safely storing or disposing of the (potentially hazardous) chemicals afterwards. In other words, you 

may have to accept a smaller number of standards that would be ideal. The bottom line is, if you are 

limited to a small number of data points, do not over-estimate the quality of your results. To determine 

uncertainty ranges for a set of data using the 3-sigma rule (page 32), the distribution must be normal 

(Gaussian) and you need to know the standard deviation. For small sets of data, both are uncertain. 

https://terpconnect.umd.edu/~toh/spectrum/RunningStandardDeviation.m
https://terpconnect.umd.edu/~toh/spectrum/RunningStandardDeviation30.png
https://en.wikipedia.org/wiki/Faulty_generalization#Hasty_generalization
https://en.wikipedia.org/wiki/Insensitivity_to_sample_size
https://en.wikipedia.org/wiki/Gambler%27s_fallacy
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7B46DE594D5AE4C4F4D7927875FCB9AC?doi=10.1.1.592.3838&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7B46DE594D5AE4C4F4D7927875FCB9AC?doi=10.1.1.592.3838&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Confirmation_bias
https://en.wikipedia.org/wiki/Confirmation_bias
https://en.wikipedia.org/wiki/Normal_distribution#Standard_deviation_and_coverage


Page | 358  

Spectroscopy and chromatography combined: time-resolved 

Classical Least-squares 

The introduction of high-speed UV-Visible array detectors into high-performance liquid chromatog-

raphy (HPLC) instruments has significantly increased the power of that method. The speed of such de-

tectors allows them to acquire a complete UV-Visible spectrum multiple times per second over the en-

tire chromatogram. In this section, I will use the data in a published technical report from Shimadazu 

Scientific Instruments (https://solutions.shimadzu.co.jp/an/n/en/hplc/jpl217011.pdf) which describes 

the separation of three positional isomers of methyl acetophenone: o-methyl (o-MAP), m-methyl (m-

MAP), and p-methyl (p-MAP) by liquid chromatography with a diode-array UV detector. The ultravio-

let absorption spectra of each of these three isomers at a concentration of 400 μg/mL is shown below 

on the left; they are distinct but highly overlapping. The chromatographic separation, using the column 

and conditions specified in their report, is shown in the middle; the peaks are only partly resolved. The 

Shimadazu report describes their proprietary commercial software, which uses a complex iterative ap-

proach to extract the spectra and chromatographic characteristics from the raw data. 

 

Here I present a simpler non-iterative calculation technique based on the same chemical system, in 

which we consider each spectrum acquired by the detector as a separate sample mixture and apply 

the Classic Least-squares method previously introduced (page 184), in which the spectra of the 

components are known beforehand and where adherence to the Beer-Lambert Law is expected. The 

spectra and chromatographic peaks are simulated digitally in the Matlab/Octave script 

TimeResolvedCLS.m, shown in the figure below, by modeling the spectrum of each component  as the 

sum of three Gaussian peaks and the chromatographic peaks as exponentially modified Gaussians. This 

https://www.hitachi-hightech.com/global/products/science/tech/ana/lc/basic/course7.html
https://en.wikipedia.org/wiki/High-performance_liquid_chromatography
https://en.wikipedia.org/wiki/High-performance_liquid_chromatography
https://solutions.shimadzu.co.jp/an/n/en/hplc/jpl217011.pdf
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS.m


Page | 359  

is a “data-based simulation”: the parameters were carefully adjusted to match the graphics in the 

technical report as closely as possible, to make this simulation as realistic as possible. The other 

parameters, such as the spectral resolution, sampling rate, and detector noise (2 milli-absorbance units, 

mAU), were also based on that report. Note that the chromatographic peaks (middle figure) are not 

baseline resolved. Therefore, it is to be expected that quantitative calibration based on the measurement 

of peak areas in this chromatogram (for example by the perpendicular drop method, page 143, might be 

inaccurate, especially if the peak heights are very different. In fact, in this case, even though the 

concentrations of the three components are much lower (0.05 μg/mL for each), the peak areas measured 

by perpendicular drop are fairly accurate, differing only about 2% from the true values, mainly due to 

the slight asymmetry and nearly equal height of the three peaks. The spectra (left-hand figure) are even 

more highly overlapped than the chromatographic peaks, but they are distinct in shape, and that is the 

key.  
 

Basically, we treat this as a series of 3-component CLS calculations, one for each time slice of the 

detector. The actual calculations can be done in two ways, depending on whether the spectra are 

processed one by one ("Alternative calculation #1", lines 113-146) or are collected for the entire 

chromatogram and then processed all at once ("Alternative calculation #2", lines 150-170). The first 

method looks like chromatography as the script executes; it computes the chromatographic peaks of the 

three components point by point as they evolve in time and plots them in the first three quadrants of 

figure window 3 (on the right). The second method calculates the entire chromatogram in one step at 

the end and makes the same final plots. (The second method is faster computationally, but that is not 

significant because it is the chromatography that is the rate-determining step, not the calculations). 

Either way, the result is the same; the chromatographic peaks of the three components are completely 

separated mathematically, so their areas are easily measured, no matter how much they overlap 

chromatographically. Note that, although the three spectra must be known, no knowledge of the 

chromatography peaks is required; they emerge separate and intact from the data, computationally. 
 

Stress test. The advantage of a data-based simulation like this is that I can test how the method might 

work in more challenging applications by modifying the signal simulation parameters. To test the 

abilities and limitations of this method, I prepared a series of increasingly challenging scenarios, 

starting with the original experimental system pictured above and then making it progressively more 

difficult by changing the parameters of the simulation. Six scenarios are listed in the table below, along 

with the typical percent errors in peak area measurement by the CLS method and with links to the 

corresponding graphic and to the Matlab/Octave m-files. Each is a more challenging variation on the 

original methyl acetophenone analysis; #2 has much more chromatographic peak overlap; #3 has more 

asymmetrical peaks (much higher tau); #4 has much more similar spectra - in fact, the peak 

wavelengths differ by only 0.1 nm, making them look identical; in #5, component 2 (the middle peak) 

has a concentration 100 times lower; and #6 is the same as #5 except that the peaks are highly 

asymmetrical. In all these cases, the normal perpendicular drop area measurement technique is either 

impossible (because there are no distinct peaks for each component) or is very much in error, but the 

CLS technique works well, giving very low errors, except when the middle peak concentration is 

0.0001 ug/mL, which approaches the random noise limit of the detector, 2 mAU. (Another variation, in 

the script TimeResolvedCLSbaseline.m, includes continuous correction for baseline drift by adding a 

https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLSbackground.m


Page | 360  

4th flat spectral component to account for the possibility of bubbles or turbidity in the light path of 

optical detectors). 

Peak 

resolution 

Spectral 

similarity 

Peak 

asymmetry 

Concentration 

ug/mL 

Typical percent errors in 

area measurement 

Links 

1. Normal Normal Slight: tau=10  .05   .05   .05  .002%  .002%    .0016% Graph    mfile 

2. Unresolved Normal Slight: tau=10  .01   .01   .01   -.06%   -.053%   -.041% Graph    mfile 

3. Blended Normal Great: tau=40 .05   .05   .05  -.0004%  -.013%   -.066% Graph    mfile 

4. Unresolved Very close Slight: tau=10  .01   .01   .01  .054%   .049%  .04% Graph    mfile 

5. Unresolved Very close Slight: tau=10  .01  .0001  .01  0.026%   2.4%  0.019% Graph    mfile 

6. Unresolved Very close Great: tau=40  .01  .0001  .01  -0.04%   -3.8%    -0.03% Graph    mfile 

Even when the peaks are sufficiently resolved for the perpendicular drop method to work, it can suffer 

from an interaction between adjacent peak heights; that is, a change in the peak height of one peak can 

affect the measurement of the area of adjacent overlapped peaks, because of shifts in the valley point 

between them. This is illustrated by TimeResolvedCLScalibration.m, which simulates the calibration 

curves (concentration vs peak area) for a three-component mixture similar to the above but modified so 

there is always a valley between the peaks, and then allows the three components to vary independently 

and randomly over a 2 x 10-4 to 9 x 10-4 μg/mL range. (Each time you run this you will get a different 

mix of concentrations). A typical set of calibration curves are shown below. In this case, the average 

absolute percentage error in area measurement is about 5% for the perpendicular drop method, with an 

R2 of 0.995, but it is less than 1% for the CLS measurement, with an R2 of 0.9995, a big improvement. 

 
The CLS method is clearly very effective, but this really proves only that the mathematics works well; 

the method still requires that the spectra of all the components be known accurately. This requirement 

https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS1.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS1.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS5.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS5.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS2.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS2.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS4.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS4.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS6.png
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLS6.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCLScalibration.m
https://terpconnect.umd.edu/~toh/spectrum/TimeResolvedCalibrationCurves.png


Page | 361  

can be met in some applications, but in liquid chromatography there is a potential pitfall. If gradient 

elution and/or temperature programming are used and if the spectra of those chemical compounds are 

sensitive to the solvent and/or to temperature, possibly shifting their peaks slightly, then there will like-

ly be additional errors in the CLS procedure. Obviously, this depends on the chemical system and will 

have to be evaluated on a case-by-case basis.  

In other applications, some or all the components may simply be unknown, and you may want to obtain 

their spectra. This can be done in situ if the peak separation is at least as good as that depicted on page 

358, because at each peak maximum there is virtually no contribution from adjacent peaks. 
 

But this suggests another interesting use for this method. If you have a chromatographic method that 

achieves baseline separation, you could use that to obtain accurate spectra of each in situ. Then you 

could modify the conditions to achieve a faster chromatogram, for example by using another column 

length and/or flow rate. Even if doing that results in incompletely resolved chromatograms, you could 

apply this CLS method to achieve accurate results in a much shorter time for multiple samples.  

But what if the peaks are even more overlapped, so that pure component spectra are never achieved? In 

that case, more sophisticated methods must be used, such as the one described in the Shimadzu 

technical report. This involves making initial estimates of spectral and chromatographic peaks, 

followed by an iterative search for the best fit to the experimental data, subject to the imposition of 

some important known prior constraints, such as non-negativity of spectra and of the chromatography 

peaks (those peaks are always positive, except for random noise on the baseline), and the unimodality 

of the chromatography peaks (that is, each component gives one and only one chromatography peak). 

Methods of this type are much more sophisticated and will be left to a future expansion of this book. 

The mystery peak challenge 

The objective of this exercise is to learn as much as we can about the underlying properties of a digit-

ized signal using the signal processing tools in this book and, if possible, to obtain a mathematical de-

scription of the signal (script). At first glance, the signal (MysteryPeak.mat) appears to be a single, 

asymmetrical peak with a maximum at x=55.5. The signal-to-noise ratio seems to be very good - 

there’s little visible noise unless you look very closely - and the signal begins and ends near zero, so 

baseline correction is likely not an issue. The bad news is that we do not know anything else. This 

might be a peak shape that is not describable mathematically. Or the asymmetry might be due to some 

asymmetrical process applied to an originally symmetrical peak shape, or it could be a group of closely 

spaced overlapping peaks, which is suggested by the faint bumps in the shape. Some quick preliminary 

curve fitting can be done using peakfit.m (page 392):  

[FitResults,GOF]=peakfit([x y],0,0,2,1) for a two-Gaussian model (shape 1) 

[FitResults,GOF]=peakfit([x y],0,0,1,3)  for a single Logistic model (shape 3) 

[FitResults,GOF]=peakfit([x y],0,0,4,39,1) for a 4 exponentially-broadened Gaussian model (shape 39) 

https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Unimodality
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/MysteryPeak.mat
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m


Page | 362  

You could also use the interactive peak fitter ipf.m (page 412) for this purpose, so you can quickly 

change the model shape, number of peaks, starting guesses, data region to be fitted, etc., with single 

keystrokes and mouse clicks. Either way, the three initial fits in the figures above show that the signal 

contains a small amount of random noise, which appears to be white (so the signal has probably not 

been smoothed, which is fortunate) and which has a relative standard deviation of about 0.2%, based on 

1/5th of the visual peak-to-peak value (page 23). But unfortunately, these fits are not successful because 

their fitting errors (0.5 to 0.8%) are all significantly larger than the 0.2% random noise! Trying 

different shapes and greater numbers of 

peaks does not help either, as it results in 

either higher fitting errors, unstable fits, or 

zero peak heights; there is just too much 

overlap for easy curve fitting (page 221). 

Another approach to the problem of 

asymmetrical peaks is to use the technique 

of first-derivative symmetrization de-

scribed on page 80. This applies specifi-

cally to exponential broadening, a com-

mon peak broadening mechanism. The 

idea is that if you compute the first deriva-

tive of an exponentially broadened peak, 

multiply it by a weighting factor equal to the time constant tau of the exponential, and add it to the 

original broadened signal, the result will be the original peak before broadening, which makes the peak 

overlap less severe. This works for any original 

peak shape. In this case we don’t know tau be-

forehand, but we can try different values until 

the baseline after the peak is as low as possible 

but not negative, as shown in this GIF anima-

tion. This is easily done by using the symme-

trize.m function, or interactively in iSignal, 

which has smoothing (S key), derivatives (D), 

symmetrization (Shift-Y), and curve fitting 

(Shift-F). The derivative of y with respect to x, 

by the “derivxy.m” function, shown by the 

green line in the figure above, is quite noisy. As 

usual, we must smooth the derivatives of noisy 

https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaksFigure4.png
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://www.researchgate.net/publication/333237821_Reconstruction_of_exponentially_modified_functions
https://www.researchgate.net/publication/333237821_Reconstruction_of_exponentially_modified_functions
https://terpconnect.umd.edu/~toh/spectrum/SymmetricalizationAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/SymmetricalizationAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m


Page | 363  

signals to make them useful, but we must not 

over-smooth and distort the signals. As a rule 

of thumb, a smooth width equal to 1/10th of 

the number of data points in the halfwidth 

does not distort the signal visibly, as shown 

on page 58. Our peak has about 530 points, 

measured by halfwidth(1:length(y),y), 

so a smooth width near 53 will not distort the 

signal peak, but it does eliminate most of the 

noise from the derivative (previous page 

right). Also, we can see that the derivative, in 

y/x units, is comparable in numerical magni-

tude to the original signal, so the time con-

stant tau (in x units) is probably somewhere near 1.0. Next, we add the product of the first derivative 

and tau to the original signal, looking at the trailing edge as we try six different tau values near 1.0. The 

graph above left shows that the optimum value is about 1.25.  When this is applied to the entire signal, 

the result, shown on the right, has more distinct bumps. When that modified signal is used for curve 

fitting, we find that a 3-Gaussian model works quite well, with a fitting error of only 0.25%, close to 

the noise. This is evidence that the signal consists of three closely spaced exponentially modified 

Gaussians (EMG). Normally there is no independent way to check the accuracy of the peak parameters 

so measured, but - full disclosure - the signal in the case was not actually unknown but rather was gen-

erated by the script MysteryPeaks.m; it does in fact consist of three EMGs, with peak maxima at x=53, 

55, and 57.5, each with a time constant of 1.3, and all with peak areas of 1.0. The curve-fit results after 

symmetrization are within 0.1% for the peak positions and within 2% of the peak areas. In contrast, di-

rect fitting of exponential Gaussians to the original data, using the tau we just determined, looks good 

(graphic) but gives less accurate peak parameters (and takes three times longer to compute).  

Developing Matlab Live Scripts and Apps 

The usual way of developing programs in Matlab is to write scripts or functions (see page 35), devel-

oped and used in a screen environment similar that I have shown before. In these environments, you 

can change the values of parameters by typing them into the editor window or the command line. If 

there are many parameters and selections to explore, the cycle of editing and re-running can be slow 

and cumbersome, For example, the script “DenomAdditionDemo.m” has nine adjustable interacting 

variables. Its purpose is to demonstrate the Fourier deconvolution (page 110) of a pair overlapping 

peaks, with the aim of increasing the resolution of the peaks. The sequence of computations is (1) cre-

ate the simulated signal with two peaks and random noise, (2) create a zero-centered convolution func-

tion of the same shape and with variable width, (3) divide the Fourier transform of the simulated signal 

by the modified Fourier transform of a calculated convolution function of the same shape, (4) add a 

constant to the numerator of that division to reduce noise spikes (page 119), (5) compute the inverse 

transform that result, and (6) apply low-pass filtering to reduce noise. To explore the ability of this 

method, several factors can be adjusted: the shape, width, sampling interval, and separation of the two 

peaks, the noise amplitude, the width of the deconvolution function, the denominator addition, and the 

https://terpconnect.umd.edu/~toh/spectrum/MysteryPeak.m
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaksFigure7.png
https://terpconnect.umd.edu/~toh/spectrum/Matlab.gif
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.m


Page | 364  

filter cutoff frequency. To do this, you would have to edit the script, save it, and re-run it, potentially 

many times. In this appendix, we will develop two different alternative ways to code this deconvolution 

demo with a more modern graphical user interface (GUI) that uses sliders, drop-down menus, check 

boxes, etc., to control the adjustable variables, rather than editing the script itself. 
 

Matlab Live Scripts. A very easy alternative is to use Live Scripts (available starting in MATLAB 

R2016b). Live Scripts are documents that combine code, output, interactive controllers, and formatted 

text in a single environment. To convert the plain script DenomAdditionDemo.m into a Live Script, 

click Editor, Save as, Save as type > Live Code files (.mlx). To add controllers for the assignment 

statements, (e.g. delta=0.64), select the numeric value (0.64), click Control, and select an appropriate 

control, for example a numeric slider or spinner for continuous variables. Then in the pop-up box, type 

in the min, max, and step values for that control. The editor adds a numeric slider like this:  

You can also use a drop-down menu for discrete selections, 

such as peak shape menu in this example. PeakShape= 
 

  
 

Shown above is a Live Script demonstration of self-deconvolution, computationally equivalent to the 

“DenomAdditionDemo.m” script. It has sliders for each of the adjustable variables, which allows those 

variables to be changed simply by sliding the pointers. Each slider has a numerical range that you can 

set to be in a “reasonable range” for that variable. In addition, the app has a pull-down menu to choose 

https://www.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DenomAdditionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DenomAddDemoLiveScript.png


Page | 365  

the peak shape (Gaussian, Lorentzian, etc.) and checkboxes for optional computation of frequency 

spectrum and of the peak area measurement accuracy. When any of these controls is changed, the app 

recalculates and updates the plots continuously as the slider pointer is moved. (Right-click on the right-

hand panel and select “Disable synchronous scrolling”). If screen space is at a premium, you can hide 

the code from view by clicking on the View tab and clicking “Hide Code”. For other details, see this 

page, or these examples. There is also a version for applying the method to experimental data stored on 

disk in .xlsx or .csv format, called DeconvoluteData.mlx (screen image). Just type in the name of your 

data file in the like that starts with "mydata=" near the top of the script.  The script assumes that your 

x,y data are in the first two columns. 
 

The table below compares several keypress-operated interactive functions covered previously to Live 

Scripts that do essentially the same operations. Live scrips are easy to make and to use, but they are 

slower in response to changes in settings. The keypress-operated functions are designed to respond vir-

tually instantly in response to a keypress and they can be operated in full-screen mode (double-click the 

title bar), but they do require that you know the keys. In practice, though, you will quickly memorize 

the keys that you use the most and you will begin to appreciate the speed of this mode of operation. 

Table of keypress-operated interactive functions and corresponding Live Scripts 

Operation Interactive functions Live Scripts 

Data smoothing iSignal: isignal.m, page 371 DataSmoothing.mlx, page 58 

Differentiation iSignal: isignal.m, page 371 DataDifferentiation.mlx, page 76 

Self-deconvolution iSignal: isignal.m, page 371 DeconvoluteData.mlx, page 123 

Peak detection iPeak: ipeak.m, page 250 PeakDetection.mlx, page 248 

Peak fitting Interactive peak fitter: ipf.m, page 412 PeakFittingTool.mlx, page 435 

Fourier filtering iFilter: ifilter.m, page 386 FourierFilterTool.mlx, page 391 

 

Matlab Apps. There is another development path that results in programs with a more contemporary 

and polished graphical user interface (GUI). This is ideal for deployment to users who do not need to 

have access to the underlying code, to prevent accidental editing or deletion of portions of the script. 

These are called Matlab “apps”. There are examples of them in the toolboxes that may be included in 

your version of Matlab (or can be optionally purchased from Matlab); type “ver” at the command line 

to see which ones are included in 

yours. The process of development 

of such apps is more complex than 

coding the mathematically equiva-

lent Live Script or function. But 

fortunately, Matlab has a built-in 

drag-and-drop development envi-

ronment to build user interfaces; 

just click on the APPS button at the top left. This brings up several app-related buttons as well as a list 

of apps already installed.  

https://www.mathworks.com/help/matlab/matlab_prog/add-interactive-controls-to-a-live-script.html
https://www.mathworks.com/help/matlab/matlab_prog/add-interactive-controls-to-a-live-script.html
https://www.mathworks.com/help/matlab/examples.html?category=live-scripts-and-functions&s_tid=CRUX_topnav
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteData.mlx
https://terpconnect.umd.edu/~toh/spectrum/HepteneTestData.png
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/DataSmoothing.mlx
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/DataDifferentiation.mlx
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteData.mlx
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.mlx
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFittingTool.mlx
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://terpconnect.umd.edu/~toh/spectrum/FourierFilterTool.mlx


Page | 366  

Clicking the Design App button, 

or typing “appdesigner” at the 

command prompt, brings up the 

App Designer screen, which has 

two main modes, selected by but-

tons on the right: the Design View 

and the Code View. In the Design 

View, you build your user interface 

- the “look” of your app - which 

might include menus, buttons, 

sliders, spinners, tables, graphs, 

etc., that you select from a large 

list of components (shown on the 

left), dragging and dropping the 

ones your need onto the blank lay-

out on the right, and arranging 

them as you wish. What happens 

when you operate the control depends on the purpose of  your app, and so naturally you must provide 

that code, which is called a “callback function”. All this code is shown when you click the “Code View” 

button, both the code that is automatically generated when you add components to your design (shown 

with a grey background), which you cannot modify directly, and the code that you can type in to per-

form the desired calculations (shown with a white background).  
 

The example shown on the right, described in  

“Create and Run a Simple App Using App Designer”, 

displays a waveform whose amplitude you can inter-

actively control with a slider. You can learn a lot by 

studying simple examples like this. There are many 

such examples that are built into App Designer. When 

you click “New” in the Designer mode, you’ll get a 

display (shown below) of several examples that are 

already constructed.  
 

Rather than detail all the required steps here, I will 

defer to the many excellent tutorials and YouTube 

videos already available. For example, there is a vid-

eo tutorial titled “Getting Started and Hello World app” 

at https://www.youtube.com/watch?v=iga-YS6VbyE.  
 

 

https://www.mathworks.com/help/matlab/creating_guis/create-a-simple-app-or-gui-using-app-designer.html
https://www.youtube.com/watch?v=iga-YS6VbyE


Page | 367  

  
 

The disadvantage of apps is that they are more complex for the programmer. In fact, the amount of 

code and of coding time and effort that goes into the user interface design and interactivity usually far 

exceeds the code that is required for the actual mathematical computations. Creating an equivalent Live 

Script is much easier. 
 

You must add the specific programming for the mathematical calculations, as in a regular script, which 

you type into the white space in the Code View, and you can call any functions that you are previously 

written and have saved in the Matlab path. You can also package any Matlab app you create into a sin-

gle file, including any functions that you have called, so it can be easily shared with others.  
 

Shown on the next page  is a Matlab app version of the self-deconvolution demo. You can download 

the installer from Self-decovolution demo.mlappinstall. 
 

https://www.mathworks.com/help/matlab/creating_guis/app-creation.html
https://terpconnect.umd.edu/~toh/spectrum/Self-decovolution%20demo.mlappinstall


Page | 368  

  
 

The coding required to get all this to work is considerably more complex than creating the equivalent 

Live Script shown above, but the app ends up looking like a finished end-user application, and it is eas-

ier and more fool-proof for an inexperienced person to operate.  
 

Octave does not have built-in mobile devel-

opment capabilities at this time. 
 

Python has Jupyter Notebooks which are 

highly flexible, open-source, and which sup-

port multiple languages, making them ideal 

for a broad range of applications, particularly 

in data science and education. They are free 

and accessible to anyone with a Python instal-

lation. The simple example on the left has 

numeric sliders to control the variables in a 

non-linear system of equations.  
 

By means of comparison, Matlab Live Scripts 

are more tailored for professionals in engi-

neering and scientific domains, but they re-

quire a MATLAB license, making them more 

specialized and potentially costly that Python. 
 

There are other packages you can use to cre-

ate mobile applications in Python, like Kivy, 

PyQt, or Beeware's Toga library; these libraries are all major players in the Python mobile space.  

https://jupyter.org/


Page | 369  

Using real-signal modeling to determine measurement accuracy. 

It’s common to use computer-generated signals whose characteristics are known exactly to establish the 

accuracy of a proposed signal processing method, analogous to the use of standard reference materials 

in analytical chemistry (page 332). But the problem with computer-generated signals is that they are 

often too simple or too ideal to be realistic, such as a series of peaks that are all equal in height and 

width, of some idealized shape such as a pure Gaussian, and with idealized added pure white noise. For 

the measurement of the areas of partly overlapping peaks (page 139), such idealized data sets will 

result in overly optimistic estimates of area measurement accuracy. One way to create more realistic 

known signals for a particular application is to use iterative curve fitting (page 195). If you can find a 

model that fits the experimental data with very low fitting error and with random residuals, then the 

peak parameters from that fit can be used to construct a realistic synthetic signal to estimate the 

precision and accuracy of the measurement. The big advantage is that the parameters of synthetic 

signals can be modified at will to explore how a proposed method would work under other 

experimental conditions (e.g., if the peak shape were different, or if the peaks were more overlapped, or 

if the noise or the sampling frequency were higher or lower).  
 

To demonstrate this idea, I downloaded a spectrum from the NIST IR database that contained a set of 

four fused peaks near 3000 cm-1. To 

determine the true peak areas as 

accurately as possible, I iteratively fit 

those peaks with a model consisting of 

four Gaussian-Lorentzian sum (GLS) 

peaks of different widths (41% 

Gaussian was optimum), yielding a 

fitting error of only 0.3%, an R2 of 

0.99988, and unstructured random 

residuals, as shown on the left. The 

best-fit peak parameters and the 

residual noise were then used in a self-

contained script to create a synthetic 

model signal that is essentially identical to the experimental spectrum, except that the model has 

exactly known peak areas. Then, the script attempts to determine whether the simpler and faster 

perpendicular drop method could measure those areas accurately, using second differentiation (page 61) 

to locate the original peak positions, measuring peak area by perpendicular drop (page 137), which by 

itself is not expected to work on such overlapped peaks, and finally repeating the area measurements 

after sharpening the peaks by Fourier self-deconvolution (page 114), using a low-pass Fourier filter to 

control the noise (page 125). 
  

As shown by the first figure on the following page, the self-deconvolution sharpening can in fact 

improve the perpendicular drop area accuracy substantially, from an average error of 29% to only 3.1% 

after deconvolution. But because the peaks have different widths, there is no single optimum 

deconvolution width. Tests show that the best overall results are obtained when the deconvolution 

function shape is the same as in the original signal and when the deconvolution function width is 1.1 

https://terpconnect.umd.edu/~toh/spectrum/Heptene592-77-8-IR.jdx
https://webbook.nist.gov/chemistry/quant-ir/
https://terpconnect.umd.edu/~toh/spectrum/HepteneSelfDeconvolutionSimulation.m
https://terpconnect.umd.edu/~toh/spectrum/HepteneSelfDeconvolutionSimulation.m
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#pdrop


Page | 370  

times the average peak width in the signal.  
 

 
 

Sampling interval (cm-1)= 2 

Change in peak separation (PeakSpread)= 0 

Noise= 5e-05 

GLS Shape (fraction Gaussian)= 0.41 

Deconvolution Width= 23.7 points (1.1 times the mean signal peak width) 

Frequency Cutoff= 20% 
 

 

In the second figure, I did something that you cannot do with real data: I artificially spread out the 

peaks in the model signal, with no other change, just to show more clearly that this choice of 

deconvolution function width causes the third peak to be “over sharpened”, resulting in negative lobes 

for that peak (but recall that deconvolution is done in a way that conserves total peak area; see page 

110). A more conservative approach, using the largest deconvolution width possible without the signal 

ever going negative (about 0.8 times the average peak width in this case) results in only a modest 

improvement in average area accuracy (from 27% to 12%; graphic). So “over sharpening” is not 

always bad. 
 

  
 

Change in peak separation (PeakSpread)= 100 (All other parameters unchanged) 

https://terpconnect.umd.edu/~toh/spectrum/HepteneDeconv3png.png


Page | 371  

Signal processing software details. 
Interactive smoothing, differentiation, and signal analysis (iSignal) 

iSignal (or the Octave version isignaloctave.m) is a single self-contained m-file for performing 

smoothing, differentiation, peak 

sharpening, interpolation, baseline 

subtraction, Fourier frequency 

spectrum, least-squares peak fitting, 

deconvolution, and other useful 

functions on time-series data. Using 

simple keystrokes, you can adjust 

the signal processing parameters 

continuously while observing the 

effect on your signal dynamically. 

Click here to download the ZIP file 

"iSignal8.zip" that also includes 

some sample data for testing. You 

can also download iSignal from 

the Matlab File Exchange. You can 

also run iSignal in a web browser 

(just click on the figure window), even on Matlab Mobile. There is a separate version for Octave. The 

demo script "demoisignal.m" is a self-running demonstration of several features of the program and 

will test for proper installation; the title of each figure describes what is happening. Its basic operation 

of iSignal is similar to iPeak and ipf.m. The syntax is:  pY=isignal(Data); or, to specify all the 

settings in advance: 

[pY,Spectrum,maxy,miny,area,stdev] = isignal(Data, xcenter, xrange, 

SmoothMode, SmoothWidth, ends, DerivativeMode, Sharpen, Sharp1, Sharp2, 

Symize, Symfactor, SlewRate, MedianWidth, SpectrumMode); 
 

"Data" may be a 2-column matrix with the independent variable (x-values) in the first column and 

dependent variable (y values) in the second column, or separate x and y vectors, or a single y-vector (in 

which case the data points are plotted against their index numbers on the x-axis). Only the first 

argument (Data) is required; all the others are optional. iSignal returns the processed dependent axis 

('pY') vector (and, in the Spectrum Mode, the frequency spectrum matrix, 'Spectrum') as the output 

arguments. It plots the data in the Matlab Figure window, the lower half of the window showing the 

entire signal, and the upper half showing a selected portion controlled by the pan and zoom keys (the 

four cursor arrow keys). The initial pan and zoom settings optionally controlled by input arguments 

'xcenter' and 'xrange', respectively. Double-click the figure window title bar to expand to full screen 

for a better view. Other keystrokes allow you to control the smooth type, width, and ends treatment, the 

derivative order (0th through 5th), and peak sharpening. (The initial values of all these parameters can be 

passed to the function via the optional input arguments SmoothMode, SmoothWidth, ends, 

DerivativeMode, Sharpen, Sharp1, Sharp2, SlewRate, and MedianWidth. See the examples below). 

Press K to see all the keyboard commands. Note: Make sure you do not click on the “Show Plot Tools” 

https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
http://www.mathworks.com/matlabcentral/fileexchange/authors/24576
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m
https://terpconnect.umd.edu/~toh/spectrum/demoisignal.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
https://terpconnect.umd.edu/~toh/spectrum/SmoothAnimation.gif


Page | 372  

button in the toolbar above the figure; that will disable normal program functioning. If you do, close 

the Figure window and start again. 
  

Smoothing 

    The S key (or input argument "SmoothMode") cycles through five smoothing modes: 

    If SmoothMode=0, the signal is not smoothed. 

    If SmoothMode=1, rectangular (sliding-average or boxcar)  

    If SmoothMode=2, triangular (2 passes of sliding-average) 

    If SmoothMode=3, p-spline (3 passes of sliding-average) 

    If SmoothMode=4, Savitzky-Golay smooth (thanks to Diederick). 
 

The A and Z keys (or optional input argument SmoothWidth) control the SmoothWidth, w. 

The X key toggles "ends" between 0 and 1. This determines how the "ends" of the signal (the first w/2 

points and the last w/2 points) are handled when smoothing: 
 

    If ends=0, the ends are zero. 

    If ends=1, the ends are smoothed with progressively smaller smooths the closer to the end. 

Generally, ends=1 is best, except in some cases using the derivative mode when ends=0 result in better 

vertical centering of the signal.  
   

To specify a segmented smooth (more on page 329) press Shift-Q. You can specify the smooth width 

vector in two ways: at the prompt you can either (a) enter the number of segments (then you'll be 

prompted to enter the smooth widths in the first and last segments, and the computer will calculate 

integer values of smooth widths that are evenly divided between the specified first and last values), or 

(b) type in the smooth width vector directly including the square brackets, e.g. [1 3 3 9]. In either case, 

subsequently adjusting the smooth width with the A and Z keys will vary all the segments by the same 

percentage factor. (To return to an 

ordinary single segment smooth, enter 1 

as the number of segments). The figure 

on the right shows a 4-segment smooth 

with smooth widths of 1, 2, 4, and 5. 

Note: when you are smoothing peaks, 

you can easily measure the effect of 

smoothing on peak height and width by 

turning on peak measure mode (press P) 

and then press S to cycle through the 

smooth modes. 
 

There are two special functions for 

removing or reducing sharp spikes in 

signals: the M key, which implements a 

median filter (it asks you to enter the 

spike width, e.g., 1,2, 3... points) and 

the ~ key, which limits the maximum 

rate of change. 
 

http://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_smoothing_filter
http://www.mathworks.com/matlabcentral/fileexchange/authors/62607
https://terpconnect.umd.edu/~toh/spectrum/iSignalSegmentSmooth.png


Page | 373  

Differentiation 

The D / Shift-D keys (or optional input argument “DerivativeMode”) increase/ decrease the derivative 

order. The default is 0. Careful optimization of the smoothing of derivatives is critical for an acceptable 

signal-to-noise ratio. An example is shown in the figure on the right. In SmoothModes 1 through 3, the 

derivatives are computed with respect to the independent variable (x-values), corrected for non-uniform 

x-axis intervals. In SmoothMode 4 (Savitzky-Golay) the derivatives are computed by the Savitzky-

Golay algorithm. Click for GIF animation. 
  

Peak sharpening 

The E key (or optional input argument "Sharpen") turns off and on peak sharpening. The sharpening 

strength is controlled by the F and V keys (or optional input argument "Sharp1") and B and G keys (or 

optional argument "Sharp2"). The optimum values depend on the peak shape and width. For peaks of 

Gaussian shape, a reasonable value for Sharp1 is PeakWidth2/25 and for Sharp2 is PeakWidth4/800 

(or PeakWidth2/6 and PeakWidth4/700 for Lorentzian peaks), where PeakWidth is the full width at half 

maximum of the peaks expressed in the 

number of data points. However, you do 

not need to do the math yourself; iSignal 

can calculate sharpening and smoothing 

settings for Gaussian and for Lorentzian 

peak shapes using the Y and U keys 

respectively. Just isolate a single typical 

peak in the upper window using the pan 

and zoom keys, then press Y for Gaussian 

or U for Lorentzian peaks. Fine-tune the 

sharpening with the F/V and G/B keys and 

the smoothing with the A/Z keys. You can 

see this animation if you download the 

Microsoft Word 365 version, otherwise 

click this link. (The optimum settings depend on the width of the peak, so if your signal has peaks of 

widely different widths, one setting will not be optimum for all the peaks and you might consider using 

segmented smoothing as described above or on page 329). You can expect a decrease in peak width 

(and a corresponding increase in peak height) of about 20% - 50%, depending on the shape of the peak 

(the peak area is largely unaffected by sharpening). Excessive sharpening leads to baseline artifacts and 

increased noise. iSignal allows you to experimentally determine the values of these parameters that 

give the best trade-off between sharpening, noise, and baseline artifacts, for your purposes. You can 

easily measure the effect of sharpening quantitatively by turning on peak measure mode (press P) and 

then pressing E to toggle the sharpen mode off and on. Note: only the Savitzky-Golay smooth mode is 

used for peak sharpening. 
 

Interactive convolution and deconvolution 

In iSignal 8.3 you can press Shift-V to display the menu of Fourier convolution and deconvolution 

operations (page 109) that allow you to convolute a Gaussian, Lorentzian, or exponential function with 

the signal, or to deconvolute a Gaussian, Lorentzian, or exponential function from the signal.  

https://terpconnect.umd.edu/~toh/spectrum/DerivAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/iSignalPeakSharpening.gif
https://terpconnect.umd.edu/~toh/spectrum/iSignalPeakSharpening.gif


Page | 374  

Fourier convolution/deconvolution menu  

   1. Convolution  

   2. Deconvolution 

Select mode 1 or 2:  2 

 

Shape of convolution/deconvolution function: 

   1. Gaussian 

   2. Lorentzian 

   3. Exponential 

Select shape 1, 2, or 3:  2 

 

Enter the width in x units:  

Then you enter the time constant (in x units), and press Enter. Then use the 3 and 4 keys to adjust the 

width of the deconvolution function by 10% (or Shift-3 and Shift-4 to adjust by 1%). You may need to 

adjust the smoothing also, if the signal is too noisy, but too much smoothing will broaden the peaks. 

For a real-signal application, see page 123. Note: in cases where the peak widths within a group of 

peaks are substantially different, it may be better to use segmented deconvolution. 

Interactive Symmetrization (or “de-tailing”) of exponentially broadened signals is performed by 

weighted first-derivative addition (page 80). Press the Shift-Y key, type in an estimated weighting 

factor (which is the time constant or tau of the exponential), and press Enter. To adjust, press the "1" 

and "2" keys to change the weighting factor by 10% and "Shift-1" and "Shift-2" keys to change by 1%. 

Increase the factor until the baseline after the peak goes negative, then decrease it slightly so that it is as 

low as possible but not negative. Run the script iSignalSymmTest.m (graphic) for an example signal 

with two overlapping exponentially broadened Gaussians. 
 

Signal measurement 
 

Signal-to-noise ratio (SNR) measurement of a signal with very high SNR. Left: The peak height of the largest signal peak is 

measured by placing the green center cursor on the largest peak; peak-to-peak signal=66,000. Right: The noise is measured 

on a flat portion of the baseline: standard deviation of noise=0.01, therefore the SNR=66,000/.01 = 6,600,000 

The cursor keys control the position of the green cursor (left and right arrow keys) and the distance 

between the dotted red cursors (up and down arrow keys) that mark the selected range displayed in the 

upper graph window. The label under the top graph window shows the value of the signal (y) at the 

green cursor, the peak-to-peak (min and max) signal range, the area under the signal, and the standard 

https://terpconnect.umd.edu/~toh/spectrum/Noise.png
https://terpconnect.umd.edu/~toh/spectrum/MaxSignal.png
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html#segmented
https://terpconnect.umd.edu/~toh/spectrum/iSignalSymmTest.m
https://terpconnect.umd.edu/~toh/spectrum/iSignalSymmDemo.png


Page | 375  

deviation within the selected range (the dotted cursors). Pressing the Q key prints out a table of the 

signal information in the command window. If the optional output arguments maxy, miny, area, stdev 

are specified, iSignal returns the maximum value of y, the minimum value of y, the total area under the 

curve, and the standard deviation of y, in the selected range displayed in the upper panel.  
 

Frequency Spectrum mode  

The Frequency Spectrum mode, toggled on and off by the Shift-S key, computes the Fourier 

frequency spectrum (page 91) of the segment of the signal displayed in the upper window and displays 

it in the lower window (temporarily 

replacing the full-signal display). Use the 

pan and zoom keys to adjust the region of 

the signal to be viewed. Press Shift-A to 

cycle through four plot modes (linear, 

semilog X, semilog Y, or log-log) and press 

Shift-X to toggle between a frequency on 

the x-axis and time on the x-axis. 

Importantly, all signal processing functions 

remain active in the frequency spectrum 

mode (smooth, derivative, etc.) so you can 

immediately observe the effect of these 

functions on the frequency spectrum of the 

signal. (You can see this animation if you 

download the Microsoft Word 365 version, 

otherwise click the figure to open in a Web browser). Press Shift-T to transfer the frequency spectrum 

to the signal in the upper panel, so you can pan and zoom and do other processing and measurements 

on the frequency spectrum. Press Shift-S again to return to the normal mode. Spectrum mode is 

a visible mode, indicated by the label at the top of the figure. To start off in the spectrum mode, set the 

13th input argument, SpectrumMode, to 1. To save the spectrum as a new variable, call iSignal with the 

output arguments [pY,Spectrum]: 
 

>> x=0:.1:60; y=sin(x)+sin(10.*x); 
 

>> [pY,Spectrum]=isignal([x;y],30,30,4,3,1,0,0,1,0,0,0,1); 
 

>> plot(Spectrum(:,1),Spectrum(:,2)) or plotit(Spectrum) 

or isignal(Spectrum); or ipf(Spectrum); or ipeak(Spectrum) 
 

Shift-Z toggles on and off the peak detection and labeling on the frequency/time spectrum; peaks are 

labeled with their frequencies. You can adjust the peak detection parameters in lines 2192-2195 in 

version 5. The Shift-W command displays the 3D waterfall spectrum, by dividing up the signal into 

segments and computing the power spectrum of each segment. This is mostly a novelty, but it may be 

useful for signals whose frequency spectrum varies over the duration of the signal. You are asked to 

choose the number of segments into which to divide the signal (that is, the number of spectra) and the 

type of 3D display (mesh, contour, surface, etc.) 
 

https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
http://en.wikipedia.org/wiki/Waterfall_plot
https://terpconnect.umd.edu/~toh/spectrum/iSignalSpectrumMode.gif


Page | 376  

Background subtraction 

There are two ways to subtract the background from the signal: automatic and manual. To select an 

automatic baseline correction mode, press the T key repeatedly; it cycles through four modes (page 

215): No baseline correction, linear baseline subtraction, quadratic baseline subtraction, flat baseline 

correction, then back to no baseline correction. When baseline mode is linear, a straight-line baseline 

connecting the two ends of the signal segment in the upper panel will be automatically subtracted. 

When the baseline mode is quadratic, a parabolic baseline connecting the two ends of the signal 

segment in the upper panel will be automatically subtracted. The baseline is calculated by computing a 

linear (or quadratic) least-squares fit to the first 1/10th of the points together with the last 1/10th of the 

points. Try to adjust the pan and 

zoom to include enough of the 

baseline at the beginning and end 

of the segment in the upper 

window to ensure that the 

automatic baseline subtract gets a 

good reading of the baseline. The 

flat baseline mode is used only 

for peak fitting (Shift-F key). The 

calculation of the signal amplitude, 

peak-to-peak signal, and peak area 

are all recalculated based on 

the baseline-subtracted signal in 

the upper window. If you are 

measuring peaks superimposed on 

a background, the use of the 

BaselineMode will have a big 

effect on the measured peak height, width, and area, but very little effect on the peak x-axis position. 
 

In addition to the four BaselineMode baseline subtraction modes for peak measurement, a manually 

estimated piecewise linear baseline can be subtracted from the entire signal in one operation. The 

Backspace key starts background correction operation. In the command window, type in the number of 

background points to click and press the Enter key. The cursor changes to crosshairs; click along the 

presumed background in the figure window, starting to the left of the x axis and placing the last click to 

the right of the x axis. When you click the last point, the linearly interpolated baseline between those 

points is subtracted from the signal. To restore the original background (i.e. to start over), press the '\' 

key (just below the backspace key). 
 

Peak and valley measurement 

The P key toggles off and on the "peak parabola" mode, which attempts to measure the one peak (or 

valley) that is centered in the upper window under the green cursor by superimposing a least-squares 

best-fit parabola (page 170) in red, on the center portion of the signal displayed in the upper window. 

(Zoom in so that the red overlays just the top of the peak or the bottom of the valley as closely as 

possible). The peak position, height, and width are measured by least-squares curve fitting of a 

https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#CurveFitting
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#GaussFit
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#GaussFit
https://terpconnect.umd.edu/~toh/spectrum/iSignal55.png


Page | 377  

Gaussian (colored red in the upper panel) to the central part of the selected segment. (Change the pan 

and zoom to modify that region; the readings will change as the segment measured is changed). The 

"RSquared" value is the coefficient of determination; the closer to 1.000 the better. The peak 

parameters will be most accurate if the peaks are Gaussian. Other peak shapes, or very noisy peaks of 

any shape, will give only approximate results. However, the position and height, and area values are 

pretty good for any peak shape if the "RSquared" value is at least 0.99. The "SNR" is the signal-to-

noise-ratio of the peak under the green cursor; it is the ratio of the peak height to the standard deviation 

of the residuals between the data and the best-fit line in red.  
 

An example is shown in the figure on the right. If the peaks are superimposed on a non-zero 

background, subtract the background before measuring peaks, either by using the BaselineMode (T key) 

or the multi-point background subtraction 

(backspace key). Press the R key to print out 

the peak parameters in the command 

window.  
 

Peak width is measured two ways: the 

"Gaussian Width" is the width measured by 

Gaussian curve fitting (over the region 

colored in red in the upper panel) and is 

strictly accurate only for Gaussian peaks. 

Version 5.8 (shown below on the left) 

adds direct measurement of the full width at 

half maximum ('FWHM') of the central 

peak in the upper panel (the peak marked by 

the green vertical line); this works for peaks 

of any shape, but it is computed only for the 

central peak and only if the half-maximum 

points fall within the zoom region displayed 

in the upper panel (otherwise it will return NaN). It will not be highly accurate for very noisy peaks. 

The Gaussian width will be more accurate for noisy or sparsely sampled peaks, but only if the peaks 

are at least approximately Gaussian. In the example on the left, the peaks are Lorentzian, with a true 

with of 3.0, plus added noise. In this case the measured FWHM (3.002) is more accurate than the 

Gaussian width (2.82), especially if a little smoothing is used to reduce the noise. 
 

 

Peak area is also measured two ways: the "Gaussian area" and the "Total area". The "Gaussian area" is 

the area under the Gaussian that is a best fit to the center portion of the signal displayed in the upper 

window, marked in red. The "Total area" is the area by the trapezoidal method over the entire selected 

segment displayed in the upper window. (The percentage of total area is also calculated). If the portion 

of the signal displayed in the upper window is a pure Gaussian with no noise and a zero baseline, then 

the two measures should agree almost exactly. If the peak is not Gaussian in shape, then the total area is 

likely to be more accurate, if the peak is well separated from other peaks. If the peaks are overlapped, 

but have a known shape, then peak fitting (Shift-F) will give more accurate peak areas. In the example 

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakSNR
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#PeakSNR
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/TestSignalAsymmetryTest.gif


Page | 378  

above, the Lorentzian peak at x=10 

has a true area of 4.488, so in this 

case the total area (4.59) is more 

accurate than the Gaussian area 

(3.14), but it is too high because of 

overlap with the peak at x=3. Curve 

fitting both Lorentzians peaks 

together would yield the most 

accurate areas. If the signal is panned 

slightly left and right, using the left 

and right cursor keys or the "[" and 

"]" keys, the peak parameters 

displayed will change slightly due to 

the noise in the data - the more noise, 

the greater the change, as in the 

example on the left. If the peak is 

asymmetrical, as in this example, the 

peak widths displayed on one side will be greater than the other side. 
 

There is an automatic peak finder that is  based on the autopeaks.m function (activated by the J key); it 

asks for the peak density (roughly the number of peaks that fit into the signal record), then detects, 

measures, and displays the peak position, height, and area of all the peaks it detects in the processed 

signal currently displayed in the lower panel, plots and number the peaks as shown on the right and 

also plots each peak separately in Figure window 2 with peak, tangent, and valley points marked (click 

for graphic). (The requested peak density controls the peaks sensitivity - larger numbers cause the 

routine to detect larger numbers of narrower peaks, and smaller numbers ignore the fine structure and 

looks for broader peaks). It also prints out the peak detection parameters that it calculates for use by 

any of the findpeaks... functions (page 229). To return to the usual iSignal display, press any cursor 

arrow key. (Shift-J does the same thing for the segment displayed in the upper window). 

 

  

https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/iSignalJkeyFigure2.png
https://terpconnect.umd.edu/~toh/spectrum/iSignalJkeyFigure2.png
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/iSignalJkey.png


Page | 379  

Peak fitting 

iSignal has an iterative curve fitting (page 195) method performed by peakfit.m. This is the most 

accurate method for the measurements of the areas of highly overlapped peaks. First, center the signal 

you wish to fit using the pan and zoom keys (cursor arrow keys), select the baseline mode by pressing 

the 'T' key to cycle through the 4 baseline modes: none, linear, quadratic, and flat (see page 215). Press 

the Shift-F key, then type the desired peak shape by number from the menu displayed in the Command 

window (next page), enter the number of peaks, enter the number of repeat trial fits (usually 1-10), and 

finally click the mouse pointer on the top graph where you think the peaks might be. (For off-screen 

peaks, click outside the axis limits but inside the graph window). A graph of the fit is displayed in 

Figure window 2 and a table of results is printed out in the command window. iSignal can fit many 

different combinations of peak shapes and constraints: 
 

Gaussians: y=exp(-((x-pos)./(0.6005615.*width)).^2) 

  Gaussians with independent positions and widths(default)............1   

  Exponentially-broadened Gaussian (equal time constants).............5  

  Exponentially-broadened equal-width Gaussian........................8  

  Fixed-width exponentially-broadened Gaussian.......................36  

  Exponentially-broadened Gaussian (independent time constants)......31  

  Gaussians with the same widths......................................6  

  Gaussians with preset fixed widths.................................11  

  Fixed-position Gaussians...........................................16  

  Asymmetrical Gaussians with unequal half-widths on both sides......14  

Lorentzians: y=ones(size(x))./(1+((x-pos)./(0.5.*width)).^2) 

  Lorentzians with independent positions and widths...................2  

  Exponentially-broadened Lorentzian.................................18  

  Equal-width Lorentzians.............................................7 

  Fixed-width Lorentzian.............................................12 

  Fixed-position Lorentzian..........................................17 

Gaussian/Lorentzian blend (equal blends).............................13 

  Fixed-width Gaussian/Lorentzian blend..............................35 

  Gaussian/Lorentzian blend with independent blends).................33 

Voigt profile with equal alphas).....................................20 

  Fixed-width Voigt profile with equal alphas........................34 

  Voigt profile with independent alphas..............................30 

Logistic: n=exp(-((x-pos)/(.477.*wid)).^2); y=(2.*n)./(1+n)...........3  

Pearson: y=ones(size(x))./(1+((x-pos)./((0.5.^(2/m)).*wid)).^2).^m....4 

  Fixed-width Pearson................................................37 

  Pearson with independent shape factors, m..........................32 

Breit-Wigner-Fano....................................................15 

Exponential pulse: y=(x-tau2)./tau1.*exp(1-(x-tau2)./tau1)............9 

Alpha function: y=(x-spoint)./pos.*exp(1-(x-spoint)./pos);...........19 

Up Sigmoid (logistic function): y=.5+.5*erf((x-tau1)/sqrt(2*tau2))...10 

Down Sigmoid y=.5-.5*erf((x-tau1)/sqrt(2*tau2))......................23 

Triangular...........................................................21 

 

Note: if you have a peak that is an exponentially-broadened Gaussian or Lorentzian, you can measure 

both the "after-broadening" height, position, and width using the P key function, and the "before-

broadening" height, position, and approximate width by fitting the peak to an exponentially-broadened 

Gaussian or Lorentzian model (shapes 5, 8,36, 31, or 18) using the Shift-F key function. The peak 

areas will be the same; broadening does not affect the total peak area. 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#background_subtraction


Page | 380  

Polynomial fitting.  

Shift-o fits a simple polynomial (linear, quadratic, cubic, etc.) to the upper panel segment and displays 

the coefficients (in descending powers) and the correlation coefficient R2
. 

Saving the results 

To save the processed signal to the disc as an x,y matrix in mat format, press the 'o' key, then type in the 

desired file name into the “File name” field, then press Enter or click Save. To load into the workspace, 

type “load” followed by the file name you typed. The processed signal will be saved in a matrix called 

“Output”; to plot the processed data, type 

“plot(Output(:,1),Output(:,2))”.  
 

Other keystroke controls 

The Shift-G key toggles on and off a 

temporary grid on the upper and lower 

panel plots.  

 

The L key toggles off and on the Overlay 

mode, which shows the original signal as 

a dotted line overlaid on the current 

processed signal, for the purposes of 

comparison.  
 

Shift-B opens Figure window 2 and plots 

the original signal in the upper panel and 

the processed signal in the lower panel (as 

shown on the right).  
 

The Tab key restores the original signal and cursor settings.  
 

The ";" key sets the selected region to zero (use to eliminate artifacts and spikes).  
 

The "-" (minus sign) key is used to negate the signal (flip + for -).  
 

Press H to toggle display of semilog y plot in the lower window, which is useful for signals with very 

wide dynamic range, as in the example in the figures below (zero and negative points are ignored in the 

log plot).  
 

The '+' key takes the absolute value of the entire signal. 
 

Shift-L replaces the signal with the processed version of itself, for the purpose of applying more passes 

of different widths of smoothing or higher orders of differentiation. 

The ^ (Shift-6) key raises the signal to the specified power. To reverse this, simply raise to the 

reciprocal power. See Power transform method of peak sharpening on page 82.  

https://terpconnect.umd.edu/~toh/spectrum/iSignalSegmentSmooth2.png
https://terpconnect.umd.edu/~toh/spectrum/iSignalSegmentSmooth2.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power


Page | 381  

 
Linear y-axis mode 

 
Log y mode (H key) 

 

The C key condenses the signal by the specified factor n, replacing each group of n points with their 

average (n must be an integer, such as 2,3, 4, etc.). The I key replaces the signal with a linearly 

interpolated version containing m data points. This can be used either to increase or decrease the x-axis 

interval of the signal or to convert unevenly spaced values to evenly spaced values. After pressing C 

or I, you must type in the value of n or m respectively. You can press Shift-C, then click on the graph 

to print out the x,y coordinates of that point. This works on both the upper and lower panels, and on the 

frequency spectrum as well. 
 

Playing data as audio.  

Press Spacebar or Shift-P to play the 

segment of the signal displayed in the 

upper window as audio through the 

computer's sound output. Press Shift-

R to set the sampling rate - the larger 

the number the shorter and higher-

pitched will be the sound. The default 

rate is 44000Hz. Sounds or music files 

in WAV format can be loaded into 

Matlab using the built-in "wavread" 

function. The example on the right 

shows a 1.5825 sec duration audio 

recording of the spoken phrase "Testing, 

one, two, three" recorded at 44000 Hz, 

saved in WAV format (link), loaded into 

iSignal and zoomed in on the "oo" 

sound in the word "two". Press 

Spacebar to play the selected sound; 

press Shift-S to display the frequency spectrum (page 91) of the selected region. 
 

>> v=wavread('TestingOneTwoThree.wav'); 

>> t=0:1/44001:1.5825; 

>> isignal(t,v(:,2)); 

https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/LinearY.png
https://terpconnect.umd.edu/~toh/spectrum/LogY.png


Page | 382  

Press Shift-Z to label the peaks in the frequency spectrum with their frequencies (right). Press Shift-  

R and type 44000 to set the sampling rate.  
 

This recorded sound example allows you to experiment 

with the effect of smoothing, differentiation, and 

interpolation on the sound of recorded speech. 

Interestingly, different degrees of smoothing and 

differentiation will change the timbre of the voice but 

has surprisingly little effect on the intelligibility. This is 

because speech depends on the sequence of frequency 

components in the signal, which is not shifted in pitch 

or in time but merely changed in amplitude by 

smoothing and differentiation. Even computing 

the absolute value (+ key), which effectively doubles 

the fundamental frequency, does not make the sound 

unintelligible.  
 

Shift-Ctrl-F transfers the current signal to Interactive Peak Fitter (ipf.m, page 411) and Shift-Ctrl-P to 

transfer the current signal to Interactive Peak Detector (iPeak.m, page 250), if those functions are 

installed in your Matlab search path.  
 

Press K to see all the keyboard commands. 
 

EXAMPLE 1: Single input argument; data in two columns of a matrix [x;y] or in a single y vector 

              >> isignal(y); 

              >> isignal([x;y]); 
   

EXAMPLE 2: Two input arguments. Data in separate x and y vectors. 

              >> isignal(x,y);  
  

EXAMPLE 3: Three or four input arguments. The last two arguments specify the initial values of pan 

(xcenter) and zoom (xrange) in the last two input arguments. Using data in the ZIP file:            

              >> load data.mat 

              >> isignal(DataMatrix,180,40); or 

              >> isignal(x,y,180,40); 
  

EXAMPLE 4: As above, but additionally specifies initial values of SmoothMode, SmoothWidth, ends, 

and DerivativeMode in the last four input arguments.  

              >> isignal(DataMatrix,180,40,2,9,0,1); 
   

EXAMPLE 5: As above, but additionally specifies initial values of the peak sharpening parameters 

Sharpen, Sharp1, and Sharp2 in the last three input arguments. Press the E key to toggle sharpening on 

and off for comparison. 

https://terpconnect.umd.edu/~toh/spectrum/SpectrumOfSelectedRegion.png
https://en.wikipedia.org/wiki/Timbre


Page | 383  

 

 >> 

isignal(DataMatrix,180,40,4,19,0,0,1,51

,6000); 

EXAMPLE 6: 

Using the built-in "humps" function: 

>> x=[0:.005:2];y=humps(x);Data=[x;y]; 
 

4th derivative of the peak at x=0.9: 

 

>> isignal(Data,0.9,0.5,1,3,1,4);  

(You can see these animations run if you download the 

Microsoft Word 365 version, otherwise click on the 

figures). 
 

Peak sharpening applied to the peak at x=0.3: 
isignal(Data,0.3,0.5,1,3,1,0,1,220,5400); 

 (Press 'E' key to toggle sharpening ON/OFF.) 

 

EXAMPLE 7: Measurement of peak area. This example generates four Gaussian peaks, all with the 

exact same peak height (1.00) and area (1.77). Click figure for animated GIF. 
 

>> x=[0:.01:20]; 

>> y=exp(-(x-4).^2)+exp(-(x-

9).^2)+exp(-(x-13).^2)+exp(-(x-

15).^2); 

>> isignal(x,y);  

The first peak (at x=4) is isolated, the second peak 

(x=9) is slightly overlapped with the third one, and 

the last two peaks (at x= 13 and 15) are strongly 

overlapped. To measure the area under a peak us-

ing the perpendicular drop method (page 139), po-

sition the dotted red marker lines at the minimum 

between the overlapped peaks. Greater accuracy in 

peak area measurement using iSignal can be ob-

tained by using the peak sharpening function to re-

duce the overlap between the peaks. This reduces the 

peak widths, increases the peak heights, but has no 

effect on the peak areas.  

EXAMPLE 8: Single peak with random 

spikes (shown in the figure on the right). Com-

pare smoothing vs spike filter (M key) and slew 

rate limit (~ key) to remove spikes.   

x=-5:.01:5; 

y=exp(-(x).^2); 

for n=1:1000,  

if randn()>2,y(n)=rand()+y(n),  

https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#peak_sharpening
http://en.wikipedia.org/wiki/Slew_rate
http://en.wikipedia.org/wiki/Slew_rate
https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpening.gif
https://terpconnect.umd.edu/~toh/spectrum/AnimatedSpikes.gif


Page | 384  

end, 

end; 

isignal(x,y); 

EXAMPLE 9: Weak peaks on a strong baseline. 

The demo script isignaldemo2 (shown on the left) creates a test signal containing four peaks with 

heights 4, 3, 2, 1, with equal widths, superimposed on a very strong curved baseline, plus added 

random white noise. The objective is to extract a measure that is proportional to the peak height but 

independent of the baseline strength. Suggested approaches: (a) Use automatic or manual baseline 

subtraction to remove the baseline, measure peaks with the P-P measure in the upper panel; or (b) use 

differentiation (with smoothing) to suppress the baseline; or (c) use curve fitting (Shift-F), with 

baseline correction (T), to measure peak height. After running the script, you can press Enter to have 

the script perform an automatic 3rd derivative calibration, performed by lines 56 to 74. As indicated in 

the script, you can change several of the constants; search for the word "change". (To use the derivative 

method, the width of the peaks must all be equal and stable, but the peak positions may vary within 

limits, set by the Xrange for each peak in lines 61-67). You must have isignal.m and plotit.m installed. 

 

EXAMPLE 10: Direct entry into frequency spectrum mode, plotting returned frequency spectrum. 

  >> x=0:.1:60; y=sin(x)+sin(10.*x); 

  >> [pY, SpectrumOut]=isignal([x;y],30,30,4,3,1,0,0,1,0,0,0,1); 

  >> plot(SpectrumOut) 
 

EXAMPLE 11: The demo script demoisignal.m is a self-running demo that requires iSignal 4.2 or 

later and the latest version of plotit.m to be installed. 
 

EXAMPLE 12: Here's a simple example of a very noisy signal with lots of high-frequency (blue) 

noise obscuring a perfectly good peak in the center at x=150, height=1e-4; SNR=90. First, download 

https://terpconnect.umd.edu/~toh/spectrum/isignaldemo2.m
https://terpconnect.umd.edu/~toh/spectrum/demoisignal.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/isignaldemo2.png


Page | 385  

the data file NoisySignal.mat into the Matlab search path, then execute these statements: 
 

>> load NoisySignal 

>> isignal(x,y); 

Use the A and Z keys to increase and decrease the smooth width, and the S key to cycle through the 

available smooth type. Hint: use the P-spline smooth and keep increasing the smooth width. Zoom in 

on the peak in the center, press P to enter the peak mode, and it will display the characteristics of the 

peak in the upper left. 

 

iSignal keyboard controls (Version 8.3): 
 

Pan signal left and right...Coarse pan: < and > 

                             Fine pan: left and right cursor arrows 

                             Nudge: [ and ]  

 Zoom in and out.............Coarse zoom: / and "   

                             Fine zoom: up and down cursor arrows 

 Resets pan and zoom.........ESC 

 Select entire signal........Ctrl-A 

 Display grid................Shift-G  temporarily display grid on both panels 

 Adjust smooth width.........A,Z (A=>more, Z=>less)  

 Set smooth width vector.....Shift-Q  for segmented smooth 

 Cycle smooth types..........S (No, Rect., Triangle, Gaussian, Savitzky-Golay) 

 Toggle smooth ends..........X (0=ends zeroed  1=ends smoothed (slower) 

 Symmetrize (de-tailing)     Shift-Y allows entry of symmetrize weighting factor 

 Adjust Symmetrization.......1,2 keys: decrease, increase by 10% 

                             Shift-1,Shift-2 decrease, increase by 1% 

 ConV/deconVolution mode.....Shift-V presents menu of conv/deconv choices 

 Adjust width................3,4: decrease,increase by 10% 

                             Shift-3,Shift-4: decrease,increase by 1% 

 Cycle derivative orders.....D/Shift-D Increase/Decrease derivative order 

 Toggle peak sharpening......E (0=OFF 1=ON) 

 Sharpening for Gaussian.....Y  Set sharpen settings for Gaussian 

 Sharpening for Lorentzian...U  Set sharpen settings for Lorentzian 

 Adjust sharp1...............F,V  F=>sharper, V=>less sharpening 

 Adjust sharp2   ............G,B  G=>sharper, B=>less sharpening 

 Slew rate limit (0=OFF).....~  Largest allowed y change between points 

 Spike filter width (O=OFF)..m  spike filter eliminates sharp spikes 

 Toggle peak parabola........P  fits parabola to center, labels vertex 

 Fit polynomial to segment...Shift-o  Asks for polynomial order 

 Fits peak in upper window...Shift-F (Asks for shape, number of peaks, etc.) 

 Find peaks in lower panel...J (Asks for Peak Density) 

 Find peaks in upper panel...Shift-J (Asks for Peak Density) 

 Spectrum mode on/off........Shift-S (Shift-A and Shift-X to change axes) 

 Peak labels on spectrum.....Shift-Z in spectrum mode  

 Click graph to print x,y....Shift-C  Click graph to print coordinates 

 Display Waterfall spectrum..Shift-W  Allows choice of mesh, surf, contour, etc. 

 Transfer power spectrum.....Shift-T  Replaces signal with power spectrum 

 Lock in current processing..Shift-L  Replace signal with processed version 

 ConVolution/DeconVolution...Shift-V  Convolution/Deconvolution menu 

 Power transform method..... ^ (Shift-6) Raises the signal to a specified power. 

 Print peak report...........R  prints position, height, width, area 

 Toggle log y mode...........H  semilog plot in lower window 

 Cycles baseline mode........T  none, linear, quadratic, or flat baseline mode 

 Restores original signal....Tab or Ctrl-Z key resets to original signal and modes 

 Toggle overlay mode.........L  Overlays original signal as dotted line 

 Display current signals.....Shift-B  Original (top) vs Processed (bottom) 

 Baseline subtraction........Backspace, then click baseline at multiple points 

https://terpconnect.umd.edu/~toh/spectrum/NoisySignal.mat
https://terpconnect.umd.edu/~toh/spectrum/NoisySignal.mat


Page | 386  

 Restore background..........\  to cancel previous background subtraction 

 Invert signal...............Shift-N  Invert (negate) the signal (flip + and -) 

 Remove offset...............0  (zero) set minimum signal to zero  

 Sets region to zero.........;  sets selected region to zero 

 Absolute value..............+  Computes absolute value of entire signal 

 Condense signal.............C  Condense oversampled signal by factor of N 

 Interpolate signal..........i  Interpolate (resample) to N points 

 Print report................Q  prints signal info and current settings 

 Print keyboard commands.....K  prints this list of keyboard commands 

 Print isignal arguments.....W  prints isignal function with all current arguments 

 Save output to disk.........O  Save .mat file with processed signal matrix 

 Play signal as sound........Spacebar or Shift-P  Play selection through speaker 

 Play signal as sound........Shift-R Change sampling rate for playing sound 

 Expand to full screen.......Double-click figure window title bar 

 Switch to ipf.m.............Shift-Ctrl-F  transfers current signal to  

                              Interactive Peak Fitter, ipf.m 

 Switch to iPeak.............Shift-Ctrl-P  transfers current signal to  

                              Interactive Peak Detector, ipeak.m 

 

ProcessSignal, a Matlab/Octave command-line function that performs smoothing and differentiation on 

the time-series data set x,y (column or row vectors). Type "help ProcessSignal". It returns the pro-

cessed signal as a vector that has the same shape as x, regardless of the shape of y. The syntax is  

Processed=ProcessSignal(x,y,DerivativeMode,w,type,ends,Sharpen,factor1, 

factor2,Symize,Symfactor,SlewRate,MedianWidth) 

Keyboard-operated interactive Fourier filter 

iFilter.m is a keyboard-operated interactive Fourier filter Matlab function, for time-series signal (x,y), 

with keyboard controls that allow you to adjust the filter parameters continuously while observing the 

effect on your signal dynamically. Optional input arguments set the initial values of center frequency, 

filter width, shape, plotmode (1=linear; 2=semilog frequency; 3=semilog amplitude; 4=log-log) and 

filter mode ('band-pass', 'low-pass', 'high-pass', 'band-reject (notch), 'comb pass', and 'comb notch'). In 

the comb modes, the filter has multiple bands located at frequencies 1, 2, 3, 4... multiplied by the center 

frequency, each with the same (controllable) width and shape. The interactive keypress operation works 

even if you run Matlab in a web browser, but not on Matlab Mobile. Octave users must use the 

alternative version ifilteroctave, which uses different keys for the filter center and width adjustment and 

works in the most recent version of Octave. 
 

The filtered signal can be returned as the function value, saved as a ".mat" file on the disk, or played 

through the computer's sound system. Press K to list keyboard commands. This is a self-contained 

Matlab function that does not require any toolboxes or add-on functions. Click here to view or 

download and place it in the Matlab search path. At the Matlab command prompt, type:  
 

FilteredSignal=ifilter(x,y) or ifilter(y) or ifilter(xymatrix) or   

FilteredSignal=ifilter(x,y,center,width,shape,plotmode,filtermode) 

 

 

 

http://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/ifilteroctave.m
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m


Page | 387  

Animation showing the operation of iFilter.m  

 

Example 1 Periodic waveform with 2 frequency components at 60 and 440 Hz. (You can see this 

animation in the Microsoft Word 365 version, otherwise click the figure). 
 

 x=[0:.001:2*pi]; 

 y=sin(60.*x.*2.*pi)+2.*sin(440.*x.*2.*pi); 

 ifilter(x,y); 

 

Example 2: uses optional input arguments to set initial values: 
   
 x=0:(1/8000):.3; 

 y=(1+12/100.*sin(2*47*pi.*x)).*sin(880*pi.*x)+(1+12/100.*sin(2*20*pi.*x)).

*sin(2000*pi.*x); 

 ry=ifilter(x,y,440,31,18,3,'Band-pass'); 

 

Example 3: Picking one frequency out of a noisy sine wave (shown below). 
  

 x=[0:.01:2*pi]'; 

 y=sin(20*x)+3.*randn(size(x)); 

 ifilter(x,y,3.1,0.85924,15,1,'Band-pass'); 
 

https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/iFilterAnimation.gif


Page | 388  

  

 

Example 4: Square wave with band-pass vs Comb pass filter 

  t = 0:.0001:.0625; 

 y=square(2*pi*64*t); 

 ifilter(t,y,64,32,12,1,'Band-pass'); 

 ifilter(t,y,48,32,2,1,'Comb pass'); 
 

Example 5: MorseCode.m (graphic on next page) uses iFilter to demonstrate the abilities and 

limitations of Fourier filtering. (Graphic on next page.) It creates a pulsed fixed frequency sine 

wave that spells out “SOS” in Morse code (dit-dit-dit/dah-dah-dah/dit-dit-dit), then adds random white 

noise so that the SNR is very poor (about 0.1 in this example). The white noise has a frequency 

spectrum that is spread out over the entire range of frequencies; the signal itself is concentrated mostly 

at a fixed frequency (0.05) but the modulation of the sine wave by the Morse Code pulses spreads out 

its spectrum over a narrow frequency range of about 0.0004. This suggests that a Fourier bandpass 

filter tuned to the signal frequency might be able to isolate the signal from the noise. As the bandwidth 

is reduced, the signal-to-noise ratio improves and the signal begins to emerges from the noise until it 

becomes clear, but if the bandwidth is too narrow, the step response time is too slow to give distinct 

“dits” and “dahs”. The step response time is inversely proportional to the bandwidth. (Use the ? and " 

keys to adjust the bandwidth. Press 'P' or the Spacebar to hear the sound). You can actually hear that 

sine wave component better than you can see it in the waveform plot (upper panel), because the ear 

works like a spectrum analyzer, with separate nerve endings assigned to specific frequency ranges, 

whereas the eye analyzes the graph spatially, looking at the overall amplitude and not at individual 

frequencies. Click for mp4 video of this script in operation, with sound. This video is also on YouTube 

at https://youtu.be/agjs1-mNkmY. 

https://terpconnect.umd.edu/~toh/spectrum/MorseCode.m
https://terpconnect.umd.edu/~toh/spectrum/SOSspectrum.png
https://terpconnect.umd.edu/~toh/spectrum/SOSspectrum.png
https://terpconnect.umd.edu/~toh/spectrum/SOS.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSWideband.png
https://terpconnect.umd.edu/~toh/spectrum/WhiteNoiseSpectrum.png
https://en.wikipedia.org/wiki/Amplitude_modulation
https://terpconnect.umd.edu/~toh/spectrum/MorseCodePowerSpectrum.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpassTooWide.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpassTooWide.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpass.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpassNarrower.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpassNarrower.png
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpassTooNarrow.png
http://www.britannica.com/topic/Fourier-analysis
http://www.britannica.com/topic/Fourier-analysis
https://terpconnect.umd.edu/~toh/spectrum/MorseCode.mp4
https://youtu.be/agjs1-mNkmY
https://terpconnect.umd.edu/~toh/spectrum/iFilterExample3.png


Page | 389  

 

  

 

Example 6: This example (graphic on next page) shows a 1.6 sec duration audio recording of the 

spoken phrase "Testing, one, two, three", recorded at 44001 Hz and saved in both WAV format 

(download link) and in ".mat" format (download link). This latter file is loaded into iFilter like so: 

 

load testing123 

t=(1:length(testing123))/44000; 

y=testing123(:,1); 

ifilter(t,y); 

  

iFilter is set to bandpass mode and tuned to a narrow segment above 1000 Hz that is well above the 

frequency range of most of the signal. That passband rejects most of the visible frequency components 

in the signal, yet even in that case, the speech is still intelligible, demonstrating the remarkable ability 

of the ear-brain system to make do with a highly compromised signal, as long as you pass the 

frequencies above 500 Hz. Press P or space to hear the filter's output on your computer’s sound system. 

Different filter settings will change the timbre of the sound, but you can still understand it. 

 

Note: to change any of the above iFilter demo scripts to Octave, simply change “ifilter” to 

“ifilteroctave” and make sure that ifilteroctave is in the path. 

https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/testing123.mat
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://en.wikipedia.org/wiki/Timbre
https://terpconnect.umd.edu/~toh/spectrum/NoisySOSbandpass.png


Page | 390  

 

iFilter 4.3 Matlab version keyboard controls (if the figure window is not topmost, click on it first): 

(The Octave version uses different keys for the filter center and width adjustment.) 
 

 Adjust filter frequency........Coarse (10% change): < and > 

                                Fine (1% change): left and right cursor 
                                arrows 

 Adjust filter width............Coarse (10% change): / and "   

                                Fine (1% change): up and down cursor arrows 

 Filter shape...................A,Z (A more rectangular, Z more Gaussian) 

 Filter mode....................B=bandpass; N or R=notch (band reject); 

                                H=High-pass; 

                                L=Low-pass; C=Comb pass; V=Comb notch. 

 Select plot mode...............1=linear; 2=semilog frequency 

                                3=semilog amplitude; 4=log-log 

 Print keyboard commands........K  Prints this list 

 Print filter parameters........Q or W Prints ifilter with input 

                                 arguments: center, width, shape, 

                                 plotmode, filtermode 

 Print current settings.........T  Prints list of current settings 

 Switch SPECTRUM X-axis scale...X switch between frequency and period  

                                 on the horizontal axis 

 Switch OUTPUT Y-axis scale.....Y switch output plot between fixed or 

                                 variable vertical axis.  

 Play output as sound...........P or Enter 

 Save output as .mat file.......S 

https://terpconnect.umd.edu/~toh/spectrum/ifilteroctave.m


Page | 391  

Live Script Fourier Filter 

 

FourierFilterTool.mlx is a Live Script version of the interactive Fourier filter iFilter.m. It can perform 

six different types of Fourier filtering on your own data stored in .csv or .xls format. The graphic dis-

play (above right) is essentially identical to the iFilter.m function, in this case showing a band-pass fil-

ter isolating one frequency from a complex periodic waveform. 

To view the figures to the right of the control panel as shown above, right-click on the right-hand panel 

and select "Disable synchronous scrolling". 

Clicking the "Open data file" button in line 1 opens a file browser, allowing you to navigate to your 

data file (in .csv or .xlsx format; the script assumes that your x,y data are in the first two columns; you 

can change that in lines 27 and 28). In the case shown here, the data file is 'ThreeSines.csv', shown as 

the 'file' variable in the Matlab workspace. The startpc and endpc sliders in lines 5 and 7 allow you to 

select which portion of the data range to process, from 0% to 100% of the total range of the data file.  

There are drop-down menus and sliders to select the type of filter type, center frequency, filter width, 

filter shape, linear or log axes, time or frequency mode, and fixed or variable Y axis for the output.  

Clicking the checkbox labeled “PlayOutputAsSound” will send the output waveform to the system’s 

speaker each time any control is changed. Un-check that box to cancel. (See iFilterTesting123.m for an 

interesting example of that function). 

  

https://terpconnect.umd.edu/~toh/spectrum/FourierFilterTool.mlx
https://terpconnect.umd.edu/~toh/spectrum/ThreeSines.csv
https://terpconnect.umd.edu/~toh/spectrum/iFilterTesting123.m


Page | 392  

Matlab/Octave Peak Fitters 

I have developed two Matlab peak fitting program for time-series signals, which uses an 

unconstrained non-linear optimization algorithm (page 195) to decompose a complex, overlapping-

peak signal into its component parts. The objective is to determine whether your signal can be 

represented as the sum of fundamental underlying peaks shapes. Accepts signals of any length, 

including those with non-integer and non-uniform x-values. There are two different versions,  
 

(1) a command line version (peakfit.m) for Matlab or Octave, Matlab File Exchange "Pick of the 

Week". The current version number is 9.61.  
 

(2) a keypress operated interactive version (ipf.m or ipfoctave.m), page 411. The current version 

number is 13.4. The corresponding demo script is Demoipfoctave.m 
 

The difference between them is that peakfit.m is completely controlled by command-line input 

arguments and returns its information via command-line output arguments; ipf.m allows interactive 

control via keypress commands. For automating the fitting of large numbers of signals, peakfit.m is 

better (see page 340); but ipf.m is best for exploring signals to determine the optimum fitting range, 

peak shapes, number of peaks, baseline correction mode, etc. Otherwise, they have similar curve-fitting 

capabilities. The basic built-in peak shape models available are illustrated on page 419 ; custom peak 

shapes can be added (see page 432). See pages 428 and 433 for more information and useful 

suggestions.  

Matlab/Octave command-line function: peakfit.m 

Peakfit.m is a user-defined command window peak fitting 

function for Matlab or Octave, usable from a remote terminal. 

It is written as a self-contained function in a single m-file. (To 

view of download, click peakfit.m). It takes data in the form of 

a 2 by n matrix that has the independent variables (X-values) 

in row 1 and the dependent variables (Y-values) in row 2, or as 

a single dependent variable vector. The syntax 

is [FitResults, GOF, baseline, coeff, residu-

als, xi, yi, BootResults]=peakfit(signal, cen-

ter, window, NumPeaks, peakshape, extra, 

NumTrials, start, BASELINEMODE, fixedparameters, plots, bipolar, minwidth, 

DELTA, clipheight)). Only the first input argument, the data matrix, is absolutely required; there 

are default values for all other inputs. All the input and output arguments are explained below. 
 

The screen display is shown on the right; the upper panel shows the data as blue dots, the combined 

model as a red line (ideally overlapping the blue dots), and the model components as green lines. The 

dotted magenta lines are the first-guess peak positions for the last fit. The lower panel shows the resid-

uals (difference between the data and the model). 

You can download a ZIP file containing peakfit.m, DemoPeakFit.m, ipf.m, Demoipf.m, some sample 

data for testing. The test script testpeakfit.m or autotestpeakfit.m runs all the peakfit examples sequen-

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
http://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/
http://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/Demoipfoctave.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#NewShape
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/ipf13zip
https://terpconnect.umd.edu/~toh/spectrum/testpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/testpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/autotestpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit7.png


Page | 393  

tially to test for proper operation on your computer or version of Matlab/Octave. Takes 25 seconds. 
 

For a discussion of the accuracy and precision of peak parameter measurement using peakfit.m, 

click here or see page 163. 
 

 The peakfit.m functionality can also be accessed by the keypress-operated interactive functions ipf 

(page 411), iPeak (page 411), and iSignal (page 371) for Matlab or Matlab Online or the Octave ver-

sions whose names end in “octave”. 
 

Version 9.62: July 2021. Fixed a bug in the Voigt peak shape. Previous versions added peak shape 

50 which implements the multilinear regression ("classical least-squares") method for cases in which 

the peak shapes, positions, and widths are all known and only the peak heights are to be determined. 

See Example 40 below and the demonstration scripts peakfit9demo.m and peakfit9demoL.m for a 

demonstration and comparison of this to unconstrained iterative fitting.  

Peakfit.m can be called with several optional additional command line arguments. All input arguments 

(except the signal itself) can be replaced by zeros to use their default values. 
 

peakfit(signal); 

Performs an iterative least-squares fit of a single unconstrained Gaussian peak to the entire data matrix 

"signal", which has x values in row 1 and Y values in row 2 (e.g. [x y]) or which may be a single signal 

vector (in which case the data points are plotted against their index numbers on the x axis). 
  

peakfit(signal, center, window); 

Fits a single unconstrained Gaussian peak to a portion of the matrix "signal". The portion is centered on 

the x-value "center" and has width "window" (in x units).  

In this and in all following examples, set "center" and "window" both to 0 to fit the entire signal.  

peakfit(signal, center, window, NumPeaks); 

"NumPeaks" = number of peaks in the model (default is 1 if not specified).  
   

peakfit(signal, center, window, NumPeaks, peakshape); 

Number or vector that specifies the peak shape(s) of the model: 1=unconstrained Gaussi-

an, 2=unconstrained Lorentzian, 3=logistic distribution, 4=Pearson, 5=exponentially broadened Gauss-

ian; 6=equal-width Gaussians, 7=equal-width Lorentzians, 8=exponentially broadened equal-width 

Gaussians, 9=exponential pulse, 10= up-sigmoid (logistic function), 11=fixed-width Gaussi-

ans, 12=fixed-width Lorentzians, 13=Gaussian/Lorentzian blend; 14=bifurcated Gaussian, 15=Breit-

Wigner-Fano resonance; 16=Fixed-position Gaussians; 17=Fixed-position Lorentzians; 

18=exponentially broadened Lorentzian; 19=alpha function; 20=Voigt profile; 21=triangular; 

23=down-sigmoid; 25=lognormal distribution; 26=linear baseline (see Example 28); 28=polynomial 

(extra=polynomial order; Example 30); 29=articulated linear segmented (see Example 29); 

30=independently-variable alpha Voigt; 31=independently-variable time constant ExpGaussi-

an; 32=independently-variable Pearson; 33=independently-variable Gaussian/Lorentzian 

blend; 34=fixed-width Voigt; 35=fixed-width Gaussian/Lorentzian blend; 36=fixed-width exponential-

ly-broadened Gaussian; 37=fixed-width Pearson;38= independently-variable time constant Ex-

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#accuracy
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#3._Interactive_keypress-operated_
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.html
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demoL.m


Page | 394  

pLorentzian; 39= alternative independently-variable time constant ExpGaussian (see Example 39 be-

low); 40=sine wave; 41=rectangle; 42=flattened Gaussian; 43=Gompertz function (3 parameter lo-

gistic: Bo*exp(-exp((Kh*exp(1)/Bo)*(L-t)+1))); 44=1-exp(-k*x); 45: Four-parameter logistic 

y = maxy*(1+(miny-1)/(1+(x/ip)^slope)); 46=quadratic baseline (see Example 38); 47=blackbody 

emission; 48=equal-width exponential pulse; 49=Pearson IV; 50=multilinear regression (known peak 

positions and widths). The function ShapeDemo demonstrates most of the basic peak shapes (graphic 

on page 419) showing the variable-shape peaks as multiple lines. 

Note 1: "unconstrained" simply means that the position, height, and width of each peak in the 

model can vary independently of the other peaks, as opposed to the equal-width, fixed-width, or 

fixed position variants. Shapes 4, 5, 13, 14, 15, 18, 20, and 34-37 are constrained to the 

same shape constant; shapes 30-33 are completely unconstrained in position, width, and shape; 

their shape variables are determined by iteration.  
 

Note 2: The value of the shape constant "extra" defaults to 1 if not specified in input argu-

ments.  
 

Note 3: The peakshape argument can be a vector of different shapes for each peak, e.g. [1 2 1] 

for three peaks in a Gaussian, Lorentzian, Gaussian sequence. (The next input argument, 'extra', 

must be a vector of the same length as 'peakshape'. See Examples 24, 25, 28 and 38, below.  

peakfit(signal, center, window, NumPeaks, peakshape, extra) 

  Specifies the value of 'extra', used in the Pearson, exponentially-broadened Gaussi-

an, Gaussian/Lorentzian blend, bifurcated Gaussian, and Breit-Wigner-Fano shapes to fine-tune the 

peak shape. The value of "extra" defaults to 1 if not specified in input arguments. In version 5, 'extra' 

can be a vector of different extra values for each peak). 
   

peakfit(signal, center, window, NumPeaks, peakshape, extra, NumTri-

als); 

  Restarts the fitting process "NumTrials" times with slightly different start values and selects the best 

one (with lowest fitting error). NumTrials can be any positive integer (default is 1). In many cases, 

NumTrials=1 will be sufficient, but if that does not give consistent results, increase NumTrials until the 

result are stable.  
  

peakfit(signal, center, window, NumPeaks, peakshape, extra, NumTri-

als, start) 

  Specifies the first guesses vector "start" for the peak positions and widths, e.g., start=[position1 

width1 position2 width2 ...]. Only necessary for difficult cases, especially when there are a lot of ad-

justable variables. The start vector can be the approximate average values based on your experience, or 

it can be calculated from a previous simpler fit, as in this example. If you leave off “start”, or set it to 

zero, the program will generate its own start rough values (which is often good enough). See examples 

14,  22, 28, 40, and 42 below for situations where specifying the start values is useful or necessary. 

peakfit(signal, center, window, NumPeaks, peakshape, extra, NumTri-

als, start, BaselineMode) 

https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/Example37.m


Page | 395  

As above, but "BaselineMode" sets the baseline correction mode in the last argu-

ment: BaselineMode=0 (default) does not subtract baseline from data segment. BaselineMode=1 

interpolates a linear baseline from the edges of the data segment and subtracts it from the signal (as-

sumes that the peak returns to the baseline at the edges of the signal); BaselineMode=2, like mode 1 

except that it computes a quadratic curved baseline; BaselineMode=3 compensates for a flat baseline 

without reference to the signal itself (does not require that the signal return to the baseline at the edges 

of the signal, as does modes 1 and 2). Coefficients of the polynomial baselines are returned in the third 

output argument "baseline". 

peakfit(signal,0,0,0,0,0,0,0,2) 

  Use zeros as placeholders to use the default values of input arguments. In this 

case, BaselineMode is set to 2, but all others are the default values. 
 

peakfit(signal, center, window, NumPeaks, peakshape, extra,  

NumTrials, start, BaselineMode, fixedparameters) 

 'fixedparameters' (10th input argument) specifies fixed widths or positions in shapes 11, 12, 16, 17, 34-

37, one entry for each peak. When using peak shape 50 (multlinear regression), 'fixedparameters' must 

be a matrix listing the peak shape number (column 1), position (column 2), and width (column 3) of 

each peak, one row per peak. 
 

peakfit(signal, center, window, NumPeaks, peakshape, extra,  

NumTrials, start, BaselineMode, fixedparameters, plots) 

 'plots' (11th input argument) controls graphic plotting: 0=no plot; 1=plots draw as usual (default) 
 

peakfit(signal, center, window, NumPeaks, peakshape, extra,  

NumTrials, start, BaselineMode, fixedparameters, plots, bipolar) 

 (12th input argument) 'bipolar' = 0 constrain peaks heights to be positive; 'bipolar' = 1 allows positive 

and negative peak heights. 
  

peakfit(signal, center, window, NumPeaks, peakshape, extra,  

NumTrials, start, BaselineMode, fixedparameters, plots, 

bipolar,minwidth) 

'minwidth' (13th input argument) sets the minimum allowed peak width. The default if not specified is 

equal to the x-axis interval. Must be a vector of minimum widths, one value for each peak, if the 

multiple peak shape is chosen. 
 

peakfit(signal,center, window, NumPeaks, peakshape, extra, NumTrials, 

start, BaselineMode, fixedparameters, plots, bipolar, minwidth,DELTA) 

 'DELTA' (14th input argument) controls the restart variance when NumTrials>1. Default value is 1.0. 

Larger values give more variance. Version 5.8 and later only.  

[FitResults,FitError]= peakfit(signal, center, window...); 

Returns the FitResults vector in the order peak number, peak position, peak height, peak width, and 

peak area), and the FitError (the percent RMS difference between the data and the model in the selected 



Page | 396  

segment of the data) of the best fit.  
 

Labeling the FitResults table: Using the "table" function, you can display FitResults in a neat table 

with column labels, using only a single line of code:  

disp(table(FitResults(:,2), FitResults(:,3), FitResults(:,4), 

FitResults(:,5), 'VariableNames', {'Position' 'Height' 'FWHM' 'Area'})) 
 

    Position      Height       FWHM        Area        

    ________    ________      ______    __________    

    8.0763      3.8474        10.729    3.4038e-01    

        20             1         3        3.1934    

Additional columns of FitResults and VariableNames can be added for those peak shapes that display 

five or more results, such as the Voight shape:  
 

disp(table(FitResults(:,2), FitResults(:,3), FitResults(:,4), 

FitResults(:,5), FitResults(:,6), 'VariableNames', {'Position' 'Height' 

'GauWidth' 'Area' 'LorWidth'})) 
     

    Position    Height     GauWidth     Area      LorWidth 

  ________    _______    ________    _______    ________ 

    0.80012     0.99987    0.30272     0.34744    0.39708  

     1.2003     0.79806    0.40279     0.27601    0.30012  
 

Calculating the precision of the peak parameters: 
 

[FitResults, GOF, baseline, coeff, residuals, xi, yi, BootstrapErrors] = 

peakfit([x;y],0,0,2,6,0,1,0,0,0); 

Displays parameter error estimates by the bootstrap method. See page 166. 
 

Optional output parameters: 

1.   FitResults: a table of model peak parameters, one row for each peak, listing peak number, 

peak position, height, width, and area (or, for shape 28, the polynomial coefficients, and for 

shape 29, the x-axis breakpoints). 

2.  GOF ("Goodness of Fit"), a 2-element vector containing the RMS fitting error of the best trial 

fit and the R-squared (coefficient of determination). 

3.   baseline: returns the polynomial coefficients of the interpolated baseline in linear and quadrat-

ic baseline modes (1 and 2) or the value of the constant baseline in flat baseline mode. 

4.   coeff: Coefficients for the polynomial fit (shape 28 only; for other shapes, coeff=0) 

5.   residual: vector of differences between the data and the best fit model. Can be used to meas-

ure the characteristics of the noise in the signal. 

6.   xi: vector containing 600 interpolated x-values for the model peaks. 

7.   yi: matrix containing the y values of model peaks at each xi. Type plot(xi,yi(1,:)) to 

plot peak 1 or plot(xi,yi) to plot all the peaks. 

8.   BootstrapErrors: the presence of this triggers the bootstrap estimations of the standard devia-

tions and interquartile ranges for each peak parameter of each peak in the fit (page 166). 

 

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html


Page | 397  

Examples 

Note: test script testpeakfit.m runs all the following examples automatically. (You can copy and paste, 

or drag and drop, any of these single-line or multi-line code examples into the Matlab or Octave editor 

or into the command line and press Enter to execute it).  
 

Example 1. Fits computed x vs y data with a single unconstrained Gaussian peak model.  

  > x=[0:.1:10];y=exp(-(x-5).^2); peakfit([x' y']) 

  ans = 

         Peak number  Position   Height     Width      Peak area 

              1           5        1        1.665       1.7725 
 

Example 2. Fits small set of manually-entered y data to a single unconstrained Gaussian peak model.  

  > y=[0 1 2 4 6 7 6 4 2 1 0 ]; x=1:length(y); 

  > peakfit([x;y],length(y)/2,length(y),0,0,0,0,0,0) 

         Peak number  Position   Height     Width      Peak area 

             1       6.0001       6.9164     4.5213        32.98 
 

Example 3. Measurement of very noisy peak with signal-to-noise ratio = 1. (Try several times). 

> x=[0:.01:10];y=exp(-(x-5).^2) + randn(size(x)); peakfit([x;y]) 

         Peak number  Peak position   Height     Width      Peak area 

             1       5.0951       1.0699       1.6668       1.8984 
 

Example 4. Fits a noisy two-peak signal with a double unconstrained Gaussian model (NumPeaks=2). 

  > x=[0:.1:10]; y=exp(-(x-5).^2)+.5*exp(-(x-3).^2) + .1*randn(1,length(x)); 

 > peakfit([x' y'],5,19,2,1,0,1) 

         Peak number  Position   Height        Width      Peak area 

              1       3.0001      0.49489        1.642      0.86504 

              2       4.9927       1.0016       1.6597       1.7696 
 

Example 5. Fits a portion of the humps function, 0.7 units wide and centered on x=0.3, with a single 

(NumPeaks=1) Pearson function (peakshape=4) with extra=3 (controls shape of Pearson function). 

    > x=[0:.005:1];y=humps(x);peakfit([x' y'],.3,.7,1,4,3); 
     

Example 6. Creates a data matrix 'smatrix', fits a portion to a two-peak unconstrained Gaussian model, 

takes the best of 10 trials. Returns optional output arguments FitResults and FitError. 
 

  > x=[0:.005:1]; y=(humps(x)+humps(x-.13)).^3; smatrix=[x' y']; 

 > [FitResults,FitError]=peakfit(smatrix,.4,.7,2,1,0,10) 

 
         Peak number  Position   Height        Width      Peak area 

               1       0.4128  3.1114e+008      0.10448  3.4605e+007 

               2       0.3161  2.8671e+008     0.098862  3.0174e+007 

   FitError = 0.68048 
  

Example 7. As above, but specifies the first-guess position and width of the two peaks, in the order 

[position1 width1 position2 width2] 

  > peakfit([x' y'],.4,.7,2,1,0,10,[.3 .1 .5 .1]); 
 

https://terpconnect.umd.edu/~toh/spectrum/testpeakfit.m


Page | 398  

Supplying a first guess position and width is also useful if you have one peak on top of another (like 

example 4, with both peaks at the same position x=5, but with different widths, in square brackets): 
 

>> x=[2:.01:8]; 

>> y=exp(-((x-5)/.2).^2)+.5.*exp(-(x-5).^2) + .1*randn(1,length(x)); 

>> peakfit([x' y'],0,0,2,1,0,1,[5 2 5 1]) 

         Peak number  Position   Height        Width      Peak area 

            1       4.9977      0.51229        1.639      0.89377 

            2       4.9948       1.0017      0.32878      0.35059 

Example 8. As above, returns the vector xi containing 600 interpolated x-values for the model peaks 

and the matrix yi containing the y values of each model peak at each xi. Type plot(xi,yi(1,:)) to 

plot peak 1 or plot(xi,yi,xi,sum(yi)) to plot all the model components and the total model 

(sum of components). 
> [FitResults, GOF, baseline, coeff, residuals, xi, yi]= … 

peakfit(smatrix,.4,.7,2,1,0,10); 

> figure(2); clf; plot(xi,yi,xi,sum(yi)) 

Example 9. Fitting a single unconstrained Gaussian on a linear background, using the linear Baseline-

Mode  (9th input argument = 1)  
   >> x=[0:.1:10]';y=10-x+exp(-(x-5).^2);peakfit([x y],5,8,0,0,0,0,0,1) 

Example 10. Fits a group of three peaks near x=2400 in DataMatrix3 with three equal-width ex-

ponentially broadened Gaussians. 

>> load DataMatrix3 

>> [FitResults,FitError]= peakfit(DataMatrix3,2400,440,3,8,31,1) 

         Peak number  Position   Height        Width      Peak area 

            1       2300.5      0.82546       60.535       53.188 

            2       2400.4      0.48312       60.535       31.131 

            3       2500.6      0.84799       60.535       54.635 

FitError = 0.19975 

Note: if your peaks are trailing off to the left, rather than to the right as in the above example, simply 

use a negative value for the time constant (in ipf.m, press Shift-X and type a negative value). 

Example 11. Example of an unstable fit to a signal consisting of two unconstrained Gaussian peaks of 

equal height (1.0). The peaks are too highly overlapped for a stable fit, even though the fit error is 

small, and the residuals are unstructured. Each time you re-generate this signal, it gives a different fit, 

with the peak’s heights varying about 15% from signal to signal.  

 
>> x=[0:.1:10]';  

>> y=exp(-(x-5.5).^2) + exp(-(x-4.5).^2) + .01*randn(size(x));  

>> [FitResults,FitError]= peakfit([x y],5,19,2,1) 

         Peak number  Position   Height        Width      Peak area 

            1       4.4059      0.80119       1.6347       1.3941 

            2       5.3931       1.1606       1.7697       2.1864 

FitError = 0.598 

 Much more stable results can be obtained using the equal-width Gaussian model (peakfit([x 

y],5,19,2,6)), but that is justified only if the experiment is legitimately expected to yield peaks of 

equal width. See page 206 - 214. 

https://terpconnect.umd.edu/~toh/spectrum/TestExtractModel.m


Page | 399  

Example 12. Baseline correction. Demonstrations of the four “BaselineModes”, for a single Gaussian 

on large baseline, with position=10, height=1, and width=1.66. The BaselineMode is specified by the 

9th input argument (which can be 0,1,2, or 3). 

BaselineMode=0 means to ignore the baseline (default mode if not specified). In this case, this 

leads to large errors. 

>> x=8:.05:12;y=1+exp(-(x-10).^2); 

>> [FitResults,FitError,baseline]=peakfit([x;y],0,0,1,1,0,1,0,0) 

           Peak#     Position      Height       Width      Area 

            1         10       1.8561        3.612       5.7641 

 FitError =5.387 
 

BaselineMode=1 subtracts linear baseline from edge to edge. Does not work well in this case 

because the signal does not return completely to the baseline at the edges. 

>> [FitResults,FitError,baseline]=peakfit([x;y],0,0,1,1,0,1,0,1) 

         Peak#     Position      Height       Width      Area 

            1       9.9984      0.96161       1.5586       1.5914 

FitError = 1.9801 

baseline = 0.0012608       1.0376 
 

 BaselineMode=2 subtracts quadratic baseline from edge to edge. Does not work well in this 

case because the signal does not return completely to the baseline at the edges. 

>> [FitResults,FitError,baseline]=peakfit([x;y],0,0,1,1,0,1,0,2) 

         Peak#     Position      Height       Width      Area 

            1       9.9996      0.81762       1.4379       1.2501 

FitError = 1.8205 

baseline = -0.046619       0.9327       -3.469 

BaselineMode=3 subtracts a flat baseline automatically, without requiring that the signal 

returns to baseline at the edges. This mode works best for this signal. 

 
>> [FitResults,FitError,baseline]=peakfit([x;y],0,0,1,1,0,1,0,3) 

         Peak#     Position      Height       Width      Area 

            1           10       1.0001       1.6653       1.7645 

FitError = 0.0037056 

baseline = 0.99985 

In some cases, you can regard the baseline as an additional “peak”. In the following example, 

the baseline is strongly sloped, but straight. In that case the most accurate result is obtained by 

using a two-shape fit, specifying the peak shape as a vector, which fits the peak as a Gaussian 

(shape 1) and the baseline as a variable-slope straight line (shape 26). 

>> x=8:.05:12;y=x + exp(-(x-10).^2); 

>> [FitResults,FitError]=peakfit([x;y],0,0,2,[1 26],[1 1],1,0) 

         Peak#     Position      Height       Width      Area  

            1           10            1       1.6651       1.7642 

            2        4.485      0.22297         0.05       40.045 

FitError =0.093 



Page | 400  

In the following example, the baseline is curved, so you may be able to get good results 

with BaselineMode=2: 
>> x=[0:.1:10]';y=1./(1+x.^2)+exp(-(x-5).^2); 

>> [FitResults,FitError,baseline]=peakfit([x y],5,5.5,0,0,0,0,0,2) 

         Peak#     Position      Height       Width      Area 

            1       5.0091      0.97108        1.603       1.6569 

FitError = 0.97661 

baseline = 0.0014928    -0.038196      0.22735 

Example 13. Same as example 4, but with fixed-width Gaussian (shape 11), width=1.666. The 10th 

input argument is a vector of fixed peak widths (in square brackets), one entry for each peak, which 

may be the same or different for each peak. 

>> x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(size(x)); 

>> [FitResults,FitError]=peakfit([x' y'],0,0,2,11,0,0,0,0,[1.666 1.666]) 

         Peak number  Position   Height        Width      Peak area 

            1       3.9943      0.49537        1.666      0.87849 

            2       5.9924      0.98612        1.666       1.7488 

Example 14. Peak area measurements. Four Gaussians with a height of 1 and a width of 1.6651. All 

four peaks have the same theoretical peak area (1.772). The four peaks can be fit together in one fitting 

operation using a 4-peak Gaussian model, with only rough estimates of the first-guess positions and 

widths (in square brackets). The peak areas thus measured are much more accurate than the perpen-

dicular drop method (page 139): 

>> x=[0:.01:18]; 

>> y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+exp(-(x-13.7).^2); 

>> peakfit([x;y],0,0,4,1,0,1,[4 2 9 2 12 2 14 2],0,0) 

         Peak number  Position   Height        Width      Peak area 

            1            4            1       1.6651       1.7725 

            2            9            1       1.6651       1.7725 … 

            3           12            1       1.6651       1.7724 

            4         13.7            1       1.6651       1.7725 

This works well even in the presence of substantial amounts of random noise: 

>> x=[0:.01:18]; y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+exp(-(x-

13.7).^2)+.1.*randn(size(x)); 

>> peakfit([x;y],0,0,4,1,0,1,[4 2 9 2 12 2 14 2],0,0) 

         Peak number  Position   Height        Width      Peak area 

            1       4.0086      0.98555       1.6693       1.7513 

            2       9.0223       1.0007        1.669       1.7779 

            3       11.997       1.0035       1.6556       1.7685 

            4       13.701       1.0002       1.6505       1.7573 

Sometimes experimental peaks are affected by exponential broadening, which does not by itself change 

the true peak areas, but does shift peak positions and increase peak width, overlap, and asymmetry, as 

shown when you try to fit the peaks with Gaussians. Using the same noise signal from above: 

>> y1=ExpBroaden(y',-50); 

>> peakfit([x;y1'],0,0,4,1,50,1,0,0,0) 

http://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m


Page | 401  

  Peak number  Position   Height         Width       Peak area 

        1       4.4538      0.83851       1.9744       1.7623 

        2       9.4291       0.8511       1.9084       1.7289 

        3       12.089       0.59632        1.542      0.97883 

        4       13.787       1.0181       2.4016       2.6026 
 

Peakfit.m (and ipf.m) have an exponentially-broadened Gaussian peak shape (shape #5) that works bet-

ter in those cases, recovering the original peak positions, heights, widths, and areas. (Adding a first-

guess vector as the 8th argument improves the reliability of the fit in some cases). 

>> y1=ExpBroaden(y',-50); 

>> peakfit([x;y1'],0,0,4,5,50,1,[4 2 9 2 12 2 14 2],0,0) 

          Peak#    Position       Height       Width         Area 

            1            4            1       1.6651       1.7725 

            2            9            1       1.6651       1.7725 

            3           12            1       1.6651       1.7725 

            4         13.7      0.99999       1.6651       1.7716 

An easy way to obtain a good first-guess vector is to perform a simple Gaussian fit initially and have 

the script use the FitResults from that fit as elements of the first-guess vector, as in this example. 
 

Example 15. Displays a table of parameter error estimates. See DemoPeakfitBootstrap for a self-

contained demo of this function. 
 

>> x=0:.05:9; y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.01*randn(1,length(x)); 

>> [FitResults,LowestError,baseline,residuals,xi,yi,BootstrapErrors]= 

peakfit([x;y],0,0,2,6,0,1,0,0,0); 

Peak #1       Position    Height       Width       Area 

Mean:        2.9987      0.49717     1.6657      0.88151 

STD:         0.0039508   0.0018756   0.0026267   0.0032657 

STD (IQR):   0.0054789   0.0027461   0.0032485   0.0044656 

% RSD:       0.13175     0.37726     0.15769     0.37047 

% RSD (IQR): 0.13271     0.35234     0.16502     0.35658 
  

Peak #2       Position    Height       Width       Area 

Mean:        4.9997     0.99466       1.6657      1.7636 

STD:         0.001561   0.0014858     0.00262     0.0025372 

STD (IQR):   0.002143   0.0023511     0.00324     0.0035296 

% RSD:       0.031241   0.14938       0.15769     0.14387 

% STD (IQR): 0.032875   0.13637       0.16502     0.15014 

Example 16. Fits both peaks of the Humps function with a Gaussian/Lorentzian blend (shape 13) that 

is 15% Gaussian (Extra=15). The 'Extra' argument sets the percentage of Gaussian shape. 
 

>> x=[0:.005:1];y=humps(x);[FitResults,FitError]= peakfit([x' y'], 

0.54,0.93,2,13,15,10,0,0,0)  
  

         Peak#     Position      Height       Width      Area 

             1      0.30078       190.41      0.19131       23.064 

             2      0.89788       39.552      0.33448       6.1999 

  FitError = 0.34502 

 

https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/Example37.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfitBootstrap.m


Page | 402  

Example 17. Fit a slightly asymmetrical peak with a bifurcated Gaussian (shape 14). The 'Extra' 

argument (=45) controls the peak asymmetry (50 is symmetrical).  

>> x=[0:.1:10];y=exp(-(x-4).^2)+.5*exp(-(x-5).^2)+.01*randn(size(x)); 

>> [FitResults,FitError]=peakfit([x' y'],0,0,1,14,45,10,0,0,0)  

          Peak#     Position      Height       Width      Area 

             1       4.2028       1.2315        4.077       2.6723 

  FitError =0.84461 
 

Example 18. Returns output arguments only, without plotting or command window printing (11th input 

argument = 0, default is 1) 

>> x=[0:.1:10]';y=exp(-(x-5).^2);FitResults=peakfit([x 

y],0,0,1,1,0,0,0,0,0,0) 
 

Example 19. Same as example 4, but with fixed-position Gaussian (shape 16), positions=[3 5].  

>> x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(size(x)); 

>> [FitResults,FitError]=peakfit([x' y'],0,0,2,16,0,0,0,0,[3 5]) 

        Peak number  Position   Height        Width      Peak area 

            1            3      0.49153       1.6492      0.86285 

            2            5       1.0114       1.6589        1.786 

FitError =8.2693 

 

Example 20. Exponentially modified Lorentzian (shape 18) with added noise. As for peak shape 5, 

peakfit.m recovers the original peak position (9), height (1), and width (1). 
 

>> x=[0:.01:20];  

>> L=lorentzian(x,9,1)+0.02.*randn(size(x)); 

>> L1=ExpBroaden(L',-100); 

>> peakfit([x;L1'],0,0,1,18,100,1,0,0) 

Example 21. Fitting humps function with two unconstrained Voigt profiles  (version 9.5) 
 

>>disp('Peak     Position       Height     Width     Area    Alpha') 

>> [FitResults,FitError]=peakfit(humps(0:.01:2),60,120,2,30,1.7,5,0) 

Peak    Position     Height       Width        Area        Alpha 

1       31.629       95.175       19.469      2404.5      2.1355 

2       90.736       19.826       33.185      764.32      1.3188 
 

GOF =  0.7618    0.9991 

  



Page | 403  

Example 22.  Measurement of three 

weak Gaussian peaks at x=100, 250, 400, 

superimposed in a very strong curved 

baseline plus noise. peakfitdemob.m, 

illustrated below. The peakfit function 

fits four peaks, treating the baseline as a 

4th peak whose peak position is negative. 

(The true peaks heights are 1, 2, and 3, 

respectively). Because this results in so 

many adjustable variables (4 peaks x 2 

variable/peak = 8 variables), you need to 

specify a "start" vector, like Example 7. 

You can test the reliability of this method 

by changing the peak parameters in lines 

11, 12, and 13 and see if the peakfit func-

tion will successfully track the changes and give accurate results for the three peaks without having to 

change the start vector. See Example 9 on iSignal.html for other ways to handle this signal.  

 

Example 23. 12th input argument (+/- mode) set to 1 (bipolar) to allow negative as well as positive 

peak heights. (Default is 0) 

  >> x=[0:.1:10];y=exp(-(x-5).^2)-.5*exp(-(x-3).^2)+.1*randn(size(x)); 

  >> peakfit([x' y'],0,0,2,1,0,1,0,0,0,1,1) 

         Peak#     Position      Height       Width      Area 

              1       3.1636      -0.5433         1.62      -0.9369 

              2       4.9487      0.96859       1.8456       1.9029 

  FitError =8.2757 

 

Example 24. Version 5 or later. Fits humps function to a model consisting of one Lorentzian and one 

Gaussian peak. 
 

    >> x=[0:.005:1.2];y=humps(x); 

[FitResults,FitError]=peakfit([x' y'],0,0,2,[2 1],[0 0]) 

           Peak#     Position      Height       Width      Area 

              1      0.30178       97.402      0.18862       25.116 

              2      0.89615       18.787      0.33676       6.6213 

  FitError = 1.0744 
  

Example 25. Five peaks, five different shapes, all heights = 1, all widths = 3, "extra" vector included 

for peaks 4 and 5.  
  x=0:.1:60; 

  y=modelpeaks2(x,[1 2 3 4 5],[1 1 1 1 1],[10 20 30 40 50],[3 3 3 3 3],[0 0 

0 2 -20])+.01*randn(size(x)); 

  peakfit([x' y'],0,0,5,[1 2 3 4 5],[0 0 0 2 -20])    

You can also use this technique to create models with all the same shapes but with different values 

of  'extra' using a vector of 'extra' values, or (in version 5.7) with different minimum width restrictions 

by using a vector of  'minwidth' values as input argument 13. 
 

https://terpconnect.umd.edu/~toh/spectrum/peakfitdemob.png
https://terpconnect.umd.edu/~toh/spectrum/peakfitdemob.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#examples
https://terpconnect.umd.edu/~toh/spectrum/MultipleShapesLarge.png
https://terpconnect.umd.edu/~toh/spectrum/modelpeaks2.m


Page | 404  

Example 26. Minimum width constraint (13th input argument) 

  >> x=1:30;y=gaussian(x,15,8)+.05*randn(size(x)); 

  No constraint (minwidth=0): 
  peakfit([x;y],0,0,5,1,0,10,0,0,0,1,0,0); 

  Widths constrained to values 7 or above: 

  peakfit([x;y],0,0,5,1,0,10,0,0,0,1,0,7); 
 

Example 27. Noise test with very noisy peak signal: peak height and RMS noise both equal to 1.  
>> x=[-10:.05:10];y=exp(-(x).^2)+randn(size(x)); 
>> P=peakfit([x;y],0,0,1,1,0,10); 
 

Example 28: Weak Gaussian peak on sloped straight-line baseline, 2-peak fit with one Gaussian and 

one variable-slope straight line ('slope', shape 26, peakfit version 6 and later only). 
 

>> x=8:.05:12; y=x + exp(-(x-10).^2);  

[FitResults,FitError]= peakfit([x;y],0,0,2,[1 26],[1 1],1,0) 

           Peak#     Position      Height       Width      Area            

              1         10          1     1.6651     1.7642 

              2      4.485    0.22297       0.05     40.045 

  FitError =0.093 
 

To make a more difficult example, this one has two weak 

Gaussian peaks on sloped straight-line baseline. In this case 

we use a 3-peak model with peakshape=[1 1 26], which is 

helped by adding rough first guesses ('start') using the 'polyfit' 

function to generate automatic first guesses for the sloping 

baseline. The third component (peak 3) is the baseline.  
 

x=8:.05:12 

y=x/2+exp(-(x-9).^2)+exp(-(x-

11).^2)+.02.*randn(size(x)); 

start=[8 1 10 1 polyfit(x,y,1)]; 

peakfit([x;y],0,0,3,[1 1 26],[1 1 1],1,start)  
 

 See example 38 (page 406) for a similar example with a curved baseline.  
 

  Example 29: Segmented linear fit (Shape 29). You specify the number of segments in the 4th input 

argument ('NumPoints') and the program attempts to find the optimum x-axis positions of the 

breakpoints that minimize the fitting error. The vertical dashed magenta lines mark the x-axis 

breakpoints. Another example with a single Gaussian band . 
 

  >> x=[0.9:.005:1.7];y=humps(x); 

  >> peakfit([x' y'],0,0,9,29,0,10,0,0,0,1,1) 
  

 Example 30: Polynomial fit (Shape 28). Specify the order of the polynomial (any positive integer) in 

the 6th input argument ('extra'). (The 12th input argument, 'bipolar', is set to 1 to plot the entire y-axis 

range when y goes negative).  
 

  >> x=[0.3:.005:1.7];y=humps(x);y=y + cumsum(y); 

  >> peakfit([x' y'],0,0,1,28,6,10,0,0,0,1,1)  
 

https://terpconnect.umd.edu/~toh/spectrum/SegmentedGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/Example28b.png


Page | 405  

Example 31: The Matlab/Octave script NumPeaksTest.m uses peakfit.m to demonstrate one way 

to determine the minimum number of model peaks needed to fit a set of data, plotting the fitting error 

vs the number of model peaks, and looking for the point at which the fitting error reaches a minimum. 

This script creates a noisy computer-generated signal containing a user-selected 3, 4, 5 or 6 underlying 

peaks, fits to a series of models containing 1 to 10 model peaks, plots the fitting errors vs the number of 

model peaks and then determines the vertex of  the best-fit parabola; the nearest integer is usually the 

correct number of peaks underlying peaks. Also requires that the plotit.m function be installed. 
 

Example 32: Examples of unconstrained variable shapes 30-33 and shape 39, all of which 

have three iterated variables (position, width, and shape):  
 

a. Voigt (shape 30). Returns Alphas (ratios of Lorentzian width to Gaussian width) as 6th column. 
 

  x=1:.1:30; y=modelpeaks2(x,[13 13],[1 1],[10 20],[3 3],[20 80]);  

  disp('Peak#     Position     Height    Width     Area   Alpha') 

  [FitResults,FitError] = peakfit([x;y],0,0,2,30,2,10). 
 

 b. Exponentially broadened Gaussian (shape 31):  
 

  load DataMatrix3; 

  peakfit(DataMatrix3, 1860.5,364,2,31,3,5,[1810 60 30 1910 60 30]) 
 

Version 8.4 also includes an alternative exponentially broadened Gaussian, shape 39, which is 

parameterized differently (see Example 39 on the next page). 
 

 c. Pearson (shape 32)   
 

  x=1:.1:30;  

  y=modelpeaks2(x,[4 4],[1 1],[10 20],[5 5],[1 10]);  

  [FitResults,FitError] = peakfit([x;y],0,0,2,32,0,5) 
 

 d. Gaussian/Lorentzian blend (shape 33):  
 

  x=1:.1:30; 0 

  y=modelpeaks2(x,[13 13],[1 1],[10 20],[3 3],[20 80]); 

  [FitResults,FitError]=peakfit([x;y],0,0,2,33,0,5)  

 

Example 34: Using the built-in "sortrows" function to sort the FitResults table by peak position 

(column 2) or peak height (column 3). 
 

 >> x=[0:.005:1.2]; y=humps(x);  

 >> FitResults,FitError]=peakfit([x' y'],0,0,3,1) 

 >> sortrows(FitResults,2) 

ans = 

            2      0.29898       56.463      0.14242       8.5601 

            1      0.30935       39.216      0.36407       14.853 

            3      0.88381       21.104      0.37227       8.1728 

>> sortrows(FitResults,3) 

ans = 

            3      0.88381       21.104      0.37227       8.1728 

            1      0.30935       39.216      0.36407       14.853 

            2      0.29898       56.463      0.14242       8.5601 

 

https://terpconnect.umd.edu/~toh/spectrum/NumPeaksTest.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Example39


Page | 406  

Example 35: Version 7.6 or later. Using the fixed-width Gaussian/Lorentzian blend (shape 35). 
 

  >> x=0:.1:10; y=GL(x,4,3,50)+.5*GL(x,6,3,50) + .1*randn(size(x)); 

  >> [FitResults,FitError]=peakfit([x;y],0,0,2,35,50,1,0,0,[3 3]) 

      peak     position      height      width       area 

       1       3.9527       1.0048          3       3.5138 

       2       6.1007       0.5008          3       1.7502 

     GoodnessOfFit = 6.4783      0.95141 
     

Compared to variable-width fit (shape 13), the fitting error is larger but nevertheless results are more 

accurate (when true peak width is known, width = [3 3]).  
    

>> [FitResults,GoodnessOfFit]= peakfit([x;y],0,0,2,13,50,1) 

          1       4.0632       1.0545       3.2182       3.9242 

          2       6.2736      0.41234       2.8114       1.3585 

  GoodnessOfFit = 6.4311      0.95211 
 

Note: to display the FitResults table with column labels, call peakfit.m with output 

arguments [FitResults...] and type :  
 

disp('      Peak number  Position      Height      Width       Peak 

area');disp(FitResults) 
 

Example 36: Variable exponent broadened Lorentzian function, shape 38. (Version 7.7 and above only). 

FitResults has an added 6th column for the measured time constant. 
 

  >> x=[1:100]'; 

  >> y=explorentzian(x',40,5,-10)+.01*randn(size(x)); 

  >> peakfit([x y],0,0,1,38,0,10) 
 

Example 37: 3-parameter logistic (Gompertz), shape 43. (Version 7.9 and above only). Parameters 

labeled Bo, Kh, and L. FitResults extended to 6 columns. 
 

>> t=0:.1:10; 

>> Bo=6;Kh=3;L=4; 

>> y=Bo*exp(-exp((Kh*exp(1)/Bo)*(L-t)+1))+.1.*randn(size(t)); 

>> [FitResults,GOF]=peakfit([t;y],0,0,1,43) 
 

Example 38: Shape 46, 'quadslope'. Two overlapping 

Gaussians (position=9,11; heights=1; widths=1.666) 

on a curved baseline, using a 3-peak fit with 

peakshape=[1 1 46], default NumTrials and start.  
  

>> x=7:.05:13; 

>> y=x.^2/50+exp(-(x-9).^2)+exp(-(x-

11).^2)+.01.*randn(size(x)); 

>> [FitResults,FitError]= 

peakfit([x;y],0,0,3,[1 1 46],[1 1 1]) 

Screen image on the right. Note: if the baseline is 

much higher in amplitude than the peak amplitude, it 

will help to supply an approximate 'start' value and to 

use NumTrials > 1. 

https://terpconnect.umd.edu/~toh/spectrum/Example38.png


Page | 407  

Example 39: Comparison of alternative unconstrained exponentially broadened Gaussians, shapes 31 

and 39. Shape 31 (expgaussian.m) creates the shape 

by performing a Fourier convolution of a specified 

Gaussian by an exponential decay of specified time 

constant, whereas shape 39 (expgaussian2.m) uses a 

mathematical expression for the final shape so 

produced. Both result in the same peak shape but are 

parameterized differently. Shape 31 reports the peak 

height and position as that of the original Gaussian 

before broadening, whereas shape 39 reports the 

peak height of the broadened result. Shape 31 reports 

the width as the FWHM (full width at half  

maximum) and shape 39 reports the standard 

deviation (sigma) of the Gaussian. Shape 31 reports 

the exponential factor and the number of data 

points and shape 39 reports the reciprocal of time 

constant in time units. See the script GaussVsExpGauss.m (on the left). See Matlab Figure 

windows 2 and 3. For multiple-peak fits, both shapes usually require a reasonable first guess (“start”) 

vector for best results. 
 

Method   Position   Height  Halfwidth   Area    Exponential factor 

Shape 31   10        1          5       5.3223       20.0001 

Shape 39   12.8282  0.35578    11.7731  5.3217        0.1 

See the script DemoExpgaussian.m for a more detailed explanation. 
 

Example 40: Use of the "start" vector in 4-Gaussian fit to the "humps" function 

  x=[-.1:.005:1.2];y=humps(x); 

 First attempt with default start values gives poor fit that varies from trial to trial: 

 [FitResults,GOF]=peakfit([x;y],0,0,4,1,0,10) 

 Second attempt specifying approximate “start” values in the 8th input argument gives much better fit: 

 start=[0.3 0.13 0.3 0.34 0.63 0.15 0.89 0.35]; 

 [FitResults,GOF]=peakfit([x;y],0,0,4,1,0,10,start) 
 

Example 41: Peakfit 9 and above. Use of peak shape 50 ("multilinear regression") when the peak 

positions and widths are known, and only the peak heights are unknown. The peak shapes, positions, 

and widths are specified in the 10th input argument "fixedparameters", which must in this case be a 

matrix listing the peak shape number (column 1), position (column 2), and width (column 3) of each 

peak, one row per peak. See the demonstration scripts peakfit9demo.m and peakfit9demoL.m. 
 

Example 42: RandPeaks.m is a script that demonstrates the accuracy of iterative peak fitting when no 

customized "start" values are provided, that is, knowing only the peak shape and number of peaks. It 

generates any number of overlapping Gaussian peaks (NumPeaks in line 9) of random position, height, 

and width and calls the peakfit function. Calculates the average percent errors in position, height, and 

width. As you increase the number of peaks, accuracy degrades, even if R2 remains close to 1.00.  

https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian2.m
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGauss.m
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGaussFigure2.png
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGaussFigure3.png
https://terpconnect.umd.edu/~toh/spectrum/DemoExpgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#peakfit9
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demoL.m
https://terpconnect.umd.edu/~toh/spectrum/RandPeaks.m


Page | 408  

How do you find the correct input arguments for peakfit?  

If you have no idea where to start, you can use the Interactive Peak Fitter (ipf.m) to quickly try 

different fitting regions, peak shapes, numbers of peaks, baseline correction modes, number of trials, 

etc. When you get a good fit, you can press the "W" key to print out the command line statement for 

peakfit.m that will perform that fit in a single line of code, with or without graphics.  

Working with the fitting results matrix "FitResults".  

Suppose you have performed a multi-peak curve fit to a set of data, but you are interested only in one 

or a few specific peaks. It is not always reliable to simply go by peak index number (the first column in 

the FitResults table); peaks sometimes change their position in the FitResults table arbitrarily, because 

the fitting error is independent of the peak order (the sum of peaks 1+2+3 is exactly the same as 2+1+3 

or 3+2+1, etc.). But you can sort this out by using the Matlab/Octave "sortrows" command to reorder 

the table in order of peak position or height. Also useful in such cases is my function val2ind(v, val), 

which returns the index and the value of the element of vector 'v' that is closest to 'val' (download this 

function and place in the Matlab search path). For example, suppose you want to extract the peak 

height (column 3 of FitResults) of the peak whose position (column 2 of FitResults) is closest to a 

particular value, call it "TargetPosition". There are three steps: 
 

VectorOfPositions=FitResults(:,2); 

IndexOfClosestPeak=val2ind(VectorOfPositions, TargetPosition); 

HeightOfClosestPeak=Fitresults(IndexOfClosestPeak,3); 
 

For an example of this use in a practical application, see RandomWalkBaseline.m. 
 

Another way to use the FitResults matrix is to compute start values for further fits.  

Demonstration script for peakfit.m 

DemoPeakFit.m is a demonstration script for peakfit.m. It generates an overlapping Gaussian peak 

signal, adds normally-distributed white noise, fits it with the peakfit.m function (in line 78), repeats this 

many times ("NumRepeats" in line 20), then compares the peak parameters (position, height, width, 

and area) of the measurements to their actual values and computes accuracy (percent error) and preci-

sion (percent relative standard deviation). You can change any of the initial values in lines 13-30. Here 

is a typical result for a two-peak signal with Gaussian peaks: 

 Percent errors of measured parameters: 
 

Position      Height       Width       Area 

 0.048404     0.07906     0.12684     0.19799 

 0.023986     0.38235    -0.36158    -0.067655 
 

|Average Percent Parameter Error for all peaks:  

 0.036195     0.2307      0.24421     0.13282 
 

In these results, you can see that the accuracy and precision (%RSD) of the 

peak position measurements are always the best, followed by peak height, and then the 

peak width and peak area, which are usually the worst.  

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://www.mathworks.com/help/matlab/ref/sortrows.html
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaseline.m
https://terpconnect.umd.edu/~toh/spectrum/Example37.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakFit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m


Page | 409  

 DemoPeakFitTime.m is a simulation that 

demonstrates how to apply multiple curve fits 

to a signal  that is changing with time. The sig-

nal contains two noisy Gaussian peaks (like the 

illustration at the right) in which the peak posi-

tion of the second peak increases with time and 

the other parameters remain constant (except 

for the noise). The script creates a set of 100 

noisy signals (on line 5) containing two Gauss-

ian peaks where the position of the second peak 

changes with time (from x=6 to 8) and the first 

peak remains the same. Then it fits a 2-

Gaussian model to each of those signals (on 

line 8), stores the FitResults in a 100 × 2 × 5 

matrix, displays the signals and the fits graph-

ically with time (click to play animation), then plots the measured peak position of the two peaks vs 

time on line 12. Here is a real-data example with exponential pulse that varies over time. For an exam-

ple of automating the processing of multiple stored data files, see page 340. 

Fitting peaks in multi-column data 

The script FittingPeaksInMultiColumnData.m shows how to read a multi-column data set from an Ex-

cel spreadsheet and to use peakfit.m to fit a selected portion of the signal in each column with a model 

consisting of 4 overlapping peaks. The data, a group of subsets extracted from the NIST InfraRed spec-

trum of benzene. The results for each subset are printed out and stored in the 4x5x6 matrix PP.  

 

https://terpconnect.umd.edu/~toh/spectrum/DemoPeakFitTime.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakFitTime.gif
https://terpconnect.umd.edu/~toh/spectrum/ChangingExponential.gif
https://terpconnect.umd.edu/~toh/spectrum/FittingPeaksInMultiColumnData.m


Page | 410  

Dealing with complex signals with lots of peaks 

When a signal consists of lots of peaks on a highly variable background, the best approach is often to 

use peakfit is "center" and "window" arguments to break up the signal into segments containing smaller 

groups of overlapping peaks with their segments of background, isolating the peaks that do not overlap 

with other peaks. The reasons for this are several: 
 

(a) peakfit.m works better if the number of variables for each fit is reduced; 

(b) it is easier to compensate for the local background over those smaller segments; 

(c) with smaller fits, you may not need to supply starting guesses for the peak position and widths; 

(d) you can easily skip over peaks or data regions that you are not interested in; 

(e) It is actually faster for the computer to execute a series of smaller peakfit() commands than a single 

one encompassing the entire data range in one go. 
 

An easy way to do this is to use my interactive peak fitter ipf.m (page 419) to explore various segments 

of the signal by panning and zooming and to try some trial fits and baseline correction settings, then 

press the "w" key to print out the peakfit syntax for that segment, with all its input arguments. Copy, 

paste, and edit the syntax for each segment as desired, then paste them into you code: 
 

[FitResults1, GOF1] = peakfit(datamatrix, center1, window1... 

[FitResults2, GOF2] = peakfit(datamatrix, center2, window2... 

Assign your data matrix to “datamatrix”. Each line will use the same data but with different “center” 

and “window” values. The other input arguments (peak shape, number of peaks, “extra”, number of 

trials, start values, baseline correction, etc.) may also be different if you changed then in ipf.m.  

Automatically finding and Fitting Peaks 

findpeaksfit.m is essentially a combina-

tion of findpeaks.m and peakfit.m. It uses 

the number of peaks found and the peak 

positions and widths determined by 

findpeaks as input for the peakfit.m func-

tion, which then fits the entire signal with 

the specified peak model. This combina-

tion function is more convenient than using 

findpeaks and peakfit separately. It yields 

better values than findpeaks, because peak-

fit fits the entire peak, not just the top part, 

and because it deals with non-Gaussian and 

overlapped peaks. However, it fits only 

those peaks that are found by findpeaks, so 

you will have to make sure that every peak 

that contributes to your signal is located by 

findpeaks. The syntax is:  

https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.gif


Page | 411  

 

function [P,FitResults,LowestError,residuals,xi,yi] = findpeaksfit(x, y, 

SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, smoothtype, 

peakshape, extra, NumTrials, BaselineMode, fixedparameters, plots) 

The first seven input arguments are exactly the same as for the findpeaks.... functions (page 232); if 

you have been using findpeaks or iPeak to find and measure peaks in your signals, you can use those 

same input argument values for findpeaksfit.m. The remaining six input arguments of findpeaksfit.m 

are for the peakfit function (page 392); if you have been using peakfit.m or ipf.m to fit peaks in you 

signals, you can use those same input argument values for findpeaksfit.m. Type "help findpeaksfit" for 

more information. This function is included in the ipf13.zip distribution.  
 

The animation on the right was created by the demo script findpeaksfitdemo.m. It shows findpeaksfit 

finding and fitting the peaks in 150 signals in real-time. Each signal has from 1 to 3 noisy Lorentzian 

peaks in variable locations. 
 

The script FindpeaksComparison.m compares the peak parameter accuracy of four peak detection func-

tions: findpeaksG/L, findpeaksb, findpeaksb3, and findpeaksfit applied to a computer-generated signal 

with multiple peaks plus variable types and amounts of baseline and random noise. The last three of 

these functions include iterative peak fitting equivalent to peakfit.m, in which the number of peaks and 

the "first guess" starting values are determined by findpeaksG/L. Typical result shown below. 

 
 

Average absolute percent errors of all peaks 

           Position error  Height error  Width error   Elapsed time, sec 

findpeaksG     0.365331      35.5778      11.6649      0.005768 

findpeaksb     0.28246       2.7755       3.4747       0.069061 

findpeaksb3    0.28693       2.2531       2.9951       0.49538 

findpeaksfit   0.341892      12.7095      18.3436      0.273 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipf13.zip
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.gif
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfitdemo.m
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksL.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m


Page | 412  

Keypress operated Interactive Peak Fitter (ipf.m) 

ipf.m for Matlab (Version 13.3, September 

2019), or ipfoctave.m for Octave, is a  peak 

fitter for x,y data that uses keyboard 

commands and the mouse cursor. It is a self-

contained function, in a single m-file. The 

interactive keypress operation also works if 

you run Matlab Online in a web browser, but 

it does not work in Matlab Mobile on iPads 

and iPhones. The flexible input syntax allows 

you to specify the data as separate x,y vectors 

or as a 2xn matrix, and to optionally define 

the initial focus by adding “center” and 

“window” values as additional input 

arguments, where 'center' is the desired x-

value in the center of the upper window and 

“window” is the desired  width of that window. Double-click the figure window title bar to expand to 

full screen for a better view. Examples: 

   1 input argument: 

    ipf(y) or ipf([x;y]) or ipf([x;y]'); 

   2 input arguments: 

    ipf(x,y) or ipf([x;y],center) or ipf([x;y]',center); 

   3 input arguments: 

    ipf(x,y,center) or ipf(y,center,window) or  

    ipf([x;y],center,window) or ipf([x;y]',center,window); 

   4 input arguments: 

    ipf(x,y,center,window); 
 

Like iPeak and iSignal, ipf.m starts out by showing the entire signal in the lower panel and the selected 

region that will be fitted in the upper panel (adjusted by the same cursor controls keys as iPeak and 

iSignal). After performing a fit, the upper panel shows the data as blue dots, the total model as a red 

line (ideally overlapping the blue dots), and the model components as green lines. The dotted magenta 

lines are the first-guess peak positions for the last fit. The lower panel shows the residuals (difference 

between the data and the model). Important note: Make sure you do not click on the “Show Plot Tools” 

button in the toolbar above the figure; that will disable normal program functioning. If you do, close 

the Matlab Figure window and start again. Animated instructions on its use are available online at 

https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html. 
 

Recent version history. Version 13.3: September 2019. Adds baseline corrections modes 4 and 5. 

Version 13.2 displays "Working..." while the fit is in progress; modified "d" key to save model data to 

disc as SavedModel.mat. Version 13 added new peak shapes, a total of 24 shapes is now selectable by 

single keystroke and 49 total selectable from the "-" menu. Version 12.4: Changed IQR in the bootstrap 

method to IQR/1.34896, which estimates the RSD without outliers for a normal distribution. Version 

https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipfoctave.m
https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html
https://terpconnect.umd.edu/~toh/spectrum/ipf13.png


Page | 413  

11.1 adds minimum peak width constraint (Shift-W); adds saturation maximum (Shift-M) to ignore 

points above saturation maximum (useful for fitting peaks whose peaks are flat because they have 

reached saturation). Version 11 adds polynomial fitting (Shift-o key). Version 10.7 corrects bugs in 

equal-width Lorentzians (shape 7) and in the bipolar (+ and -) mode. Version 10.5, August 2014 

adds Shift-Ctrl-S and Shift-Ctrl-P keys to transfer the current signal to iSignal and iPeak, respectively, 

if those functions are installed in your Matlab search path; Version 10.4, June 2014. Moves fitting 

result text to bottom panel of graph. Log mode: (M key) toggles log mode on/off, fits log(model) to 

log(y). Replaces bifurcated Lorentzian with the Breit-Wigner-Fano resonance peak (Shift-B key); 

see http://en.wikipedia.org/wiki/Fano_resonance. Ctrl-A selects all; Shift-N negates signal. Version 10 

adds multiple-shape models; Version 9.9 adds '+=' key to flip between + (positive peaks only) and 

bipolar (+/- peaks) modes; Version 9.8 adds Shift-C to specify custom first guess ('start'). Version 9.7 

adds Voigt profile shape. Version 9.6 added an additional BaselineMode that subtracts a flat baseline 

without requiring that the signal return to the baseline at both ends of the signal segment. Version 9.5 

added exponentially broadened Lorentzian (peak shape 18) and alpha function (peak shape 19);Version 

9.4: added bug fix for height of Gaussian/ Lorentzian blend shape; Version 9.3 added Shift-S to save 

the Matlab Figure window as a PNG graphic to the current directory. Version 9.2: bug fixes; Version 

9.1 added fixed-position Gaussians (shape 16) and fixed-position Lorentzians (shape 17) and a peak 

shape selection menu ( activated by the '_-' key).  

 

Demoipf.m is a demonstration script for ipf.m, with a built-in simulated signal generator. To download 

these m-files, right-click on these links, select Save Link As..., and click Save. You can also download 

a ZIP file containing ipf.m, Demoipf.m, and peakfit.m.  
 

Example 1: Test with pure Gaussian function, default settings of all input arguments. 

>> x=[0:.1:10];y=exp(-(x-5).^2);ipf(x,y) 

In this example, the fit is essentially perfect, no matter what are the pan and zoom settings or the initial 

first-guess (start) values. (However, the peak area, the last fit result reported, includes only the area 

within the upper window, so it does vary). If there were noise in the data or if the model were imperfect, 

then all the fit results will depend on the exact the pan and zoom settings. 
 

Example 2: Test with "center" and "window" specified. 

>> x=[0:.005:1];y=humps(x).^3; 

>> ipf(x,y,0.335,0.39) focuses on first peak 

>> ipf(x,y,0.91,0.18) focuses on second peak 
 

Example 3: Isolates a  narrow segment toward the end of the signal. 

>> x=1:.1:1000;y=sin(x).^2;ipf(x,y,843.45,5) 
 

Example 4: Very noisy peak (SNR=1).  

x=[0:.01:10];y=exp(-(x-5).^2)+randn(size(x));ipf(x,y,5,10) 

Press the F key to fit a Gaussian model to the data. 

Press the N key several times to see how much uncertainty in peak parameters is caused by the noise. 
 

Example 5: 1-4 Gaussian peaks, no noise, zero baseline, all peak parameters are integer numbers. 

Illustrates the use of the X key (best of 10 fits) as the number of peaks increases. 

http://en.wikipedia.org/wiki/Fano_resonance
https://terpconnect.umd.edu/~toh/spectrum/Demoipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipf13.zip


Page | 414  

Height=[1 2 2 3 3 3 4 4 4 4]; 

Position=[10 30 35 50 55 60 80 85 90 95]; Width=[2 3 3 4 4 4 5 5 5 5]; 

x=[0:.01:100];y=modelpeaks(x,10,1,Height,Position,Width,0); 

ipf(x,y); 

ipf keyboard controls (Version 13.4): Obtained by pressing the K key 

 Pan signal left and right...Coarse: < and > 

                             Fine: left and right cursor arrow  

                             Nudge: [ ]  

 Zoom in and out.............Coarse zoom: ?/ and "'   

                             Fine zoom: up and down arrow keys 

 Select entire signal........Crtl-A (Zoom all the way out) 

 Resets pan and zoom.........ESC 

 Select # of peaks...........Number keys 1-9, or press 0 key to 

                             enter number manually 

 Peak shape from menu........- (minus or hyphen), then type 

                               number or shape vector and Enter 

 Select peak shape by key....g unconstrained Gaussian 

                             h equal-width Gaussians 

                             Shift-G fixed-width Gaussians 

                             Shift-P fixed-position Gaussians 

                             Shift-H bifurcated Gaussians 

                                (equal shape, a,z adjust) 

                             e Exponential-broadened Gaussian 

                              (equal shape, a,z adjust) 

                             Shift-R  ExpGaussian (var. tau) 

                             j exponential-broadened equal-width Gaussians 

                               (equal shape, a,z adjust) 

                             l unconstrained Lorentzian 

                             :; equal-width Lorentzians 

                             Shift-[ fixed-position Lorentzians 

                             Shift-E Exponential-broadened Lorentzians  

                                 (equal shape, a,z adjust) 

                             Shift-L Fixed-width Lorentzians (a,z adjust) 

                             o LOgistic distribution (Use 

                               Sigmoid for logistic function) 

                             p Pearson (a,z keys adjust shape) 

                             Shift-L Pearson IV variable asymmetry 

                             u exponential pUlse 

                               y=exp(-tau1.*x).*(1-exp(-tau2.*x)) 

                             Shift-U Alpha: y=(x-tau2)./  

                                    tau1.*exp(1-(x-tau2)./tau1) 

                             s Up Sigmoid (logistic function): 

                               y=.5+.5*erf((x-tau1)/sqrt(2*tau2)) 

                             Shift-D Down Sigmoid 

                              y=.5-.5*erf((x-tau1)/sqrt(2*tau2)) 

                             ~` Gauss/Lorentz blend (equal shape, 

                             Shift-V Voigt profile (a/z adjusts 

                                     a,z adjust shape) 

                             Shift-B Breit-Wigner-Fano (equal 

                                    shape a,z adjust) 

 Fit.........................f 

 Select BaselineMode ........t selects none, tilted, quadratic,  



Page | 415  

                               flat, tilted mode(y), flat mode(y) 

 + or +/- peak mode..........+=  Flips between + peaks only and 

                                 +/- peak mode 

 Invert (negate) signal......Shift-N 

 Toggle log y mode OFF/ON....m  Log mode plots and fits 

                                log(model) to log(y). 

 2-point Baseline............b, then click left and right baseline 

 Set manual baseline.........Backspace, then click baseline at 

                                        multiple points 

 Restore original baseline...|\  to cancel previous background subtraction 

 Cursor start positions......c, then click on each peak position 

 Type in start vector........Shift-C Type or Paste start vector 

                                     [p1 w1 p2 w2 ...] 

 Print current start vector..Shift-Q 

 Enter value of 'Extra'......Shift-x, type value (or vector of values 

                                      in brackets), press Enter. 

 Adjust 'Extra' up/down......a,z: 5% change; upper case A,Z:0.5% change 

 Print parameters & results..q 

 Print fit results only......r 

 Compute bootstrap stats.....v  Estimates standard deViations of parameters 

 Fit single bootstrap........n  Extracts and Fits siNgle 

                                bootstrap sub-sample. 

 Plot signal in figure 2.....y 

 save model to Disk..........d  Save model to Disk as SavedModel.mat. 

 Refine fit..................x Takes best of 10 trial fits 

                               (change number in line 227 of ipf.m) 

 Print peakfit function......w  Print peakfit function with all 

                                input arguments 

 Save Figure as png file.....Shift-S  Saves Figure window as Figure1.png, 

                                      Figure2.png, etc. 

 Display current settings....Shift-?  displays list of current settings 

 Fit polynomial to segment...Shift-o  Asks for polynomial order   

 Enter minimum width.........Shift-W  Constrains peak widths to 

                                      a specified minimum. 

 Enter saturation maximum....Shift-M    Ignores points above a 

                                      specified saturation maximum. 

 Switch to iPeak.............Shift-Ctrl-P transfers current 

                                          signal to iPeak.m 

 Switch to iSignal...........Shift-Ctrl-S transfers current 

                                          signal to iSignal.m 

(The function ShapeDemo demonstrates the basic peak shapes graphically, showing the variable-shape 

peaks as multiple lines; graphic on page 419)  

  

https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.png


Page | 416  

Practical examples with real experimental data: 

1. Fitting weak and noisy chromatographic peaks with exponentially modified Gaussians. 

 

a. In this real-data example, pan and zoom controls are used to isolate a segment of a 

chromatogram from 4 to 7.5 minutes that contains three very weak peaks near 5.8 minutes, on an 

offset and slightly tilted baseline. The lower plot shows the whole chromatogram, and the upper 

plot shows the selected segment. Only the peaks in that segment are subject to the fitting operation. 

Pan and zoom are adjusted so that the signal returns to the local baseline at the ends of the 

segment.  

b. Pressing T selects Baseline Mode 1, causing the program to subtract a linear baseline 

interpolated from these data points. Pressing 3, E selects a 3-peak exponentially broadened 

Gaussian model (a common peak shape in chromatography). Pressing F initiates the fit. The A and 

Z keys are then used to adjust the time constant ("Extra") to obtain the best fit. The residuals 

(bottom panel) are random and exhibit no obvious structure, indicating that the fit is as good as is 

possible at this noise level. A bootstrap error analysis (page 166) indicates that the relative 

standard deviation of the measured peak heights is predicted to be less than 3%. 

 

  

https://terpconnect.umd.edu/~toh/spectrum/ipfbig.GIF
https://terpconnect.umd.edu/~toh/spectrum/IPFkeyboardBig.GIF


Page | 417  

2. Measuring the areas of peaks. In the next 

example, a sample of room air is analyzed by gas 

chromatography (data source). The resulting 

chromatogram shows two slightly overlapping 

asymmetrical peaks, the first for oxygen and the 

second for nitrogen. The area under each peak is 

presumed to be proportional to the gas composition. 

The perpendicular drop method (page 139) of 

measuring the areas gives peak areas in a ratio of 

25% and 75%, compared to the actual 21% and 78% 

composition, which is not very accurate, possibly 

because the peaks are so asymmetric. However, an 

exponentially broadened Gaussian (which a 

commonly encountered peak shape in 

chromatography) gives a good fit to the data, using 

ipf.m and adjusting the exponential term with the A and Z keys to get the best fit. The results for a two-

peak fit, shown in the ipf.m screen on the right and in the R-key report below, show that the peak areas 

are in a ratio of 23% and 77%, which is a bit better. With a 3-peak fit, modeling the nitrogen peak as the 

sum of two closely overlapping peaks whose areas are added together, the curve fit is much better (less 

than 1% fitting error), and indeed the result in that case is 21.1% and 78.9% - which is considerably 

closer the actual composition.  

Percent Fitting Error =2.9318%  Elapsed time = 11 sec. 

   Peak#  Position   Height    Width     Area 

    1     4.8385     17762    0.081094   1533.2 

    2     5.1439     47142    0.10205    5119.2 

 

3. The accuracy of peak position measurement can be 

good even if the fitting error is rather poor. In this example, 

an experimental high-resolution atomic emission spectrum is 

examined in the region of the well-known spectral lines of 

the element sodium. Two lines are found there (figure on the 

right), and when an unconstrained Lorentzian or Gaussian 

model is fit to the data, the peak wavelengths are determined 

to be 588.98 nm and 589.57 nm:  

          

Percent Fitting Error 6.9922%     

Peak#   Position   Height    Width    Area 

 1       588.98    234.34   0.16079   56.47 

 2       589.57    113.18   0.17509   29.63 
 

Compare this to the ASTM recommended wavelengths for this element (588.995 and 589.59 nm) and 

you can see that the error is no greater than 0.02 nm, which is considerably less than the interval 

between the data points (0.05 nm). And this is despite the fact that the fit is not particularly good, 

http://matlab.cheme.cmu.edu/2012/06/22/curve-fitting-to-get-overlapping-peak-areas/#13
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Nitrogen
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#pdrop
https://terpconnect.umd.edu/~toh/spectrum/ChromPeaks3b.png
http://en.wikipedia.org/wiki/Sodium-vapor_lamp
http://en.wikipedia.org/wiki/Sodium-vapor_lamp
http://www.astm.org/Standards/C1301.htm
https://terpconnect.umd.edu/~toh/spectrum/Sodium.png


Page | 418  

because the peaks shapes are rather oddly shaped (possibly because of self-absorption, because these 

particular atomic lines are strongly absorbing as well as strongly emitting). This high degree of 

absolute accuracy compared to a reliable exterior standard is a testament to the excellent wavelength 

calibration of the instrument on which these experimental data were obtained, but it also shows that 

peak position is by far the most precisely measurable parameter in peak fitting, even when the data are 

noisy and the curve fit is not particularly good. The bootstrap standard deviation estimates (page 166) 

calculated by ipf.m for both wavelengths is 0.015 nm (see #17 in the next section), and using the 2 x 

standard deviation rule-of-thumb would have predicted a probable error within 0.03 nm. (An even 

lower fitting error can be achieved by fitting to 4 peaks, but the position accuracy of the larger peaks 

remains virtually unchanged). 

 

 4. How many peaks to model? In the second and third examples above, the number of peaks in the 

model was suggested by the data and by the expectations of each of those experiments (two major 

gases in air; sodium has a well-known doublet at that wavelength). In the first example, no a priori 

expectation of number of peaks was available, but the data suggested three obvious peaks, and the 

residuals were more random and unstructured with a 3-peak model, suggesting that no additional model 

peaks were needed. In many cases, however, the number of model peaks is not so clearly indicated. In a 

previously described example on page 214, the fitting error keeps getting lower as more peaks are 

added to the model, yet the residuals remain "wavy" and never become random. Without further 

knowledge of the experiment, it is impossible to know which the “real peaks” are and what is just 

"fitting the noise". But in some cases, the data may suggest something other than your pre-conceived 

notions; sometimes data is nature’s way of tapping you on the shoulder. 
 

 

  

http://www.thespectroscopynet.eu/?Physical_Background:Optics:Selfabsorption
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap
https://terpconnect.umd.edu/~toh/spectrum/Na4peakfit.png


Page | 419  

Operating instructions for ipf.m (version 13.4). 

Animated instructions available at https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html  

1. At the command line, type ipf(x,y), (x = independent variable, y = dependent variable) or 

ipf(datamatrix) where "datamatrix" is a matrix that has x values in row or column 1 and y 

values in row or column 2. Or if you have only one signal vector y, type ipf(y). You may option-

ally add to additional numerical arguments: ipf(x,y,center,window); where 'center' is the de-

sired x-value in the center of the upper window and “window” is the width of that window. 
 

2. Use the four cursor arrow keys on the keyboard to pan and zoom the signal to isolate the peak or 

group of peaks that you want to fit in the upper window. (Use the < and > and ? and " keys for 

coarse pan and zoom and the square bracket keys [ and ] to nudge one point left and right). The 

curve fitting operation applies only to the segment of the signal shown in the top plot. The bottom 

plot shows the entire signal. Try not to get any undesired peaks in the upper window or the program 

may try to fit them. To select the entire signal, press Ctrl-A. 
 

3. Press the number keys (1– 9) to choose the number of model peaks, that is, the minimum number of 

peaks that you think will suffice to fit this segment of the signal. For more than 9 peaks, press 0, 

type the number, and press Enter. 
 

4. Select the desired model peak shape. In ipf.m version 13, there are 24 different peak shapes avail-

able by keystroke, e.g., G=Gaussian, L=Lorentzian, U=exponential pulse, S=sigmoid (logistic 



Page | 420  

function), etc. Press K to see a list of all commands. You can also select the shape by number from 

an even larger menu of 49 shapes by pressing the - (minus) key and selecting the shape by number. 

If the peak widths of each group of peaks is expected to be the same or nearly so, select the "equal-

width" shapes. If the peak widths or peak positions are known from previous experiments, select 

the "fixed-width" or "fixed position" shapes. These more constrained fits are faster, easier, and 

much more stable than regular all-variable fits, especially if the number of model peaks is greater 

than 3 (because there are fewer variable parameters for the program to adjust - rather than 

an independent value for each peak). 
 

5. A set of vertical dashed lines are shown on the plot, one for each model peak. Try to fine-tune 

the Pan and Zoom keys so that the signal goes to the baseline at both ends of the upper plot and so 

that the peaks (or bumps) in the signal roughly line up with the vertical dashed lines. This does not 

have to be exact. 
 

6. If you want to allow negative peaks as well as positive peaks, press the + key to flip to the +/- mode 

(indicated by the +/- sign in the y-axis label of the upper panel. Press it again to return to the + 

mode (positive peaks only). You can switch between these modes at any time. To negate the entire 

signal, press Shift-N. 
 

7. Press F to initiate the curve-fitting calculation. In version 13.2, the center of the graph displays 

"Working..." while the fit is in progress. Each time you press F, another fit of the selected model to 

the data is performed with slightly different starting positions, so that you can judge the stability of 

the fit with respect to changes in starting first guesses. Keep your eye on the residuals plot and on 

the "Error %" display. Do this several times, trying for the lowest error and the most unstructured 

random residuals plot. At any time, you can adjust the signal region to be fit (step 2), the baseline 

position (step 9 and 10), change the number of peaks (step 3), or peak shape (step 4), then press 

the F key again to compute another fit. If the fit seems unstable, try pressing the X key a few times 

(see #14, below).  
 

8. The model parameters of the last fit are displayed in the upper window. For example, for a 3-peak 

fit:  

    Peak# Position  Height   Width    Area 

     1    5.33329   14.8274  0.262253 4.13361 

     2    5.80253   26.825   0.326065 9.31117 

     3    6.27707   22.1461  0.249248 5.87425 
 

The column are, left to right: the peak number, peak position, peak height, peak width, and the peak 

area. (Note: for exponential pulse (U) and sigmoid (S) shapes, Position and Width are replaced by 

Tau1 and Tau2). Press R to print this table out in the command window. Peaks are numbered from 

left to right. (The area of each component peak within the upper window is computed using the 

trapezoidal method and displayed after the width). Pressing Q prints out a report of settings and re-

sults in the command window, like so: 

Peak Shape = Gaussian 

Number of peaks = 3 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Peak_width_constraints
https://terpconnect.umd.edu/~toh/spectrum/RefitAnimationX.gif


Page | 421  

Fitted range = 5 - 6.64 

Percent Error = 7.4514    Elapsed time = 0.19 Sec. 

Peak#  Position      Height       Width        Area 

1      5.33329      14.8274     0.262253      4.13361 

2      5.80253       26.825     0.326065      9.31117 

3      6.27707      22.1461     0.249248      5.87425 

9. To select the baseline correction mode, press the T key repeatedly; it cycles through 6 baseline cor-

rection modes: none, linear tilted, quadratic, flat, tilted mode(y), flat mode(y). When baseline sub-

traction is linear, a straight-line baseline connecting the two ends of the signal segment in the upper 

panel will be automatically subtracted. When baseline subtraction is quadratic, a parabolic baseline 

connecting the two ends of the signal segment in the upper panel will be automatically subtracted. 

The mode(y) method subtracts the most common y value from all the points in the selected region. 

For peak-type signals where the peaks usually return to the baseline between peaks, this is usually 

the baseline even if the signal does not return to the baseline at the ends like modes 2 and 3 (graphic 

example). Use the quadratic baseline correction if the baseline is curved, as in these examples: 

 
BaselineMode OFF 

 
Linear BaselineMode 

 
Quadratic BaselineMode 

10. If you prefer to set the baseline manually, press the B key, then click on the baseline to the LEFT 

the peak(s), then click on the baseline to the RIGHT the peak(s). The new baseline will be subtract-

ed and the fit re-calculated. (The new baseline remains in effect until you use the pan or zoom con-

trols). Alternatively, you may use the multipoint background correction for the entire signal: press 

the Backspace key, type in the desired number of background points and press the Enter key, then 

click on the baseline starting at the left of the lowest x-value and ending to the right of the highest 

x-value. Press the \ key to restore the previous background to start over. 
 

11. In some cases, it will help to manually specify the first-guess peak positions: press C, then click on 

your estimates of the peak positions in the upper graph, once for each peak. A fit is automatically 

performed after the last click. Peaks are numbered in the order clicked. For the most difficult fits, 

you can type Shift-C and then type in or Paste in the entire start vector, complete with square 

brackets, e.g., “[pos1 wid1 pos2 wid2 ...]” where "pos1" is the position of peak 1, "wid1" is the 

width of peak 1, and so on for each peak. The custom start values remain in effect until you change 

the number of peaks or use the pan or zoom controls. Hint: if you Copy the start vector and keep it 

in the Paste buffer, you can use the Shift-C key and Paste it back in after changing the pan or zoom 

controls. Note: It is possible to click beyond the x-axis range, to try to fit a peak whose maximum 

https://terpconnect.umd.edu/~toh/spectrum/Mode%28y%29example.png
https://terpconnect.umd.edu/~toh/spectrum/Mode%28y%29example.png
https://terpconnect.umd.edu/~toh/spectrum/autozeroOFF.png
https://terpconnect.umd.edu/~toh/spectrum/autozeroLinear.png
https://terpconnect.umd.edu/~toh/spectrum/autozeroQuadratic.png


Page | 422  

is outside the x-axis range displayed. This is useful when you want to fit a curved baseline by treat-

ing it as an additional peak whose peak position if off-scale (real data graphic example). 
 

12. The A and Z keys control the "shape" parameter ('extra') that is used only if you are using the 

"equal shape" models such as the Voigt profile, Pearson, exponentially broadened Gaussian 

(ExpGaussian), exponentially-broadened Lorentzian (ExpLorentzian), bifurcated Gaussian, Breit-

Wigner-Fano, or Gaussian/Lorentzian blend. For these models, the shapes are variable with 

the Aand Z keys but are the same for all peaks in the model. For the Voigt profile, the "shape" pa-

rameter controls alpha, the ratio of the Lorentzian width to the Doppler width. For the Pearson 

shape, a value of 1.0 gives a Lorentzian shape, a value of 2.0 gives a shape roughly half-way be-

tween a Lorentzian and a Gaussian, and larger values give a nearly Gaussian shape. For the expo-

nentially broadened Gaussian shapes, the "shape" parameter controls the exponential "time con-

stant" (expressed as the number of points). For the Gaussian/Lorentzian blend and the bifurcated 

Gaussian shape, the "shape" parameter controls the peak asymmetry (a values of 50 gives a sym-

metrical peak). For the Breit-Wigner-Fano, it controls the Fano factor. You can enter an initial value 

of the "shape" parameter by pressing Shift-X , typing in a value, and pressing the Enter key. For 

multi-shape models, enter a vector of "extra" values, one for every peak, enclosed in square brack-

ets. For single-shape models, you can adjust this value using the A and Z keys (hold down the 

Shift key to fine tune). Seek to minimize the Error % or set it to a previously determined value. 

Note: if fitting multiple overlapping variable-shape peaks, it is easier to fit a single peak first, to get 

a rough value for the "shape" parameter, then just fine-tune that parameter for the multipeak fit if 

necessary. 
 

13. For situations where the shapes may be different for each peak and you want the computer to de-

termine the best-fit shape for each peak separately, use the shapes with three unconstrained iterated 

variables: 30=variable alpha Voigt, 31=variable time constant ExpGaussian (Shift-R), 32=variable 

shape Pearson, 33=variable percent 

Gaussian/Lorentzian blend. These mod-

els are more time-consuming and diffi-

cult, especially for multiple overlapping 

peaks. 
 

14.  For difficult fits, it may help to press 

X, which restarts the iterative fit 10 

times with slightly different first guesses 

and takes the one with the lowest fitting 

error. In version 13.2, the center of the 

graph displays "Working..." while the 

fits are in progress. This will take a lit-

tle longer, obviously. (You can change 

the number of trials, "NumTrials", in or 

near line 227 - the default value is 10). 

The peak positions and widths resulting 

https://terpconnect.umd.edu/~toh/spectrum/FiveLorentzianBackground.png
https://terpconnect.umd.edu/~toh/spectrum/ifp5demo1.png


Page | 423  

from this best-of-10 fit then become the starting points for subsequent fits, so the fitting error should 

gradually get smaller and smaller each time you press X, until it settles down to a minimum. If none 

of the 10 trials gives a lower fitting error than the previous one, nothing is changed. Those starting 

values remain in effect until you change the number of peaks or use the pan or zoom controls. (Re-

member: equal-width fits, fixed-width fits, and fixed position shapes are both faster, easier, and 

much more stable than regular variable fits, so use equal-width fits whenever the peak widths are 

expected to be equal or nearly so, or fixed-width (or fixed position) fits when the peak widths or 

positions are known from previous experiments).  
 

15. Press Y to display the entire signal full screen without cursors, with the last fit displayed in green. 

The residual is displayed in red, on the same y-axis scale as the entire signal. 
 

16. Press M to switch back and forth between log and linear modes. In log mode, the y-axis of the up-

per plot switches to semilog-y, and log(model) is fit to log(y), which may be useful if the peaks 

vary greatly in amplitude. 
 

17. Press the D key to save the fitting data to disc as SavedModel.mat, containing two matrices: 

DataSegment (the raw data segment that is fit) and ModelMatrix (a matrix containing each 

component of the model interpolated to 600 points in that segment). To place these into the 

workspace, type load SavedModel. To plot saved DataSegment, type plot(DataSegment(:,1), 

DataSegment(:,2)). To plot SavedModel, type plot(ModelX,ModelMatrix); each component in the 

model will be plotted in a different color. 
 

18. Press W to print out the peakfit.m function with all input arguments, including the last best-fit val-

ues of the first guess vector. You can copy and paste the peakfit.m function into your own code or 

into the command window, then replace "datamatrix" with your own x-y matrix variable.  
 

19. Both ipf.m, and peakfit.m are able to estimate the expected variability of the peak position, height, 

width, and area from the signal, by using the bootstrap sampling method (page 166). This involves 

extracting 100 bootstrap samples from the signal, fitting each of those samples with the model, then 

computing the uncertainty of each peak: the standard deviation (RSD) and the relative percent 

standard deviation (%RSD). Basically, this method calculates weighted fits of a single data set, us-

ing a different set of different weights for each sample. This process is computationally intensive 

can take several minutes to complete, especially if the number of peaks in the model and/or the 

number of points in the signal are high. 
 

To activate this process in ipf.m, press the V key. It first asks you to type in the number of "best-of-

x" trial fits per bootstrap sample (the default is 1, but you may need higher number here if the fits 

are occasionally unstable; try 5 or 10 here if the initial results give NaNs or wildly improbable 

numbers). (To activate this process in peakfit.m, you must use version 3.1 or later and include all 

six output arguments, e.g. [FitResults, LowestError, residuals, xi, yi, Boot-

strapErrors]=peakfit...). In version 13.2, the center of the graph displays "Working..." 

while the fits are in progress. The program displays the results as a table in the command window. 

For example, here is a three-peak Gaussian fit to some noisy experimental data, followed by a boot-

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Peak_width_constraints
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Peak_width_constraints
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap


Page | 424  

strap statistics calculation: 

 
Shape= Gaussian    % Fitting Error= 8.1876%    R2= 0.89861 

         Peak#      Position     Height       Width       Area 

            1       573.97       156.96       20.591      3401.6 

            2       583.94       146.22       5.3956      839.78 

            3       603.94       110.96       16.77       1861.7 

 

Number of fit trials per bootstrap sample (0 to cancel): 1 

Computing bootstrap sampling statistics....May take several minutes. 

 

 

Peak #1 

     Parameter      Mean        STD      STDIQR     PercentRSD    PercentRSDIQR 

    ____________    ______    _______    _______    __________    _____________ 

    {'Position'}    573.89    0.33752    0.28748     0.058813       0.050093    

    {'Height'  }    158.53     3.6802     3.0271       2.3215         1.9095    

    {'width'   }    19.038      1.408     1.2717       7.3954         6.6795    

    {'Area'    }    3187.6     194.89     178.79       6.1141         5.6088    

  

Peak #2 

     Parameter      Mean        STD       STDIQR     PercentRSD    PercentRSDIQR 

    ____________    ______    ________    _______    __________    _____________ 

    {'Position'}    583.84    0.098986     0.1007     0.016954       0.017247    

    {'Height'  }    156.03      10.837     11.916       6.9454         7.6372    

    {'width'   }    5.5557     0.26153    0.24418       4.7074         4.3952    

    {'Area'    }    924.28      95.719     76.147       10.356         8.2385    

  

Peak #3 

     Parameter      Mean        STD      STDIQR     PercentRSD    PercentRSDIQR 

    ____________    ______    _______    _______    __________    _____________ 

    {'Position'}     603.4    0.36056    0.33927     0.059754       0.056227    

    {'Height'  }    113.24     3.9028     4.3535       3.4465         3.8445    

    {'width'   }    16.128     1.2027     1.2781        7.457         7.9247    

    {'Area'    }    1843.3     79.733     87.735       4.3256         4.7598    

Elapsed time is 10.655257 seconds. 



Page | 425  

Note that, despite the noise in the data and the 8.4% fitting error, the bootstrap relative standard devia-

tions are not so bad, especially for peak positions and heights. Notice that the RSD of the peak position 

is best (lowest), followed by height and width and area. This is a typical pattern. Also, be aware that the 

reliability of the computed variability depends on the assumption that the noise in the signal is repre-

sentative of the average noise in repeated measurements. If the number of data points in the signal is 

small, these estimates can be very approximate. 
 

If the RSD and the RSDIQR are roughly the same (as in the example above), then the distribution of 

bootstrap fitting results is close to normal, and the fit is stable. If the RSD is substantially greater than 

RSD IQR, then the RSD is biased high by "outliers" (obliviously erroneous fits that fall far from the 

norm), and in that case you should use the RSD IQR rather than the RSD, because the IQR is much less 

influenced by outliers. (Alternatively, you could use another model or a different data set to see if that 

gives more stable fits). 
 

A likely pitfall with the bootstrap method, when applied to iterative fits, is the possibility that one (or 

more) of the bootstrap fits will go astray - that is, will result in peak parameters that are wildly different 

from the norm, causing the estimated variability of the parameters to be too high. For that reason, in ipf 

12.3, two measures of uncertainty are calculated: (a) the regular standard deviation (STD) and (b) the 

standard deviation estimated by dividing the interquartile range (IQR) by 1.34896. The IQR is more 

robust to outliers. For a normal distribution, the interquartile range is on average equal to 1.34896 

times the standard deviation. If one or more of the bootstrap sample fits fails, resulting in a distribution 

of peak parameters with large outliers, the regular STD will be much greater than the IQR. In that case, 

a more realistic estimate of variability is IRQ/1.34896. It is best to try to increase the fit stability by 

choosing a better model (e.g. using an equal-width or fixed-width model, or a fixed-position shape, if 

appropriate), adjusting the fitted range (pan and zoom keys), the background subtraction (T or B keys), 

or the start positions (C key), and/or selecting a higher number of fit trials per bootstrap (which will 

increase the computation time). As a quick preliminary test of bootstrap fit stability, pressing the N key 

will perform a single iterative fit to a random bootstrap sub-sample and plot the result. Do that several 

times to see whether the bootstrap fits are stable enough to be worth computing a 100-sample bootstrap. 

Note: it is normal for the stability of the bootstrap sample fits (N key: click here for animation) to be 

poorer than the full-sample fits (F key; click here for animation), because the latter includes only the 

variability caused by changing the starting positions for one set of data and noise, whereas 

the N and V keys aim to include the variability caused by the random noise in the sample by fitting 

bootstrap sub-samples. Moreover, the best estimates of the measured peak parameters are those ob-

tained by the normal fits of the full signal (F and X keys), not the means reported for the bootstrap 

samples (V and N keys), because there are more independent data points in the full fits and because 

the bootstrap averages are influenced by the outliers that occur more commonly in the bootstrap fits. 

The bootstrap results are useful only for estimating the variability of the peak parameters, not for esti-

mating their mean values. The N and V keys are also very useful ways to determine if you are using too 

many peaks in your model; superfluous peaks will be very unstable when N is press repeatedly and will 

have in much higher standard deviation of its peak height when the V key is used. 
 

Peakfit and the bootstrap method can work well for estimating the precision of peak parameter meas-

urements, even when the signal-to-noise ratio is quite poor. For an example based on the IR spectrum 

http://stattrek.com/statistics/dictionary.aspx?definition=Interquartile%20range
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Peak_width_constraints
https://terpconnect.umd.edu/~toh/spectrum/RefitAnimationN.gif
https://terpconnect.umd.edu/~toh/spectrum/RefitAnimationX.gif


Page | 426  

of benzene, from the NIST Quantitative Infrared Database, see FittingWeakPeaks.pdf. 
 

Shift-o fits a simple polynomial (linear, quadratic, cubic, etc.) to the segment of the signal dis-played in 

the upper panel and displays the polynomial coefficients (in descending powers) and the R2. 
 

20. If some peaks are saturated and have a flat top (clipped at maximum height), you can make the 

program ignore the saturated points by pressing Shift-M and entering the maximum Y values to keep. 

Y values above this limit will simply be ignored; peaks below this limit will be fit as usual. 
 

To constrain the model to peaks above a certain width, press Shift-W, and enter the minimum peak 

width allowed. 

Demoipf.m  

Demoipf.m is a demonstration script for ipf.m, with a built-in simulated signal generator. The true 

values of the simulated peak positions, heights, and widths are displayed in the Matlab command 

window, for comparison to the FitResults obtained by peak fitting. The default simulated signal 

contains six independent groups of peaks that you can use for practice: a triplet near x = 150, a singlet 

at 400, a doublet near 600, a triplet near 850, and two broad single peaks at 1200 and 1700. Run this 

demo and see how close to the actual true peak parameters you can get. The useful thing about a 

simulation like this is that you can get a feel for the accuracy of peak parameter measurements, that is, 

the difference between the true and measured values of peak parameters. To download these m-files, 

right-click on the links, select Save Link As..., and click Save. To run it, place both ipf.m and Demoipf 

in the Matlab search path, then type Demoipf at the Matlab command prompt. 

 

 

An example of the use of this script is shown in the figure. Here we focus on the 3 fused peaks located 

near x=850. The true peak parameters (before the addition of the random noise) are: 

https://webbook.nist.gov/chemistry/quant-ir/
https://terpconnect.umd.edu/~toh/spectrum/FittingWeakPeaks.pdf
https://terpconnect.umd.edu/~toh/spectrum/Demoipf.m
https://terpconnect.umd.edu/~toh/spectrum/Demoipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/Demoipf.m


Page | 427  

                Position       Height        Width     Area 

                   800            3           30       95.808 

                   850            2           40       85.163 

                   900            1           50       53.227 
 

When these peaks are isolated in the upper window and fitted with three Gaussians, the results are: 

                Position     Height        Width         Area   

                 800.04       3.0628       29.315       95.583 

                 850.15       1.9881       41.014       86.804 

                 901.3        0.9699       46.861       48.376 
 

So you can see that the accuracy of the measurements is excellent for peak position, good for peak 

height, and least good for peak width and area. It is no surprise that the least accurate measurements are 

for the smallest peak with the poorest signal-to-noise ratio. Note: the predicted standard deviation of 

these peak parameters can be determined by the bootstrap sampling method, as described in the 

previous section. We would expect that the measured values of the peak parameters (comparing the true 

to the measured values) would be within about 2 standard deviations of the true values listed above). 

Demoipf2.m is identical, except that the peaks are superimposed on a strongly curved baseline, so you 

can test the accuracy of the baseline correction methods (# 9 and 10, above).   

Execution time of peak fitting and other signal processing tasks 

By execution time, I mean the time it takes for one operation to be performed, exclusive of plotting or 

printing the results, when Matlab is running on a standard Windows PC. For iterative peak fitting, the 

biggest factors that determine the execution time are (a) the speed of the computer, (b) the number of 

peaks, and (c) the peak shape: 
 

a) The execution time can vary over a factor of 4 or 5 or more between different computers, 

(e.g., comparing a small laptop, with 1.6 GHz, dual-core Athlon CPU with 4 Gbytes RAM, to a 

desktop with a 3.4 GHz i7 CPU with 16 Gbytes RAM). Run the Matlab "bench.m" benchmark 

test to see how your computer stacks up.  
 

b) The execution time increases with the product of the number of peaks in the model times the 

number of iterated variables per peak. (See PeakfitTimeTest.m). 
 

c) The execution time varies greatly (sometimes by a factor of 100 or more) with the peak shape, 

with the exponentially-broadened shapes being the slowest and the fixed-width shapes being the 

fastest. See PeakfitTimeTest2.m and PeakfitTimeTest2a.m. The equal-width and fixed-width 

shape variations are always faster.  
 

d) The execution time increases directly with NumTrials in peakfit.m. The "Best of 10 trials" 

function (X key in ipf.m) takes about 10 times longer than a single fit.  
 

Other factors that are less important are the number of data points in the fitted region (but only if the 

number of data points is very large; for example see PeakfitTimeTest3.m) and the starting values (good 

starting values can reduce execution time slightly; PeakfitTimeTest2.m and PeakfitTimeTest2a.m have 

examples of that). Note: some of these scripts need DataMatrix2 and  DataMatrix3, which you can 

https://terpconnect.umd.edu/~toh/spectrum/Demoipf2.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2a.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest3.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2a.m
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix2.mat
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix3.mat


Page | 428  

download from http://tinyurl.com/cey8rwh.  
 

TimeTrial.txt is a text file comparing the speed of 18 different signal processing tasks running on 5 

different systems: (1) Windows 10, 64-bit, 3.6 GHz core i7, with 16 GBytes RAM, using Matlab 9.9 

(R2020b) Update 3 academic, (2) Matlab 2017b Home; (3) Matlab Online R2018b in the Chrome 

browser, running on older desktop or laptop PCs, (4) Matlab Mobile on an iPad, and (5) Octave 6.2.0 

running on a desktop computer. The Matlab/Octave code that generated this is TimeTrial.m, which runs 

all the tasks one after the other and prints out the elapsed times for your particular machine, in addition 

to the times previously recorded for each task on each of the five software systems. TimeTrial.xlsx 

summarizes the comparison of Matlab to Octave. Also see page 435 for a speed comparison between 

Matlab and Python running a few different tasks. 

Iterative Curve Fitting Hints and Tips 

1. If the fit fails completely, returning all zeros, the data may be formatted incorrectly. The independ-

ent variable ("x") and the dependent variable ("y") must be separate vectors or columns of a 2-x n 

matrix, with x in the first row or column. Or it may be that first guesses ("start") need to be provid-

ed for that fit.  

2. It is best not to smooth your data prior to curve fitting. Smoothing can distort the signal shape and 

the noise distribution, making it harder to evaluate the fit by visual inspection of the residuals plot. 

Smoothing your data beforehand makes it impossible to achieve the goal of obtaining a random un-

structured residuals plot and it increases the chance that you will "fit the noise" rather than the actu-

al signal. The bootstrap error estimates are invalid if the data are smoothed. 

3. The most important factor in non-linear iterative curve fitting is selecting the underlying model 

peak function, for example, Gaussian, Equal-width Gaussians, Lorentzian, etc. (see page 206). It is 

worth spending some time finding and verifying a suitable function for your data. If the peak 

widths of each group of peaks are expected to be the same or nearly so, select the "equal-width" 

shapes; equal-width fits (available for the Gaussian and Lorentzian shapes) are faster, easier, and 

much more stable than regular variable-width fits. But it is important to understand that a good fit 

is not by itself proof that the shape function you have chosen is the correct one; in some cases, the 

wrong function can give a fit that looks perfect. For example, consider a 5-peak Gaussian model 

that has a low percent fitting error and for which the residuals look random - usually an indicator of 

a good fit (Click for a graphic if you are reading online). But in fact, in this case, the model is 

wrong; those data came from an experimental domain where the underlying shape is fundamentally 

non-Gaussian but, in some cases, can look very like a Gaussian. It is important to get the model 

right for the data and not depend solely on the goodness of fit. 

4. You should always use the minimum number of peaks that adequately fit your data. (page 206). Us-

ing too many peaks may result in an unstable fit - the green lines in the upper plot, representing the 

individual component peaks, will bounce around wildly for each repeated fit, without significantly 

reducing the Error. A very useful way to determine if you are using too many peaks in your model 

is to use the N key (see #10, below) to perform a single fit to a bootstrap sub-sample of 

points; superfluous peaks will be very unstable when N is press repeatedly. (You can get better sta-

tistics for this test, at the expense of time, by using the V key to compute the standard deviation of 

100 bootstrap sub-samples). 

http://tinyurl.com/cey8rwh
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.txt
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.m
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GoodFitWrongModel.png


Page | 429  

5. If the peaks are superimposed on a background or baseline, then that must be accounted 

for before fitting, otherwise, the peak parameters (especially height, width, and area) will be inaccu-

rate. Either subtract the baseline from the entire signal using the Backspace key (#10 in Operating 

Instructions, above) or use the T key to select one of the automatic baseline correction modes (# 9 

in Operating Instructions, above). 

6. This program uses an iterative non-linear search function ("modified Simplex") to determine the 

peak positions and widths that best match the data. This requires first guesses for the peak positions 

and widths. (The peak heights do not require first guesses, because they are linear parameters; the 

program determines them by linear regression). The default first guesses for the peak positions are 

made by the computer based on the pan and zoom settings and are indicated by the magenta vertical 

dashed lines. The first guesses for the peak widths are computed from the zoom setting, so the best 

results will be obtained if you zoom in so that the group of peaks is isolated and spread out as sug-

gested by the peak position markers (vertical dashed lines).  

7. If the peak components are very unevenly spaced, you might be better off entering the first-guess 

peak positions yourself by pressing the C key and then clicking on the top graph where you think 

the peaks might be. None of this must be exact - they're just first guesses, but if they are too far off 

it can throw the search algorithm off. You can also type in the first guesses for position and width 

manually by pressing Shift-C). 

8. Each time you perform another iterative fit (e.g., pressing the F key), the program adds small ran-

dom deviations to the first guesses, to determine whether an improved fit might be obtained with 

slightly different first guesses. This is useful for determining the robustness or stability of the 

fit with respect to starting values. If the error and the values of the peak parameters vary slightly in 

a tight region, this means that you have a robust fit (for that number of peaks). If the error and the 

values of the peak parameters bounce around wildly, it means the fit is not robust (try changing the 

number of peaks, peak shape, and the pan and zoom settings), or it may simply be that the data are 

not good enough to be fit with that model. Try pressing the X key, which takes the best of 10 itera-

tive fits and uses those best-fit values as the starting first guess for subsequent fits. So, each time 

you press X, if any of those fits yield a fitting error less than the previous best, that one is taken as 

the start for the next fit. As a result, the fits tend to get better and better gradually as the X key is 

pressed repeatedly. Often, even if the first fit is terrible, subsequent X-key fits will improve consid-

erably. 

9. The variability in the peak parameters from fit to fit using the X or F keys is only an estimate of the 

uncertainty caused by the curve fitting procedure (but not of the uncertainty caused by the noise in 

the data, because this is only for one sample of the data and noise; for that you need the N key fits).  

10. To examine the robustness or stability of the fit with respect to random noise in the data, press the 

N key. Each time you press N, it will perform an iterative fit on a different subset of data points in 

the selected region (called a "bootstrap sample"; see page 166). Click for animation. If that gives 

reasonable-looking fits, then you can go on to compute the peak error statistics by pressing the V 

key. If on the other hand the N key gives wildly different fits, with highly variable fitting errors and 

peak parameters, then the fit is not stable, and you might try the X key to take the best of 10 fits and 

reset the starting guesses, then press N again. In difficult cases, it may be necessary to increase the 

number of trials when asked (but that will increase the time it takes to complete), or if that does not 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#ipf_instructions
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#ipf_instructions
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#ipf_instructions
https://terpconnect.umd.edu/~toh/spectrum/RefitAnimationN.gif
https://terpconnect.umd.edu/~toh/spectrum/RefitAnimationN.gif


Page | 430  

help, use another model or a better data set. (The N and V keys are a good way to evaluate a multi-

peak model for the possibility of superfluous peaks, see # 4 above). 

11. If you do not find the peak shape you need in this program, look at the next section to learn how to 

add your own new ones, or write me at toh@umd.edu and I'll see what I can do. 

12. If you try to fit a very small independent variable (x-axis) segment of a very large signal, say, a re-

gion that is only 1000th or less of the entire x-axis range, you might encounter a problem with un-

stable fits. If that happens, try subtracting a constant from x, then perform the fit, then add in the 

subtracted amount to the measured x positions.  

13. If there are very few data points on the peak, it might be necessary to reduce the minimum width 

(set by minwidth in peakfit.m or Shift-W in ipf.m) to zero or to something smaller than the default 

minimum (which defaults to the x-axis spacing between adjacent points). 

14. Difference between the F, X, N, and V keys in ipf.m: 

o F key: Slightly varies the starting values and performs a single iterative fit using all the data 

points in the selected region. 

o X key: Performs 10 iterative trial fits using all the data points in the selected region, slightly 

varying the starting values before each trial, then takes the one with the lowest fitting error. 

Press it again to repeat and refine the fit. Takes about 10 times longer than the F key. 

o N key: Slightly varies the starting values and performs an iterative single fit using a random 

subset of the data points in the selected region. Use to visualize the stability of the fit with 

respect to random noise. Takes the same time as the F key. 

o V key: Asks for several trial fits, then performs 100 iterative fits each on a separate random 

subset of the data points in the selected region, each fit using the specified number of trials 

and taking the best one, then calculates the mean and standard deviation of the peak parame-

ters of all 100 best-fit results. Use to quantify the stability of peak parameters with respect 

to random noise. Takes about 100 times longer than the X key. 

Extracting the equations for the best-fit models 

The equations for the peak shapes are in the peak shape menu in ipf.m, isignal.m, and ipeak.m. Here 

are the expressions for the shapes that are expressed mathematically rather than algorithmically: 
 

Gaussian:          y =exp(-((x-pos)/(0.60056120439323*width)) ^2) 

Lorentzian:        y =1/(1+((x-pos)/(0.5*width))^2) 

Logistic:          y =exp(-((x-pos)/(.477*wid))^2); y=(2*n)/(1+n) 

Lognormal:         y = exp(-(log(x/pos)/(0.01*wid)) ^2) 

Pearson:           y =1/(1+((x-pos)/((0.5^(2/m))*wid))^2)^m 

Breit-Wigner-Fano: y =((m*wid/2+x-pos)^2)/(((wid/2)^2)+(x-pos)^2) 

Alpha function:    y =(x-spoint)/pos*exp(1-(x-spoint)/pos) 

Up Sigmoid:        y =.5+.5*erf((x-tau1)/sqrt(2*tau2)) 

Down Sigmoid       y =.5-.5*erf((x-tau1)/sqrt(2*tau2)) 

Gompertz:          y =Bo*exp(-exp((Kh*exp(1)/Bo)*(L-t) +1)) 

FourPL:            y = 1+(miny-1)/(1+(x/ip)^slope) 

OneMinusExp:       y = 1-exp(-wid*(x-pos)) 

EMG (shape 39)     y = s*lambda*sqrt(pi/2)*exp(0.5*(s*lambda)^2-lambda*(t-

mu))*erfc((1/sqrt(2))*(s*lambda-((t-mu)/s))) 

mailto:toh@umd.edu?subject=Introduction%20to%20Signal%20Processing:Interactive%20Peak%20Fitter
mailto:toh@umd.edu


Page | 431  

The peak parameters (height, position, width, tau, lambda, etc.) that are returned by the FitResults 

displayed on the graph and in the command window. For example, if you fit a set of data to a single 

Gaussian and get… 
     

   Peak#   Position    Height   Width      Area 

     1      0.30284      87.67    0.23732     22.035 
 

...then the equation would be: 
 

y = 87.67*exp(-((x-0.30284)/(0.6005612*0.23732)).^2) 

If you specify a model of more than one peak, then the equation is the sum of each peak in the model. 

For example, fitting the built-in Matlab "humps" function using a model of 2 Lorentzians 
 

>> x=[0:.005:2];y=humps(x);[FitResults,GOF]=peakfit([x' y'],0,0,2,2) 

 

    Peak#    Position   Height    Width     Area   

      1      0.3012   96.9405    0.1843   24.9270 

      2      0.8931   21.1237    0.2488    7.5968 
 

Using the expression for a Lorentzian on the previous page, the equation for two peaks would be:  
 

y = 96.9405*(1/(1+((x-0.3012)/(0.5*0.1843))^2)) + 21.1237*(1//(1+((x-

0.8931)/(0.5*0.2488)).^2)) 
 

It is also possible to use multiple shapes in one fit, by specifying the peak shape parameter as a vector. 

For example, you could fit the first peak of the "humps" function with a Lorentzian and the second 

peak with a Gaussian by using [2 1] as the shape argument. 
 

>> x=[0:.005:2];y=humps(x);peakfit([x' y'],0,0,2,[2 1]) 

 

    Peak#    Position   Height    Width      Area   

      1      0.3018   97.5771    0.1876   25.4902 

      2      0.8953   18.8877    0.3341    6.7180 
 

In that case the expression would be y = height1 *Lorentzian + height2*Gaussian: 
 

y = 97.5771*(1/(1+((x-0.3018)/(0.5*0.1876))^2)) + 18.8877*exp(-((x-

0.8953)/(0.60056120439323*0.3341))^2) 
 

Note: To obtain the digitally sampled model data, use peakfit is 6th and 7th output parameters, xi and yi, 

which return a 600-point interpolated model as a vector of x values and a matrix of y values with one 

row for each component. Type plot(xi,yi) to plot each model peak separately in a different color or 

plot(xi,yi(1,:)) to plot just peak 1. 

  



Page | 432  

How to add a new peak shape to peakfit.m, ipf.m, iPeak, or iSignal 

  It is easier than you think to add your own custom peak shape to peakfit.m (or to those interactive 

functions that use peakfit.m internally, such as ipf.m, iSignal, or iPeak), if you have a mathematical 

expression for your shape. The easiest way is to modify an existing peak shape that you do not plan to 

use, replacing it with your new function. Take care to pick a shape to sacrifice that has the same 

number of variables and constraints are your new shape. For example, if your shape has two iterated 

parameters (e.g., variable position and width), you could modify the Gaussian, Lorentzian, or triangular 

shape (number 1, 2 or 21, respectively). If your shape has three iterated variables, use shapes like 31, 

32, 33, or 34. If your shape has four iterated variables, use shape 49 (“double gaussian”, Shift-K). If 

your shape has an 'extra' parameter, like the equal-shape Voigt, Pearson, BWF, or blended Gaussian/ 

Lorentzian, use one of those. If you need an exponentially modified shape, use the exponentially 

modified Gaussian (5 or 31) or Lorentzian (18). If you need equal widths or fixed widths, etc., use one 

of those shapes. This is important; you must have the same number of variables and constraints, 

because the structure of the code is different for each class of shapes. 
 

There are just two required steps to the process: 

1. Let us say that your shape has two iterated parameters, and you are going to sacrifice the triangular 

shape, number 21. Open peakfit.m or ipf.m in the Matlab editor and re-write the old shape function 

("triangular", located near line 3672 in ipf.m - there is one of those functions for each shape - by 

changing name of the function and the mathematics of the assignment statement (e.g., g = 1-

(1./wid).*abs(x-pos);). You can use the same variables ('x' for the independent variable, 'pos' 

for peak position, 'wid' for peak width, etc.) Scale your function to have a peak height of 1.0 (e.g., 

after computing y as a function of x, divide by max(y)). 

2. Use the search function in Matlab to find all instances of the name of the old function and replace it 

with the new name, checking "Wrap around" but leaving "Match case" and "Whole word" un-

checked in the Search box. If you do it rigt, for example, all instances of "triangular" and all in-

stances of "fittriangular' will be modified with your new name replacing "triangular". Save the re-

sult (or Save as... with a modified file name). 

Done! Your new shape will now be shape 21 (or whatever was the shape number of the old shape you 

sacrificed). In ipf.m, it will be activated by the same keystroke used by the old shape (e.g., Shift-T for 

the triangular, key number 84), and in iSignal and in iPeak, the menu of peak shapes will have been 

modified by the search and replace in step 2. 
 

If you wish, you can change the keystroke assignment in ipf.m. First, find a key or Shift-key that is not 

yet assigned (and which gives an "UnassignedKey" error statement when you press that key with ipf.m 

running). Then change the old key number 84 to that unassigned one in the big "switch 

double(key)," case statement near the beginning of the code.  



Page | 433  

Which to use? peakfit, ipf, findpeaks…, iPeak, or iSignal? 

I designed iPeak (page 411),  iSignal (page 371), peakfit (page 392), and ipf (page 411), or their Octave 

versions, each with a different emphasis, although there is some overlap in their functions. Briefly, 

iSignal combines several basic functions, including smoothing, differentiation, spectrum analysis, etc.; 

iPeak and the various findpeaks functions focus on finding multiple peaks in large signals; peakfit and 

ipf focus on iterative peak fitting. But there is some overlap; iPeak and iSignal can also perform least-

squares iterative peak fitting, and iSignal can perform peak finding. In addition, iSignal, iPeak, and ipf 

are interactive, and work in Matlab or in Matlab Online in a web browser, whereas their command-line 

versions ProcessSignal.m, the many variations of findpeaks.m, and peakfit.m are functions. The main 

point is that the interactive functions are better for exploration and trying out different techniques, 

whereas the command-line functions are better for automatic hand-off processing of masses of data. 

Common features. The interactive programs iSignal, iPeak, and ipf all have several features in 

common.  
 

(a) The K key displays the keyboard controls for each program.  

 

(b) The Matlab versions use pan and zoom keys are the four cursor keys – left and right for pan, 

up and down for zoom. The Octave versions use the < and > keys (with and without shift). 
 

(c) Ctrl-Shift-A selects the entire signal (that is, zooms out all the way). In the Octave versions, 

the ; key does this. 
 

(d)  The W key. To facilitate transfer of settings from one of these functions to another or to a 

command-line version, all these functions use the W key to print out the syntax of other related 

functions, with the pan and zoom settings and other numerical input arguments specified, ready 

for you to Copy and Paste into your own scripts or back into the command window. For exam-

ple, you can convert a curve fit from ipf into the command-line peakfit function; or you can 

convert a peak finding operation from ipeak into the command line findpeaksG or findpeaksb 

or findpeaksb3 functions. This provides a way to deal with signals that require different signal 

processing in different regions of their x-axis ranges, by allowing you to create a series of 

command-line functions for each local region that, when executed in sequence, quickly process 

each segment of the signal appropriately and can be repeated easily for any number of other ex-

amples of that same type of signal. 
 

(e) All these programs use the Shift-Ctrl-S, Shift-Ctrl-F, and Shift-Ctrl-P keys to transfer the 

current signal, as a global variables X and Y, to iSignal.m, ipf.m, and iPeak.m, respectively. 

First time here? Check out these animated Web demos of ipeak.m and ipf.m. Or download these 

Matlab demo functions that compare ipeak.m with peakfit.m for signals with a few peaks and signals 

with many peaks and that shows how to adjust ipeak to detect broad or narrow peaks. These self-

contained demos include all required Matlab functions. Just place them in your path and click Run or 

type their name at the command prompt. Or you can download all these demos together in idemos.zip. 

peakfitVSfindpeaks.m performs a direct comparison of the peak parameter accuracy of findpeaks vs 

peakfit. 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#3._Interactive_keypress-operated_
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.html
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.html
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#3._Interactive_keypress-operated_
https://www.mathworks.com/help/matlab/ref/global.html
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html
https://terpconnect.umd.edu/~toh/spectrum/idemo1.m
https://terpconnect.umd.edu/~toh/spectrum/idemo2.m
https://terpconnect.umd.edu/~toh/spectrum/idemo.m
https://terpconnect.umd.edu/~toh/spectrum/idemos.zip
https://terpconnect.umd.edu/~toh/spectrum/peakfitVSfindpeaks.m


Page | 434  

 

Note 1: Click on the Matlab Figure window to activate the interactive keyboard tools. Make sure you 

do not click on the “Show Plot Tools” button in the toolbar above the figure; that will disable normal 

program functioning. If you do, just close the Figure window and start again 
 

Note 2: The interactive keypress-operated iPeak, iSignal, iFilter, and ipf functions also work when you 

run Matlab in a web browser (just click on the figure window first), but they do not currently work on 

Matlab Mobile. Separate versions are required if you are using Octave (with “octave” added to the file-

name, e.g. ipfoctave.m instead of ipf.m, etc.) 
 

Note 3: Scripts and functions must be located on your computer in a location specified by the “Matlab 

search path”, which is the set folders in the file system that Matlab uses to locate files. See “What Is the 

MATLAB Search Path?” 

See page 365 for a table listing of Live Script tools and their corresponding keypress-driven functions. 

  

https://www.mathworks.com/products/matlab-online.html
https://itunes.apple.com/us/app/matlab-mobile/id370976661?mt=8
https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html


Page | 435  

Live Script Peak Fitter tool 

PeakFittingTool.mlx performs iterative least-squares peak fitting applied to experimental data stored on 

disk. Clicking the "Open data file" button in line 1 opens a file browser, allowing you to navigate to 

your data file (in .csv or .xlsx format; the script assumes that your x,y data are in the first two columns). 

But before opening a file, it's a good idea to temporarily de-select the "FitPeaks" checkbox in line 14, 

then wait until you have set the other controls. That way you will avoid waiting for unnecessary curve 

fit operations until the appropriate settings are complete. (Sometimes curve fitting operations can be 

slow and can take several seconds in difficult cases). With FitPeaks switched off, the program simply 

displays a plot of the selected data file. Note: to view the graphic plots to the right of the code, as 

shown here, right-click on the empty space on the right and select "Disable synchronous scrolling". 

 
 

Adjust the startpc and endpc sliders in lines 4 and 5 to isolate groups of closely-spaced peaks that can 

be fit together. Try to spread them out as evenly as possible, as shown in the figure above. (If all the 

peaks are well separated and do not overlap, anda if the number of peaks varies unpredictable from 

signal to signal, you may be between off using the Peak Detector Tool (Peakdetector.mlx), which also 

has a peak fitting function).  

 

The "PreProcess" check box (line 7) allows for some optional preliminary pre-processing. The 

SymmetrizeFactor slider preforms "symmetrization" or "de-tailing" for peaks that are skewed by 

exponential broadening, by means of the first-derivative addition. Increase the value of 

SymmetrizeFactor until the peak is as narrow as possible without the trailing edge falling below the 

file:///C:/Users/tomoh/Dropbox/SPECTRUM/PeakFittingTool.mlx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#LiveScript
https://terpconnect.umd.edu/~toh/spectrum/Peakdetector.mlx
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical


Page | 436  

baseline. The SmoothWidth and NumPasses sliders (lines 9 and 10) permits sliding average smoothing 

on the signal, which is useful for cases where high-frequency noise obscures the peaks. The 

"VerticalShift" slider (line 11) allows for positive and negative shift in the baseline position, to 

compensate for baseline offset. 
 

The PeakShape drop-down menu allows you to select the peak shape of the fitting model. NumPeaks 

sets the number of peaks in the model. NumTrials, restarts the fitting process "NumTrials" times with 

slightly different start values and selects the best one (with lowest fitting error). NumTrials can be any 

positive integer. In many cases, NumTrials=1 will be sufficient, but if that does not give consistent 

results, increase it until the result are stable. The "extra" slider is used to fine-tune the certain peak 

shapes, e.g., the Pearson, exponentially-broadened Gaussian, and Gaussian/Lorentzian blend. Adjust 

this to minimize the fitting error. 
 

After all these setting have been made, then you can click the FitPeaks checkbox (line 13); a fit will be 

performed, and the resulting peak table displayed in the right-hand panel, as in the graphic above. 

Thereafter, any changes in the setting will cause an immediate recalculation of the curve fit.  
 

In difficult cases, better results can be obtained if you specify the estimated positions of the peaks, 

especially if the peaks are very irregularly spaced or if some peaks appear only as shoulders or bulges 

rather than as distinct peaks. Select the SetStart check box and adjust the sliders to the predicted 

relative peak positions, for each peak in the model in lines 19 to 26. The length of these sliders 

represents the x-axis range displayed in the figure. 
 

If the baseline for the group of peaks is offset from zero, you can correct that by using the 

BaselineShift slider in line 28. If the baseline for the group of peaks is tilted or curved, you can use the 

BaselineSelection menu in line 27 to choose a baseline correction that attempts to estimate the baseline 

from the edges of the signal range. The Bipolar check box (line 29) controls whether to display both 

positive and negative signal values in the graphic or only positive values. 
 

Additional shapes may easily be added to the PeakShape menu by selecting other shapes form the list 

of predefined shapes and their corresponding number at 

https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm, adding that name and number to 

the others in the switch/case statement in lines 52-73, then adding that new shape to the drop-down 

menu on line 15. Just follow that pattern of the shapes already there.  
 

Another example of Peak Fitting Tool shows it fitting a group of weak peaks in the middle of a much 

larger signal (chrom.csv), in this case using the exponentially broadened Gaussian shape and the 

"Tilted mode" baseline correction (line 27).   
 

In fitting asymmetrical peaks what have an exponential skew, you can either try to remove the 

asymmetry by using the SymmetrizeFactor slider (example) followed by fitting a symmetrical peak 

shape or by selecting an exponentially broadened peak shape (example); both approaches can yield 

similar results as in these examples, but the former method is often faster. 
 

Note: you can double-click sliders to change their ranges if the initial range is insufficient.  

 

https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#algorithms
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/chrom.csv
https://terpconnect.umd.edu/~toh/spectrum/SalicylMixSymGaus.png
https://terpconnect.umd.edu/~toh/spectrum/SalicylMixExpGaus.png


Page | 437  

Python: a free, open-source language alternative 
 A popular alternative to Matlab for scientific programming is Python, which is a free and open-source 

language, whereas Matlab is closed, proprietary, and can be costly. The two languages are different in 

many ways, and an experienced Matlab programmer might have some difficulty converting to Python, 

and vice versa. But anything that I have done in this book using Matlab, you can do in Python. I do not 

intend to provide a complete introduction to Python, any more than I did for Matlab or for spreadsheets, 

because there are many good online sources. Rather, I will review a few of the crucial computational 

methods, showing how to do the calculations in Python and compare the code side-by-side to the 

equivalent calculation in Matlab. In addition, I will compare the execution times of both, running on 

the same desktop computer system, to see if there is any advantage in execution speed or code size one 

way or the other. For this test, I was running Python 3.8.8; Anaconda Individual Edition 2020.11, using 

the included Spyder 5.0.5 desktop (screen graphic), and Matlab 2021: 9.10.0.1602886 (R2021a), both 

running on a Dell XPS i7 3.5Ghz tower. Both Matlab and Python/Spyder have an integrated editor, 

code analysis, debugging, ability to edit variables, etc.  

Sliding average signal smoothing  

Based on  Nita Ghosh’s Scientific data analysis with Python: Part 1  

A “sliding average” smooth is simple to implement using the inbuilt “mean” function in both languages. 
 

Python 
import numpy as np 

import matplotlib.pyplot as plt 

from pytictoc import TicToc 

t = TicToc() 

plt.rcParams["font.size"] = 16 

plt.rcParams['figure.figsize'] = (20, 10) 

sigRate = 1000 #Hz 

time = np.arange(0,3, 1/sigRate)  

n = len(time) 

p = 30 #poles for random interpolation 

ampl = np.interp(np.linspace(0,p,n),np.arange(0,p),np.random.rand(p)*30) 

noiseamp = 5 

noise = noiseamp*np.random.randn(n) 

signal = ampl + noise 
 

t.tic() # start clock 

plt.plot(time, ampl) 

plt.plot(time, signal) 

filtSig = np.zeros(n) 

k = 50 

for i in range(k,n-k-1): 

    filtSig[i] = np.mean(signal[i-k:i+k]) 

plt.plot(time, filtSig)     

t.toc()  # stop clock print time 
 

# Save signal to file 

np.savetxt('SlidingAverageSignal.out',(time, signal), delimiter=',')  
 

In the first several lines, Python must import some packages that are required for numerical computing; 

Matlab has much of that built-in, but there are optional add-on “toolboxes” (e.g. page 129). The Python 

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/MATLAB
https://realpython.com/matlab-vs-python/
https://www.tutorialspoint.com/python/index.htm
https://terpconnect.umd.edu/~toh/spectrum/Spyder.png
https://medium.com/analytics-vidhya/signal-data-processing-for-scientific-data-analysis-with-python-part-1-90a90cb7f81
https://www.mathworks.com/help/thingspeak/matlab-toolbox-access.html


Page | 438  

code creates a simulated noisy “signal” in the 

first block of code and then uses the inbuilt 

“savetext” function to save it to disc for 

Matlab to read, ensuring that the exact same 

signal is used for both: 
 

Matlab  
clf 

load SlidingAverageSignal.out 

x=SlidingAverageSignal(1,:); 

y=SlidingAverageSignal(2,:); 
 

tic % start clock 

lx=length(x); 

filtsig=zeros(1,lx); 

k=50; % smooth width 

for i=k:lx-k-1 

    filtsig(i)=mean(y(i-k+1:i +k)); 

end 

plot(x,y,'g',x,filtsig,'linewidth',1.5) 

toc % stop clock and print elapsed time 
 

The fundamental thing here is the use of the “mean” function in both languages to compute the mean of 

k adjacent points for the smoothed signal.  In Python this is done by the lines: 
 

k = 50 

for i in range(k,n-k-1): 

    filtSig[i] = np.mean(signal[i-k:i+k]) 
 

and in Matlab by: 
 

k=50; 
for i=k:lx-k-1 

    filtsig(i)=mean(y(i-k+1:i +k)); 

end 
 

You can see how similar they are. (I’ve used the same variable names to make the comparison easier). 

A key difference is how a block of code is specified, such as a loop or a function definition. In Python, 

this is done using indentation, which is rigorously enforced. In Matlab, it is done using “end” 

statements; indentation is optional in Matlab but, as a matter of good coding style, is easily done by the 

“Smart Indent” in the right-click menu. (See an example of function definition in the iterative least-

squares example on page 441). Another important differences: Python uses square brackets to enclose 

the index to arrays rather that parentheses as does Matlab. Python arrays are indexed from zero; 

Matlab’s are indexed from 1; so, for example, the first two elements of an array A in Python are A[0] 

and A[1] but in in Matlab they are A(1) and A(2). Little things mean a lot. 
 

To compare the execution times, I have used the “tic” and “toc” statements (inbuilt in Matlab but added 

to Python by the TicToc package) to start and stop a timer. I have bold-faced those lines in the code, to 

make it clear that I am counting and timing only the “inner” portion of the code that will have to be 

repeated if you have multiple data sets to process. I don’t count the time required by the initial set-up, 

loading of packages, etc. – things that need be done only once.   
 

Python: 8 lines; 0.04 – 0.08 sec 
Matlab: 7 lines: 0.007 – 0.008 sec 

Both programs are about the same length, but Matlab is clearly faster in this case. 



Page | 439  

Fourier transform and (de)convolution 

The Fourier transform (FT) is fundamental for computing frequency spectra, convolutions, and 

deconvolution. The codes here simply create a vector “a” of random numbers, compute the FT, 

multiply it by itself, and then inverse FT the result, both using the fft and ifft functions. This is basically 

a Fourier convolution. Deconvolution would be the same except that the two Fourier transforms would 

be divided. As before, tic and toc mark the timed blocks. 
 

Python: 
import numpy as np 

from scipy import fft 

from pytictoc import TicToc 

t = TicToc() 

t.tic() # start clock 

min_len = 93059  # prime length is worst case for speed 

a = np.random.randn(min_len) 

b = fft.fft(a) 

c=b*b 

d=fft.ifft(c)  

t.toc()  # stop clock and print elapsed time 
 

 

Matlab: 
tic 
MinLen = 93059; % prime length is worst case for speed 
a=randn(1,MinLen); 

b = fft.fft(a) 

c=b.*b; 
d=ifft(c); 
toc 
 

Python: 5 lines; 0.01 – 0.04 sec (The execution time apparently varies with different random number sequences). 
Matlab: 5 lines: 0.008 – 0.009 sec  
 

 

Classical Least Squares 
 

The Classical Least squares (CLS) 

technique has long been used in 

spectroscopic analysis of mixtures, where 

the spectra of the individual components 

are known but which overlap additively in 

mixtures (page 184). A comparison of 

Python and Matlab coding for this method 

is given on page 194. (I wrote the Matlab 

code first, copied and pasted it into the 

Spyder editor, and converted it line by line). After the required importation of required Python 

packages, the codes  (NormalEquationDemo.py and NormalEquationDemo.m) are remarkably similar, 

differing mainly in the use of indentation, the way functions are defined, the way arrays are indexed, 

the way vectors are concatenated into matrixes, and the coding of matrix transpose, exponentiation and 

dot products.  

Python: 50 lines; 0.017 sec.  Matlab: 41 lines. 0.018 sec. 

https://terpconnect.umd.edu/~toh/spectrum/NormalEquationDemo.py
https://terpconnect.umd.edu/~toh/spectrum/NormalEquationDemo.m


Page | 440  

Peak Detection 

 The automatic detection of peaks is a common requirement. The coding required is a little more 

complex. The codes are based on the Python example in the SciPy documentation: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html. Both languages have 

a “find peaks” function, but Matlab’s function is rather slow, so I prefer to code my own algorithm in 

Matlab using nested loops (each with an “end” statement, but also indented for clarity). The signal used 

here is a portion of an electrocardiogram that is included as a sample signal in Python. The task is to 

detect the peaks that exceed a specified amplitude threshold and mark them with a red “x” on the plot. 

 

Python: 
import numpy as np 

import matplotlib.pyplot as plt 

from scipy.misc import electrocardiogram 

from scipy.signal import find_peaks 

from pytictoc import TicToc 

t = TicToc() 

x = electrocardiogram()[2000:4000] 

t.tic() # start clock 

peaks, _ = find_peaks(x, height=0) 

plt.plot(x) 

plt.plot(peaks, x[peaks], "x") 

plt.plot(np.zeros_like(x), "--", color="gray") 

plt.show() 

t.toc()  # stop clock and print elapsed time 

np.savetxt('FindPeaks.out',(x), delimiter=',')  

 

Matlab: 
load electrocardiogram.out; 
y=electrocardiogram; 
tic % start clock 
  plot(1:length(y),y,'-k') 
  height=0; 
  x=1:length(y); 
  peak=0; 
  for k = 2:length(x)-1 
      if y(k) > y(k-1)  
          if y(k) > y(k+1) 
              if y(k)>height 
                  peak = peak + 1; 
                  P(peak,:)=[x(k) y(k)]; 
              end 
          end  
      end 
  end 
  hold on 
  for k=1:length(P) 
      text(P(k,1)-12,P(k,2),'x','color',[1 0 0]) 
  end 
  grid 
  hold off 
toc % stop clock and print elapsed time 
 

Python: 5 lines; 0.01  sec 

Matlab: 19 lines: 0.007 sec as written (1.5 sec using the Matlab inbuilt findpeaks.m function) 

Here, the advantage goes to Python, because its inbuilt “find_peaks” function is superior to Matlab’s. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html)


Page | 441  

Iterative least-squares fitting 
(Based on  Chris Ostrouchov’s code on https://chrisostrouchov.com/post/peak_fit_xrd_python/) 
 

Python: 
import math 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import optimize 

from pytictoc import TicToc 

t = TicToc() 

def g(x, A, μ, σ): 

    return A / (σ * math.sqrt(2 * math.pi)) * np.exp(-(x-μ)**2 / (2*σ**2)) 

def f(x): 

    return np.exp(-(x-2)**2) + np.exp(-(x-6)**2/10) + 1/(x**2 + 1) 

A = 100.0 # intensity 

μ = 4.0  # mean 

σ = 4.0 # peak width 

n = 500 # Number of data points in signal 

x = np.linspace(-10, 10, n) 

y = g(x, A, μ, σ) + np.random.randn(n)   
 

t.tic() # start clock 

def cost(parameters): 

    g_0 = parameters[:3] 

    g_1 = parameters[3:6] 

    return np.sum(np.power(g(x, *g_0) + g(x, *g_1) - y, 2)) / len(x) 

initial_guess = [5, 10, 4, -5, 10, 4] 

result = optimize.minimize(cost, initial_guess) 

g_0 = [250.0, 4.0, 5.0] 

g_1 = [20.0, -5.0, 1.0] 

x = np.linspace(-10, 10, n) 

y = g(x, *g_0) + g(x, *g_1) + np.random.randn(n) 

fig, ax = plt.subplots() 

ax.scatter(x, y, s=1) 

ax.plot(x, g(x, *g_0)) 

ax.plot(x, g(x, *g_1)) 

ax.plot(x, g(x,*g_0) + g(x,*g_1)) 

ax.plot(x, y) 

t.toc()  # stop clock and print elapsed time 
 

np.savetxt('SavedFromPython.out', (x,y), delimiter=',') # Save signal to file 
 

Iterative curve fitting is more complex than the previous examples. Both Python and Matlab have 

optimization functions (“optimize.minimize” in the Python code, above; the inbuilt “fminsearch” in the 

Matlab code, below). The optimize function in Python is more flexible and can use several different 

optimization methods. Matlab uses the Nelder-Mead method, which is used below (see page 200), but 

there is also an optional optimization toolbox that provides alternative methods if needed. 

Matlab: 
 

clear 

clf 

load SavedFromPython.out 

x=SavedFromPython(1,:); 

y=SavedFromPython(2,:); 

start=[-5 3 6 3]; 

format compact 

global PEAKHEIGHTS 

tic 

https://chrisostrouchov.com/post/peak_fit_xrd_python/
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://www.mathworks.com/products/optimization.html


Page | 442  

FitResults=fminsearch(@(lambda)(fitfunction(lambda,x,y)),start); 

NumPeaks=round(length(start)./2); 

for m=1:NumPeaks 

  A(m,:)=shapefunction(x,FitResults(2*m-1),FitResults(2*m)); 

end 

model=PEAKHEIGHTS'*A; 

plot(x,y,'- r',x,model) 

hold on; 

for m=1:NumPeaks 

    plot(x,A(m,:)*PEAKHEIGHTS(m)); 

end 

hold off 

toc % stop clock and print elapsed time 

function err = fitfunction(lambda,t,y) 

global PEAKHEIGHTS 

A = zeros(length(t),round(length(lambda)/2)); 

  for j = 1:length(lambda)/2 

     A(:,j) = shapefunction(t,lambda(2*j-1),lambda(2*j))'; 

  end 

PEAKHEIGHTS = A\y'; 

z = A*PEAKHEIGHTS; 

err = norm(z-y'); 

end 

function g = shapefunction(x,a,b) 

g = exp(-((x-a)./(0.6005612.*b)) .^2); % Expression for peak shape 

end 
 

Python: 16 lines; 0.02-0.08 sec 

Matlab: 25 lines; 0.01-0.03 sec 
 

The Matlab algorithm here is the same as used by my peakfit.m (page 391) and ipf.m (page 412) 

functions. The elapsed times of both Matlab and Python vary with the random noise sample, but in this 

example, Matlab has an advantage in computational speed, which may (or may not) be significant in 

your particular application. 
 

An excellent step-by-step introduction to iterative curve fitting in Python is by Emily Grace Ripka. 

 
 

The bottom line is that Matlab is slightly faster for most of these signal processing applications, but 

that advantage may be outweighed by the fact that Python is free and open-source, which is a strong 

argument in its favor. And Python is certainly faster than the free Matlab clone Octave. I would 

recommend this: if you have a background in computer science or have taken some courses, then you 

will probably prefer Python. Others might find Matlab easier to approach. I like both languages, but I 

have mainly used Matlab, because it has so many well-developed toolboxes and because it acts and 

feels more finished and polished than either Python/ Spyder or Octave, in my opinion. After all, 

Mathworks Inc makes a living selling the very costly Matlab, while Python is free. There must be a 

reason. 
 

Note: Chatbots can convert programs from one language into another, e.g., Matlab to Python or vice 

versa. 
 

For further reading, see https://realpython.com/matlab-vs-python/#further-reading.  

http://emilygraceripka.com/blog/16
https://realpython.com/matlab-vs-python/#further-reading


Page | 443  

Artificial Intelligence and Signal Processing 

AI as a programmer’s assistant. 

In 2022, the artificial intelligence research and deployment company OpenAI, introduced a 

conversational “large-language” model called “ChatGPT”, which they had trained on 8 billion pages of 

text, almost every book ever published, all of Wikipedia, and selected websites. (You can try it for no 

cost at https://chat.openai.com/.)  The current version, as of mid-2024, is ChatGPT-4o. Since that 

introduction, there have been many other competing chatbots, such as Google’s Gemini, Microsoft’s 

CoPilot, and Anthropic’s Claude. The strength of such chatbots is in language interpretation and 

writing. For example, chatbots like this are quite good at simple tasks like suggesting possible titles for 

papers, talks, or proposals that you are working on. Just feed it all or a portion of what you have written. 

They can also paraphrase and outline, which can be useful for writing condensed summaries or 

abstracts. Their knowledge base is extraordinarily wide and they can often answer very specific 

questions about technical topics. For example, chatbots are often better than Google at answering 

specific questions about hardware or software programs that would otherwise force you to plow 

through pages and pages of documentation.  
 

But AIs can go well beyond that; they can write code in several languages commonly used by scientists, 

such Matlab, Python, Wolfram Mathematica, C/C++, R, Pascal, Fortran, HTML, JavaScript, Excel 

macros, etc. There are now several AI services especially oriented toward code development, including 

GitHub Copilot, Replit, Amazon CodeWhisperer, Codex, and Tabine. Based on my limited testing, 

ChatGPT can generate working code in Matlab or Python for simple applications, if you describe the 

task adequately. In January 2023, I performed a series of tests in which I asked ChatGPT to write code 

for several signal processing tasks that I had previously coded in Matlab. I found that ChatGPT’s code 

works for some simple processing tasks, if the description is sufficiently complete, but for more 

complex tasks, its code often does not work at all, or it does not do what you expect. It’s somewhat 

misleading that, even in cases where its code does not work, it is presented in good style, usually with 

explanatory comments for each line, appropriate indentation, examples of use, and even warning that 

the code may fail under certain circumstances (e.g., division by zero, etc.).  
 

A simple example where ChatGPT works well is to write a “function that returns the index and the 

value of the element of vector x that is closest to the scalar val. If more than one element of x is equally 

close to val, it returns vectors of indices and values”. This simple but useful function is performed by 

my val2ind.m function in Matlab. ChatGPT’s code is functionally identical to my version but is better 

in terms of style: it breaks up my line 3 into its component parts, it includes explanatory comments for 

every line, and it even gives an example of use (although to be fair my code included three examples).  
 

Another example of success is Caruana's Algorithm (page 170), which is a fast way to estimate the 

parameters of a signal peak that is locally Gaussian near its maximum. I asked ChatGPT to create a 

function that “accepts two vectors x and y approximating a digitally sampled peak, takes the natural log 

of y, fits a parabola to the resulting data, then computes the position, FWHM, and height of the 

Gaussian from the coefficients of the parabolic fit”. In this case ChatGPT does all the required algebra 

and creates code that is functionally identical to my hand-coded version. 

https://www.sciencefocus.com/future-technology/gpt-3/
https://chat.openai.com/
https://gemini.google.com/?hl=en-GB
https://www.microsoft.com/en-us/microsoft-copilot
https://www.microsoft.com/en-us/microsoft-copilot
https://www.anthropic.com/claude
https://docs.github.com/en/copilot/about-github-copilot
https://replit.com/
https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/
https://openai.com/index/openai-codex/
https://www.tabnine.com/
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/val2indChatGPT.m


Page | 444  

I asked both ChatGPT and Microsoft’s CoPilot to “Write a Matlab script that creates a plot with two 

horizontal subplots, the top one showing a signal with several peaks and some random noise, and the 

bottom one showing the results of applying a smooth of three different widths to that signal, each 

shown in a different line style and color, with a legend identifying each plot and its smooth width”. 

This results in a working script that generates the 

graphic shown here, just as requested, although 

CoPilot included only one of the smooth widths 

in its legend. (Note that the chatbots are forced 

to make choices for several things that I did not 

specify exactly, including the shape of the peaks, 

the sampling rate and signal length, and the three 

smooth widths. Moreover, it adds titles to both 

subplots, even though I did not specify that 

detail). It is particularly handy that, if you want 

to generate a Python equivalent for example, you 

can simply say “How can I do that in Python” 

and it creates a working python script that 

imports the required libraries and generates an 

almost identical graphic. (The same may be true 

of the other languages that it knows, but I have 

not tested that). You can also feed it a program 

written in one of its languages and ask it to 

convert it into another of its languages. 
 

Another query that created well-structured, easily-modified, functional code is “Create a signal 

consisting of a noisy Gaussian peak, determine its peak height, position, and width by iterative curve 

fitting, repeat the process 10 times with the same Gaussian but with different independent samples of 

random noise, and then compute the mean and standard deviation of the peak heights, positions, and 

widths”.  Matlab code. Python code. 
 

Clearly asking a chatbot to perform routine tasks such as these is quick and convenient, especially if 

you are creating the equivalent code in more than one language; it spits out the code faster than I can 

type. For larger more complex projects, you could break up the code into smaller chunks or functions 

that a chatbot can handle separately and that you can test separately, then combine them later as needed.  
 

A chatbot  always presents its results nicely formatted, with correct spelling and grammar, which many 

people interpret as a “confident attitude”. This inspires trust in the results, but just as for people, 

confident does not always mean correct. There are several important caveats: 
 

First, the code that a chatbot generates is not necessarily unique; if you ask it to repeat the task, you’ll 

sometimes get different code (unless the task is so simple that there is only one possible way to do it 

correctly). This is not necessarily a flaw; there is often more than one way to code a function for a 

particular purpose. If the code requires variables to be defined, the names of those variables will be 

chosen by a chatbot  and won’t always be the same from trial to trial. Moreover, unless you specify the 

https://terpconnect.umd.edu/~toh/spectrum/ChatGPT_Script_Test_Matlab.m
https://terpconnect.umd.edu/~toh/spectrum/ChatGPT_Script_Test_Python.py
https://terpconnect.umd.edu/~toh/spectrum/Figure%202023-01-15%20094002.png
https://terpconnect.umd.edu/~toh/spectrum/iterativefitGaussianStatistics.m
https://terpconnect.umd.edu/~toh/spectrum/iterativefitGaussianStatisticsPython.py


Page | 445  

name of the function itself, a chatbot  will choose that name as well, based on what the function does).   
 

Second, and more importantly, there may be more than one way to interpret your request, unless you 

have very carefully worded it to be unambiguous. Take the example of data smoothing (page 41). On 

the face of it, this is a simple process. Suppose we ask for a function that performs a sliding average 

smooth of width n and applies it m times. How will that request be interpreted? If you simply say 

“…apply an n-point sliding average smooth to the y data and repeats it m times", you will get this code, 

which does what you asked but probably not what you want. The point of applying repeat smooths is to 

apply the smooth again to the previously smoothed data, not to the original data, as this code does. The 

general rule is that n passes of a m-width smooth results in a center-weighted smooth of width n*m-n+1. 

You will get what you want if you ask ChatGPT for a function that “applies an n-point sliding average 

smooth to y and then repeats the smooth on the previously smoothed data m times", a small but critical 

difference, resulting in this code, whereas the previous code returns a singly-smoothed result no matter 

the value of m. 
 

Third, there may be unspecified details or side effects that may require addressing, such as the 

expectation that the number of data points in the signal after processing should be the same as before 

processing. In the case of smoothing, for example, there is also the question of what to do about the 

first n and last n data points, for which there are not enough data points to compute a complete smooth 

(see page 44). There is also the requirement that the smooth operation should be constructed so that it 

does not shift the x-axis positions of signal features, which is critical in many scientific applications. 

Human-coded smooth algorithms, such as fastsmooth, consider all these details.  
 

Another example of unspecified details is the measurement of the full width at half-maximum (FWHM) 

of smooth peaks of any shape. The function I wrote for that task is “halfwidth.m”. I used its description 

as the ChatGPT query: “…a function that accepts a time series x, y, containing one or more peaks, and 

computes the full width at half maximum of the of the peak in y nearest xo. If xo is omitted, it 

computes the halfwidth from the maximum y value”. The AI came up with “computeFWHM.m”, 

which works well if the sampling rate is high enough. However, the AI’s version fails to interpolate 

between data points when the half-intensity points fall between data points and thus is inaccurate when 

the sampling rate is low, because I did not specify that it do so.  “CompareFWHM.m” compares both 

functions on some synthetic data with adjustable sampling rate. 
 

Another technical kink relates to the common Matlab practice of saving functions that you have written 

as a separate file on disc and then later calling that saved function from a script that you are writing, 

relying on Matlab to find it in the path. If you ask ChatGPT to convert that new script to another 

language, you must embed your external functions directly into the code (Matlab R2016b or later). 
 

A more challenging task is iterative fitting of noisy overlapping peaks (page 200). ChatGPT was asked 

to “fit the sum of n Gaussian functions to the data given in x and y, given initial estimates of the posi-

tions and widths of each Gaussian, returning the position, width, and height of all the best-fit Gaussi-

ans”. ChatGPT came up with the attractively coded “iterativefitGaussians.m”. The closest hand-coded 

equivalent in my tool chest was fitshape2.m (page 200); both codes work, are about the same length, 

and require similar input and output arguments. There is seldom a uniquely correct answer to iterative 

fitting problems, but the difference in performance between these two codes is instructive. The self-

https://terpconnect.umd.edu/~toh/spectrum/slidingAverageSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/slidingAvgSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/computeFWHM.m
https://terpconnect.umd.edu/~toh/spectrum/CompareFWHM.m
https://terpconnect.umd.edu/~toh/spectrum/iterativefitGaussians.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape2.m


Page | 446  

contained script “DemoiterativefitGaussians2.m” compares these two functions for a simulated signal 

with three noisy peaks whose true parameters are set in lines 13-15. For an “easy” test case, with little 

peak overlap, both codes work well. But if the peaks overlap significantly, ChatGPT’s code fails to 

yield a good fit but my fitshape2.m code does work. The difference is probably due to the different 

minimization functions employed (lsqcurvefit.m vs fminsearch.m).  
 

More complete iterative human-coded peak fitters, such as my peakfit.m function or its interactive 

equivalent ipf.m (page 391), are far more complex and have several thousand lines of code. They were 

developed incrementally over time and applied to many different kinds of signals, with lots of added 

functions, and corrections suggested by users. Even describing such programs completely for a chatbot 

would be tedious at best. It’s unrealistic to expect any chatbot to completely replace such efforts. 
 

ChatGPT cannot write Matlab Live Scripts or Apps because they are not text files. However, you can 

easily convert a ChatGPT-generated script into a Live Script, as described on page 363.  
 

Much more thought and experience go into hand-coded programs than AI generated ones. An 

experienced human coder knows the typical range of applications and anticipates typical problems and 

limitations, especially as those apply to the specific field of applications, such as signals generated by 

different types of scientific instrumentation. Of course, AIs do know a great deal about specific 

computer languages and their capabilities and inbuilt functions, which can be very useful, especially if 

you are re-coding an algorithm in a new or less familiar computer language. But AIs are no 

replacement for human experience. It goes without saying that you must test any code that a chatbot 

gives you, just as you must test your own code.  
 

Another quite useful service that chatbots can perform is to recognize the function and purpose of parts 

of a program that you are trying to understand. For example, if you feed ChatGPT the short script sft.m 

without any comment, it will recognize it as a Fourier transform calculation. It will also recognize 

mathematical expressions and equations, such as V = S*(1 + R)^T.  
 

It seems obvious that in the future, AI services such as chatbots will be much more capable and more 

widely available. Development is ongoing, and millions of users are already using the ChatGPT server 

with a free account or the subscription based ChatGPT 4o. 

 

How to use ChatGPT to code any programming language 

 

Using ChatGPT as Your Programming Assistant 

 

How to use ChatGPT to write code: What it can and can't do for you 

 
 

  

https://terpconnect.umd.edu/~toh/spectrum/DemoiterativefitGaussians2.m
https://terpconnect.umd.edu/~toh/spectrum/GhatGPTSuccess.png
https://terpconnect.umd.edu/~toh/spectrum/GhatGPTFailure.png
https://terpconnect.umd.edu/~toh/spectrum/GhatGPTFailure.png
https://terpconnect.umd.edu/~toh/spectrum/fitshape2.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
file:///C:/Users/tomoh/Dropbox/SPECTRUM/sft.m
https://www.bing.com/ck/a?!&&p=ec19b3bb31ac12a3JmltdHM9MTcxOTAxNDQwMCZpZ3VpZD0xNDhhMTE3NS1mMzQxLTZmZTgtMDU2OC0wNTNiZjIyZDZlOWEmaW5zaWQ9NTIxMA&ptn=3&ver=2&hsh=3&fclid=148a1175-f341-6fe8-0568-053bf22d6e9a&psq=ChatGPT+coding+assistant.&u=a1aHR0cHM6Ly93d3cuZ2Vla3ktZ2FkZ2V0cy5jb20vY29kaW5nLXdpdGgtY2hhdGdwdC1haS1hc3Npc3RhbnQv&ntb=1
https://www.bing.com/ck/a?!&&p=4334490ae56ecd9dJmltdHM9MTcxOTAxNDQwMCZpZ3VpZD0xNDhhMTE3NS1mMzQxLTZmZTgtMDU2OC0wNTNiZjIyZDZlOWEmaW5zaWQ9NTI0Ng&ptn=3&ver=2&hsh=3&fclid=148a1175-f341-6fe8-0568-053bf22d6e9a&psq=ChatGPT+coding+assistant.&u=a1aHR0cHM6Ly9tYWNoaW5lbGVhcm5pbmdtYXN0ZXJ5LmNvbS91c2luZy1jaGF0Z3B0LWFzLXlvdXItcHJvZ3JhbW1pbmctYXNzaXN0YW50Lw&ntb=1
https://www.zdnet.com/article/how-to-use-chatgpt-to-write-code/
https://www.zdnet.com/article/how-to-use-chatgpt-to-write-code/
https://www.zdnet.com/article/how-to-use-chatgpt-to-write-code/


Page | 447  

Worksheets for Analytical Calibration Curves 

Background 

In analytical chemistry, the accurate quantitative measurement of the composition of samples, for 

example by various types of spectroscopies, usually requires that the method be calibrated using 

standard samples of known composition. This is most commonly, but not necessarily, done with 

solution samples and standards dissolved in a suitable solvent, because of the ease of preparing and 

diluting accurate and homogeneous mixtures of samples and standards in solution form. In the 

calibration curve method (page 332), a series of external standard solutions with different 

concentrations is prepared and measured. A line or curve is fit to the data and the resulting equation is 

used to convert readings of the unknown samples into concentration. The advantages of this method are 

that (a) the random errors in preparing and reading the standard solutions are averaged over several 

standards, and (b) non-linearity in the calibration curve can be detected and can be avoided (by diluting 

into the linear range) or compensated (by using non-linear curve fitting methods).  
 

Below are seven different fill-in-the-blanks spreadsheet templates for performing the calibration curve 

fitting and concentration calculations for analytical methods using the calibration curve. All you need 

to do is to type in (or paste in) the concentrations of the standard solutions and their instrument 

readings (e.g., absorbances, intensities, or whatever method you are using) and the instrument readings 

of the unknowns. The spreadsheet automatically plots and fits the data (page 157), then uses the 

equation of that curve to convert the readings of the unknown samples into concentration. You can add 

and delete calibration points at will, to correct errors or to remove outliers; the sheet re-plots and 

recalculates automatically.  

Fill-in-the-blanks worksheets for several different calibration methods 

A first-order (straight line) fit of measured signal A (y-axis) vs concentration C (x-axis). The 

model equation is A = slope * C + 

intercept. This is the most common 

and straightforward method, and it is 

the one to use if you know that your 

instrument response is linear. This fit 

uses the equations described and 

listed on page 173. You need a 

minimum of two points on the 

calibration curve. The concentration 

of unknown samples is given by (A - 

intercept) / slope where A is the 

measured signal and slope and 

intercept from the first-order fit. If 

you would like to use this method of calibration for your own data, download in Excel or OpenOffice 

Calc format. View equations for linear least-squares.  

http://en.wikipedia.org/wiki/Calibration
https://terpconnect.umd.edu/~toh/models/CalibrationLinear2.xls
https://terpconnect.umd.edu/~toh/models/CalibrationLinear2.ods
https://terpconnect.umd.edu/~toh/models/CurveFitting.html#MathDetails
https://terpconnect.umd.edu/~toh/models/CalibrationLinear.png


Page | 448  

Linear interpolation calibration. In the linear interpolation method, sometimes called the 

bracket method, the spreadsheet 

performs a linear interpolation 

between the two standards that 

are just above and just below 

each unknown sample, rather 

than doing a least-squares fit over 

then entire calibration set. The 

concentration of the sample Cx is 

calculated by C1s+(C2s-

C1s)*(Sx-S1s)/ (S2s-S1s), where 

S1x and S2s are the signal 

readings given by the two 

standards that are just above and just below the unknown sample, C1s and C2s are the concentrations 

of those two standard solutions, and Sx is the signal given by the sample solution. This method may be 

useful if none of the least-squares methods can fit the entire calibration range adequately (for instance, 

if it contains two linear segments with different slopes). It works well enough if the standards are 

spaced closely enough so that the actual signal response does not deviate significantly from linearity 

between the standards. However, this method does not deal well with random scatter in the calibration 

data due to random noise, because it does not compute a “best-fit” through multiple calibration points 

as the least-squares methods do. Download a template in Excel (.xls) format.  

A quadratic fit of measured signal A (y-axis) vs concentration C (x-axis). The model equation 

is A = aC2 + bC + c. This method 

can compensate for non-linearity in 

the instrument response to concentra-

tion. This fit uses the equations de-

scribed and listed on page 173. You 

need a minimum of three points on 

the calibration curve. The concentra-

tion of unknown samples is calculated 

by solving this equation for C using 

the classical "quadratic formu-

la", namely C = (-b+SQRT(b2-

4*a*(c-A)))/(2*a), where A = meas-

ured signal, and a, b, and c are the 

three coefficients from the quadratic fit. If you would like to use this method of calibration for your 

own data, download in Excel or OpenOffice Calc format. View equations for quadratic least-squares. 

The alternative version CalibrationQuadraticB.xlsx computes the concentration standard deviation 

(column L) and percent relative standard deviation (column M) using the bootstrap method. You need 

at least 5 standards for the error calculation to work. If you get a "#NUM!" or #DIV/0" in the col-

http://en.wikipedia.org/wiki/Linear_interpolation
https://terpconnect.umd.edu/~toh/models/CalibrationLinearBracket.xls
https://terpconnect.umd.edu/~toh/models/CalibrationQuadratic.xls
https://terpconnect.umd.edu/~toh/models/CalibrationQuadratic.ods
https://terpconnect.umd.edu/~toh/models/CalibrationQuadraticEquations.txt
https://terpconnect.umd.edu/~toh/models/CalibrationQuadraticB.xlsx
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap


Page | 449  

umns L or M, just press the F9 key to re-calculate the spreadsheet. There is also 

a reversed quadratic template and example, which is analogous to the reversed cubic (#5 below). 

A reversed cubic fit of concentration C (y-axis) vs measured signal A (x-axis). The model equation 

is C = aA3 + bA2 + cA + d. This 

method is sometimes used to com-

pensate for more complex non-

linearity than the quadratic fit. A "re-

versed fit" flips the usual order of 

axes, by fitting concentration as a 

function of measured signal. The aim 

is to avoid the need to solve a cubic 

equation when the calibration equa-

tion is solved for C and used to con-

vert the measured signals of the un-

knowns into concentration. This coordinate transformation is a short-cut, commonly done in least-

squares curve fitting, at least by non-statisticians, to avoid mathematical messiness when the fitting 

equation is solved for concentration and used to convert the instrument readings into concentration val-

ues. However, this reversed method is theoretically not optimum, as demonstrated for the quadratic 

case Monte-Carlo simulation in the spreadsheet NormalVsReversedQuadFit2.ods (Screenshot), and 

should be used only if the experimental calibration curve is so non-linear that it cannot be fit by other 

simpler means. The reversed cubic fit is performed using the LINEST function on Sheet3. You need a 

minimum of four points on the calibration curve. The concentration of unknown samples is calculated 

directly by aA3+bA2+c*A+d, where A is the measured signal, and a, b, c, and d are the four coeffi-

cients from the cubic fit. The math is shown and explained better in the template CalibrationCu-

bic5Points.xls (screen image), which is set up for a 5-point calibration, with sample data already en-

tered. To expand this template to a greater number of calibration points, follow these steps exactly: se-

lect row 9 (click on the "9" row label), right-click and select Insert, and repeat for each additional cali-

bration point required. Then select row 8 columns D through K and drag-copy them down to fill in the 

newly created rows. That will create all the required equations and will modify the LINEST function in 

O16-R20. There is also another template, CalibrationCubic.xls, which uses some spreadsheet "tricks" 

to sense the number of calibration points automatically that you enter and adjust the calculations ac-

cordingly; download in Excel or OpenOffice Calc format.  

  

https://terpconnect.umd.edu/~toh/models/CalibrationReverseQuadratic.xls
https://terpconnect.umd.edu/~toh/models/CalibrationReverseQuadraticExample.xls
http://mathworld.wolfram.com/CubicFormula.html
http://mathworld.wolfram.com/CubicFormula.html
https://terpconnect.umd.edu/~toh/models/Bracket.html#ReversedAxis
https://terpconnect.umd.edu/~toh/models/NormalVsReversedQuadFit2.ods
https://terpconnect.umd.edu/~toh/models/NormalVsReversedComparison.jpg
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_LINEST_function
https://terpconnect.umd.edu/~toh/models/CalibrationCubic5Points.xls
https://terpconnect.umd.edu/~toh/models/CalibrationCubic5Points.xls
https://terpconnect.umd.edu/~toh/models/CalibrationCubic5Points.png
https://terpconnect.umd.edu/~toh/models/CalibrationCubic.xls
https://terpconnect.umd.edu/~toh/models/CalibrationCubic.xls
https://terpconnect.umd.edu/~toh/models/CalibrationCubic.ods


Page | 450  

Log-log Calibration. In log-log calibration, the logarithm of the measured signal A (y-axis) is plot-

ted against the logarithm of concentration C (x-axis) and the calibration data are fit to a linear or quad-

ratic model, as in #1 and #2 above. The concentration of unknown samples is obtained by taking the 

logarithm of the instrument readings, computing the corresponding logarithms of the concentrations 

from the calibration equation, 

then taking the anti-log to obtain 

the concentration. (These addi-

tional steps do not introduce any 

additional math error, because 

the log and anti-log conversions 

can be made quickly and with-

out significant error by the com-

puter). Log-log calibration is 

sometimes used for data with a 

very large range of values be-

cause it distributes the relative 

fitting error more evenly among the calibration points, preventing the higher calibration points to dom-

inate and cause excessive errors in the low points. In some cases (e.g., Power Law relationships) a non-

linear relationship between signal and concentration can be completely linearized by a log-log trans-

formation. (Some official government-regulated laboratories operate under rules that do not allow the 

use of nonlinear least-squares fits to calibration data, under the assumption that a nonlinear response is 

a symptom of equipment failure that should be corrected. But they do not proscribe computing loga-

rithms, so the use of log-log transformation might help in such cases). However, because of the use of 

logarithms, the data set must not contain any zero or negative values.  
 

To use this method of calibration for your own data, download the templates for log-log linear 

(Excel or Calc) or log-log quadratic (Excel or Calc). 

Drift-corrected calibration. All the above methods assume that the calibration of the instrument is 

stable with time and that the calibration (usually performed before the samples are measured) remains 

valid while the unknown samples are measured. In some cases, however, instruments and sensors can 

drift, that is, the slope and/or intercept of their calibration curves, and even their linearity, can gradual-

ly change with time after the initial calibration. You can test for this drift by measuring the standards 

again after the samples are run, to determine how different the second calibration curve is from the first. 

If the difference is not too large, it is reasonable to assume that the drift is approximately linear with 

time, that is, that the calibration curve parameters (intercept, slope, and curvature) have changed linear-

ly as a function of time between the two calibration runs. It is then possible to correct for the drift if 

you record the time when each calibration is run and when each unknown sample is measured. The 

drift-correction spreadsheet (CalibrationDriftingQuadratic) does the calculations: it computes a quad-

ratic fit for the pre- and post-calibration curves, then it uses linear interpolation to estimate the calibra-

tion curve parameters for each separate sample based on the time it was measured. The method works 

perfectly only if the drift is linear with time (a reasonable assumption if the amount of drift is not too 

http://en.wikipedia.org/wiki/Power_law
https://terpconnect.umd.edu/~toh/spectrum/RegulatedLabRules.txt
https://terpconnect.umd.edu/~toh/spectrum/RegulatedLabRules.txt
https://terpconnect.umd.edu/~toh/models/LogLogCalibrationLinear.xls
https://terpconnect.umd.edu/~toh/models/LogLogCalibrationLinear.ods
https://terpconnect.umd.edu/~toh/models/LogLogCalibrationQuadratic.xls
https://terpconnect.umd.edu/~toh/models/LogLogCalibrationQuadratic.ods


Page | 451  

large), but in any case, it is better than simply assuming that there is no drift at all. If you would like to 

 

use this method of calibration for your own data, download in Excel or OpenOffice Calc format. (See 

instructions, page 453)  

Error calculations. In many cases, it is important to calculate the likely error in the computed concen-

tration values (column K) caused by imperfect calibration. This is discussed on page 163, "Reliability 

of curve fitting results". The linear calibration spreadsheet (download in Excel or OpenOffice Calc 

format) performs a classical algebraic error-propagation calculation (page 163) on the equation that 

calculates the concentration from the unknown signal and the slope and intercept of the calibration 

curve. The quadratic calibration spreadsheet (Download in Excel or OpenOffice Calc format) performs 

a bootstrap calculation (page 166). You must have at least 5 calibration points for these error calcula-

tions to be even minimally reliable: the more the better. That is because these methods need a repre-

sentative sample of deviations from the ideal calibration line. If the calibration line fits the points exact-

ly, then the computed error will be zero. 

Comparison of calibration methods 

To compare these various methods of calibration, I will take one set of 

real data and subject it to five different calibration curve-fitting meth-

ods. The data set, shown on the left, has 10 data points covering a 

wide (1000-fold) range of concentrations. Over that range, the instru-

ment readings are not linearly proportional to concentration. These 

data are used to construct a calibration curve, which is then fit using 

three different models, using the spreadsheet templates described 

above, and then the equations of the fits, solved for concentration, are 

used to calculate the concentration of each standard according to that 

calibration equation. For each method, I compute the relative percent 

difference between the actual concentration of each standard and the 

concentrations calculated from the calibration curves. Then I calculat-

https://terpconnect.umd.edu/~toh/models/CalibrationDriftingQuadratic.xls
https://terpconnect.umd.edu/~toh/models/CalibrationDriftingQuadratic.ods
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Reliability
https://terpconnect.umd.edu/~toh/models/CalibrationLinear.xls
https://terpconnect.umd.edu/~toh/models/CalibrationLinear.ods
https://terpconnect.umd.edu/~toh/models/CalibrationQuadraticB.xlsx
https://terpconnect.umd.edu/~toh/models/CalibrationQuadraticB.ods
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Bootstrap


Page | 452  

ed the average of those errors for each method. The objective of this exercise is to determine which 

method gives the lowest average error for all 10 standards in this data set.  

The three methods used and their relative percent errors are: (1) linear, 196% error ; (2) quadratic, 50% 

error, and (3) log-log linear, 20% error. ComparisonOfCalibrations.xlsx summarizes the results. For 

this data set, the best method is the log-log linear, but that does not mean that this method will always 

be the best in every situation. These calibration data are non-linear, and they cover a very wide range of 

x-values (concentrations), which is a challenge for most calibration methods.  

Instructions for using the calibration templates 

1. Download and open the desired calibration worksheet from among those listed above (page 447). 
 

2. Enter the concentrations of the standards and their instrument readings (e.g., absorbance) into the 

blue table on the left. Leave the rest of the table blank. You must have at least two points on the 

calibration curve (three points for the quadratic method or four points for the cubic method), including 

the blank (zero concentration standard). If you have multiple instrument readings for one standard, it is 

better to enter each as a separate standard with the same concentration, rather than entering the average. 

The spreadsheet automatically gives more weight to standards that have more than one reading.  
 

3. Enter the instrument readings (e.g., absorbance) of the unknowns into the yellow table on the right. 

You can have any number of unknowns up to 20. (If you have multiple instrument readings for one 

unknown, it is better to enter each as a separate unknown, rather than averaging them, so you can see 

how much variation in calculated concentration is produced by the variation in instrument reading). 
 

4. The concentrations of the unknowns are automatically calculated and displayed column K. If you 

edit the calibration curve, by deleting, changing, or adding more calibration standards, the 

concentrations are automatically recalculated.  
 

For the linear fit (CalibrationLinear.xls), if you have three or more calibration points, the estimated 

standard deviation of the slope and intercept will be calculated and displayed in cells G36 and G37, 

and the resulting standard deviation (SD) of each concentration will be displayed in rows L (absolute 

SD) and M (percent relative SD). These standard deviation calculations are estimates of the variability 

of slopes and intercepts you are likely to get if you repeated the calibration over and over multiple 

times under the same conditions, assuming that the deviations from the straight line are due to random 

variability and not a systematic error caused by non-linearity. If the deviations are random, they will be 

slightly different from time to time, causing the slope and intercept to vary from measurement to 

measurement. However, if the deviations are caused by systematic non-linearity, they will be the same 

from measurement to measurement, in which case these predictions of standard deviation will not be 

relevant, and you would be better off using a polynomial fit such as a quadratic or cubic. The reliability 

of these standard deviation estimates also depends on the number of data points in the curve fit; they 

improve with the square root of the number of points. 
 

5. You can remove any point from the curve fit by deleting the corresponding X and Y values in the 

table. To delete a value; right-click on the cell and click "Delete Contents" or "Clear Contents". The 

https://terpconnect.umd.edu/~toh/models/ExampleLinearUnweighted.xls
https://terpconnect.umd.edu/~toh/models/ExampleQuadraticUnweighted.xls
https://terpconnect.umd.edu/~toh/models/ExampleLogLogLinear.xls
https://terpconnect.umd.edu/~toh/models/ComparisonOfCalibrations.xlsx
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html#worksheets


Page | 453  

spreadsheet automatically re-calculates and the graph re-draws; if it does not, press F9 to recalculate. 

(Note: the cubic calibration spreadsheet must have contiguous calibration points with no blank or 

empty cells in the calibration range).  
 

6. The linear calibration spreadsheet also calculates the coefficient of determination, R2, which is an 

indicator of the "goodness of fit", in cell C37. R2 is 1.0000 when the fit is perfect but less than that 

when the fit is imperfect. The closer to 1.0000 the better. 
 

7. A "residuals plot" is displayed just below the calibration graph (except for the interpolation method). 

This shows the difference between the best-fit calibration curve and the actual readings of the standards. 

The smaller these errors, the more closely the curve fits the calibration standards. (The standard 

deviation of those errors is also calculated and displayed below the residuals plot; the lower this 

standard deviation, the better).  
 

You can tell a lot by looking at the shape of the residual plot: if the points are scattered randomly above 

and below zero, it means that the curve fit is as good as it can be, given the random noise in the data. 

But if the residual plot has a smooth shape, say, a U-shaped curve, then it means that there is a 

mismatch between the curve fit and the actual shape of the calibration curve; suggesting that another 

curve fitting technique might be tried (say, a quadratic or cubic fit rather than a linear one) or that the 

experimental conditions be modified to produce a less complex experimental calibration curve shape. 
 

8. Drift-corrected calibration. If you are using the spreadsheet for drift-corrected calibration, you 

must measure two calibration curves, one before and one after you run the samples, and you must 

record the date and time each calibration curve is measured. Enter the concentrations of the standards 

into column B. Enter the instrument readings for the first (pre-) calibration into column C and the 

date/time of that calibration into cell C5; enter the instrument readings for the post-calibration into 

column D and the date/time of that calibration into cell D5. The format for the date/time entry is 

Month-Day-Year Hours:Minutes:Seconds, for example, 6-2-2011 13:30:00 for June 2, 2011, 1:30 

PM (13:30 on the 24-hour clock). Note: if you run both calibrations on the same day, you can leave off 

the date and just enter the time. In the graph, the pre-calibration curve is in green, and the post-

calibration curve is in red. Then, for each unknown sample measured, enter the date/time (in the same 

format) into column K and the instrument reading for that unknown into column L. The spreadsheet 

computes the drift-corrected sample concentrations in column M. Note: Version 2.1 of this spreadsheet 

(July 2011) allows different sets of concentrations for the pre- and post-calibrations. Just list all the 

concentrations used in the "Concentration of standards" column (B) and put the corresponding 

instrument readings in columns C or D, or both. If you do not use a particular concentration for one of 

the calibrations, just leave that instrument reading blank.  
 



Page | 454  

 
 

This figure shows an application of the drift-corrected quadratic calibration spreadsheet to a remote 

sensing experiment. In this demonstration, the calibrations and measurements were made over a period 

of several days. The pre-calibration (column C) was performed with six standards (column B) on 

01/25/2011 at 1:00 PM. Eight unknown samples were measured over the following five days (columns 

L and M), and the post-calibration (column D) was performed after then last measurement on 

01/30/2011 at 2:45 PM. The graph in the center shows the pre-calibration curve in green and the post-

calibration curve in red. As you can see, the sensor (or the instrument) had drifted over that time period, 

the sensitivity (slope of the calibration curve) becoming 28% smaller and the curvature becoming 

noticeably more non-linear (concave down). This may have been caused in this case by the 

accumulation of dirt and algal growth on the sensor over time. Whatever the cause, both the pre- and 

post-calibration curves fit the quadratic calibration equations very well, as indicated by the residuals 

plot and the “3 nines” coefficients of determination (R2) listed below the graphs. The eight "unknown" 

samples that were measured for this test (yellow table) were the same sample measured repeatedly - a 

standard of concentration 1.00 units - but you can see that the sample gave lower instrument readings 

(column L) each time it was measured (column K), due to the drift. Finally, the drift-corrected 

concentrations calculated by the spreadsheet (column M on the right) are all very close to 1.00, with a 

standard deviation of 0.6%, showing that the drift correction works well, within the limits of the 

random noise in the instrument readings and subject to the assumption that the drift in the calibration 

curve parameters is linear with time between the pre- and post-calibrations.  

Frequently Asked Questions (taken from emails and search engine queries) 

1. Question: What is the purpose of the calibration curve? 

Answer: Most analytical instruments generate an electrical output signal such as a current or a voltage. 

A calibration curve establishes the relationship between the signal generated by a measurement 

instrument and the concentration of the substance being measured. Different chemical compounds and 

elements give different signals. When an unknown sample is measured, the signal from the unknown is 

https://terpconnect.umd.edu/~toh/models/ReversedQuadraticVsCubic.ods
https://terpconnect.umd.edu/~toh/models/DriftingCalibration.gif


Page | 455  

converted into concentration using the calibration curve. 
 

2. Question: How do you make a calibration curve? 

Answer: You prepare a series of "standard solutions" of the substance that you intend to measure, 

measure the signal (e.g., absorbance, if you are doing absorption spectrophotometry), and plot the 

concentration on the x-axis and the measured signal for each standard on the y-axis. Draw a straight 

line as close as possible to the points on the calibration curve (or a smooth curve if a straight line will 

not fit), so that as many points as possible are right on or close to the curve.  
 

3. Question: How do you use a calibration curve to predict the concentration of an unknown sample? 

How do you determine concentration from a non-linear calibration plot? 

Answer: You can do that in two ways, graphically and mathematically. Graphically, draw a horizontal 

line from the signal of the unknown on the y axis over to the calibration curve and then straight down to 

the concentration (x) axis to the concentration of the unknown. Mathematically, fit an equation to the 

calibration data, and solve the equation for concentration as a function of signal. Then, for each 

unknown, just plug its signal into this equation and calculate the concentration. For example, for a 

linear equation, the curve fit equation is Signal = slope * Concentration + intercept, where slope and 

intercept are determined by a linear (first-order) least-squares curve fit to the calibration data. Solving 

this equation for Concentration yields Concentration = (Signal - intercept) / slope, where Signal is 

the signal reading (e.g., absorbance) of the unknown solution. (Click here for a fill-in-the-blank 

OpenOffice spreadsheet that does this for you. View screen shot). 
 

4. Question: How do I know when to use a straight-line curve fit and when to use a curved line fit like 

a quadratic or cubic?  

Answer: Fit a straight line to the calibration data and look at a plot of the "residuals" (the differences 

between the y values in the original data and the y values computed by the fit equation). Deviations 

from linearity will be much more evident in the residuals plot than in the calibration curve plot. (Click 

here for a fill-in-the-blank OpenOffice spreadsheet that does this for you. View screen shot). If the 

residuals are randomly scattered all along the best-fit line, then it means that the deviations are caused 

by random errors such as instrument noise or by random volumetric or procedural errors; in that case 

you can use a straight line (linear) fit. If the residuals have a smooth shape, like a "U" shape, this means 

that the calibration curve is curved, and you should use a non-linear curve fit, such as a quadratic or 

cubic fit. If the residual plot has an “S" shape, you should probably use a cubic fit. (If you are doing 

absorption spectrophotometry, see Comparison of Curve Fitting Methods in Absorption Spectroscopy). 
 

5. Question: What if my calibration curve is linear at low concentrations but curves off at the highest 

concentrations? 

Answer: You can't use a linear curve fit in that case, but if the curvature is not too severe, you might be 

able to get a good fit with a quadratic or cubic fit. If not, you could break the concentration range into 

two regions and fit a linear curve to the lower linear region and a quadratic or cubic curve to the higher 

non-linear region. 
 

6. Question: What is the difference between a calibration curve and a line of best fit? What is 

the difference between a linear fit and a calibration curve? 

Answer: The calibration curve is an experimentally measured relationship between concentration and 

https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html
http://terpconnect.umd.edu/~toh/models/CalibrationLinear.odt
http://terpconnect.umd.edu/~toh/models/CalibrationLinear.GIF
http://terpconnect.umd.edu/~toh/models/CalibrationLinear.odt
http://terpconnect.umd.edu/~toh/models/CalibrationLinear.odt
http://terpconnect.umd.edu/~toh/models/CalibrationLinear.GIF
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/models/BeersLawCurveFit.html
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html


Page | 456  

signal. You do not ever really know the true calibration curve; you can only estimate it at a few points 

by measuring a series of standard solutions. Then draw a line or a smooth curve that goes as much as 

possible through the points, with some points being a little higher than the line and some points a little 

lower than the line. That is what we mean by that is a "best fit" to the data points. The actual calibration 

curve might not be perfectly linear, so a linear fit is not always the best. A quadratic or cubic fit might 

be better if the calibration curve shows a gradual smooth curvature. 
 

7. Question: Why the slope line does not go through all points on a graph? 

Answer: That will only happen if you (1) are a perfect experimenter, (2) have a perfect instrument, and 

(3) choose the perfect curve-fit equation for your data. That is not going to happen. There are always 

little errors. The least-squares curve-fitting method yields a best fit, not a perfect fit, to the calibration 

data for a given curve shape (linear, quadratic, or cubic). Points that fall off the curve are assumed to do 

so because of random errors or because the actual calibration curve shape does not match the curve-fit 

equation.  
 

There is one artificial way you can make the curve go through all the points, and that is to use too few 

calibration standards: for example, if you use only two points for a straight-line fit, then the best-fit 

line will obviously go through those two points no matter what. Similarly, if you use only three points 

for a quadratic fit, then the quadratic best-fit curve will go right through those three points, and if you 

use only four points for a cubic fit, then the cubic best-fit curve will go right through those four points. 

But that is not really recommended, because if one of your calibration points is off by a huge error, the 

curve fit will still look perfect, and you will have no clue that something is wrong. You really must use 

more standards so that you will know when something has gone wrong. 
 

8. Question: What happens when the absorbance reading is higher than any of the standard solutions? 

Answer: If you are using a curve-fit equation, you will still get a value of concentration calculated for 

any signal reading you put in, even above the highest standard. However, it is risky to do that, because 

you really do not know for sure what the shape of the calibration curve is above the highest standard. It 

could continue straight, or it could curve off in some unexpected way - how would you know for sure? 

It is best to add another standard at the high end of the calibration curve. 
 

9. Question: What's the difference between using a single standard and multiple standards? 

Answer: The single standard method is the simplest and quickest method, but it is accurate only if the 

calibration curve is known to be linear. Using multiple standards has the advantage that any non-

linearity in the calibration curve can be detected and avoided (by diluting into the linear range) or 

compensated (by using non-linear curve fitting methods). Also, the random errors in preparing and 

reading the standard solutions are averaged over several standards, which is better than "putting all 

your eggs in one basket" with a single standard. On the other hand, an obvious disadvantage of the 

multiple standard method is that it requires much more time and uses more standard material than the 

single standard method. 
 

10. Question: What's the relationship between sensitivity in analysis and the slope of standard curve? 

Answer: Sensitivity is defined as the slope of the standard (calibration) curve. 
 

11. Question: How do you make a calibration curve in Excel or in OpenOffice? 

http://goldbook.iupac.org/S05606.html


Page | 457  

Answer: Put the concentration of the standards in one column and their signals (e.g., absorbances) in 

another column. Then make an XY scatter graph, putting concentration on the X (horizontal) axis and 

signal on the Y (vertical) axis. Plot the data points with symbols only, not lines between the points. To 

compute a least-squares curve fit, you can either put in the least-squares equations into your 

spreadsheet, or you can use the built-in LINEST function in both Excel and OpenOffice Calc to 

compute polynomial and other curvilinear least-squares fits. For examples of OpenOffice spreadsheets 

that graphs and fits calibration curves, see Worksheets for Analytical Calibration Curves. 
 

12. Question: What's the difference in using a calibration curve in absorption spectrometry vs other 

analytical methods such a fluorescence or emission spectroscopy? 

Answer: The only difference is the units of the signal. In absorption spectroscopy you use absorbance 

(because it is the most nearly linear with concentration) and in fluorescence (or emission) spectroscopy 

you use the fluorescence (or emission) intensity, which is usually linear with concentration (except 

sometimes at high concentrations). The methods of curve fitting and calculating the concentration are 

basically the same. 
 

13. Question: If the solution obeys Beer's Law, is it better to use a calibration curve rather than a 

single standard? 

Answer: It might not make much difference either way. If the solution is known from previous 

measurements to obey Beer's Law exactly on the same spectrophotometer and under the conditions in 

use, then a single standard can be used (although it is best if that standard gives a signal close to the 

maximum expected sample signal or to whatever signal gives the best signal-to-noise ratio - an 

absorbance near 1.0 in absorption spectroscopy). The only real advantage of multiple standards in this 

case is that the random errors in preparing and reading the standard solutions are averaged over several 

standards, but the same effect can be achieved more simply by making up multiple copies of the same 

single standard (to average out the random volumetric errors) and reading each separately (to average 

out the random signal reading errors). And if the signal reading errors are much smaller than the 

volumetric errors, then a single standard solution can be measured repeatedly to average out the 

random measurement errors. 
 

14. Question: What is the effect on concentration measurement if the monochromator is not perfect? 

Answer: If the wavelength calibration if off a little bit, it will have no significant effect if the 

monochromator setting is left untouched between measurement of standards and unknown sample; the 

slope of the calibration curve will be different, but the calculated concentrations will be OK. (But 

if anything changes the wavelength between the time you measure the standards and the time you 

measure the samples, an error will result). If the wavelength has a poor stray light rating or if the 

resolution is poor (spectral bandpass is too big), the calibration curve may be affected adversely. In 

absorption spectroscopy, stray light and poor resolution may result in non-linearity, which requires a 

non-linear curve fitting method. In emission spectroscopy, stray light and poor resolution may result in 

a spectral interference which can result in significant analytical errors. 
 

15. Question: What does it mean if the intercept of my calibration curve fit is not zero? 

Answer: Ideally, the y-axis intercept of the calibration curve (the signal at zero concentration) should 

be zero, but there are several reasons why this might not be so. (1) If there is substantial random scatter 

http://www.ncsu.edu/labwrite/res/gt/graphtut-home.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#MathDetails
http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fwww.colby.edu%2Fchemistry%2FPChem%2Fnotes%2Flinest.pdf&ei=DTl_SMnUDIye8gTV-vjTCw&usg=AFQjCNGNAoinemLK1XD9VxkN0SlQvlseFg&sig2=cxJZu6DsHOSjcBWjaSbsiw
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_LINEST_function
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html


Page | 458  

in the calibration points above and below the best-fit line, then it is likely that the non-zero intercept is 

just due to random error. If you prepared another separate set of standards, that standard curve would 

have different intercept, either positive or negative. There is nothing that you can do about this, unless 

you can reduce the random error of the standards and samples. (2) If the shape of the calibration curve 

does not match the shape of the curve fit, then it is very likely that you will get a non-zero intercept 

every time. For example, if the calibration curve bends down as concentration increases, and you use a 

straight-line (linear) curve fit, the intercept will be positive (that is, the curve fit line will have a 

positive y-axis intercept, even if the actual calibration curve goes through zero). This is an artifact of 

the poor curve fit selection; if you see that happen, try a different curve shape (quadratic or cubic). (3) 

If the instrument is not "zeroed" correctly, in other words, if the instrument gives a non-zero reading 

when the blank solution is measured. In that case you have three choices: you can zero the instrument 

(if that is possible); you can subtract the blank signal from all the standard and sample readings; or you 

can just let the curve fit subtract the intercept for you (if your curve fit procedure calculates the 

intercept and you keep it in the solution to that equation, e.g., Concentration = (Signal - intercept) / 

slope).  
 

16. Question: How can I reduce the random scatter of calibration points above and below the best-fit 

line? 

Answer: Random errors like this could be due either to random volumetric errors (small errors in 

volumes used to prepare the standard solution by diluting from the stack solution or in adding reagents) 

or they may be due to random signal reading errors of the instrument, or to both. To reduce the 

volumetric error, use more precise volumetric equipment and practice your technique to perfect it (for 

example, use your technique to deliver pure water and weigh it on a precise analytical balance). To 

reduce the signal reading error, adjust the instrument conditions (e.g., wavelength, path length, slit 

width, etc.) for best signal-to-noise ratio and average several readings of each sample or standard.  
 

17. Question: What are interferences? What effect do interferences have on the calibration curve and 

on the accuracy of concentration measurement? 

Answer: When an analytical method is applied to complex real-world samples, for example the 

determination of drugs in blood serum, measurement error can occur due to interferences. Interferences 

are measurement errors caused by chemical components in the samples that influence the measured 

signal, for example by contributing their own signals or by reducing or increasing the signal from the 

analyte. Even if the method is well calibrated and is capable of measuring solutions of pure analyte 

accurately, interference errors may occur when the method is applied to complex real-world samples. 

One way to correct for interferences is to use "matched-matrix standards", standard solutions that are 

prepared to contain everything that the real samples contain, except that they have known 

concentrations of analyte. But this is very difficult and expensive to do exactly, so every effort is made 

to reduce or compensate for interferences in other ways. For more information on types of interferences 

and methods to compensate for them, see Comparison of Analytical Calibration Methods. 
 

18. Question: What are the sources of error in preparing a calibration curve? 

Answer: A calibration curve is a plot of analytical signal (e.g., absorbance, in absorption 

spectrophotometry) vs concentration of the standard solutions. Therefore, the main sources of error are 

the errors in the standard concentrations and the errors in their measured signals. Concentration errors 

http://en.wikipedia.org/wiki/Blank_%28solution%29
https://terpconnect.umd.edu/~toh/models/Bracket.html


Page | 459  

depend mainly on the accuracy of the volumetric glassware (volumetric flasks, pipettes, solution 

delivery devices) and on the precision of their use by the people preparing the solutions. In general, the 

accuracy and precision of handling large volumes above 10 mL is greater than that at lower volumes 

below 1 mL. Volumetric glassware can be calibrated by weighing water on a precise analytical balance 

(you can look up the density of water at various temperatures and thus calculate the exact volume of 

water from its measured weight); this would allow you to label each of the flasks, etc., with their actual 

volume. But precision may still be a problem, especially at lower volumes, and it is very much 

operator-dependent. It takes practice to get good at handling small volumes. Signal measurement error 

depends hugely on the instrumental method used and on the concentration of the analyte; it can vary 

from near 0.1% under ideal conditions to 30% near the detection limit of the method. Averaging repeat 

measurements can improve the precision with respect to random noise. To improve the signal-to-noise 

ratio at low concentrations, you may consider modifying the conditions, such as changing the 

monochromator slit width or the absorption path length or by using another instrumental method (such 

as a graphite furnace rather than flame atomizer in atomic absorption measurements). 
 

19. Question: How can I find the error in a specific quantity using a least squares fitting method? How 

can I estimate the error in the calculated slope and intercept? 

Answer: When using a simple straight-line (first-order) least-squares fit, the best fit line is specified by 

only two quantities: the slope and the intercept. The random error in the slope and intercept 

(specifically, their standard deviation) can be estimated mathematically from the extent to which the 

calibration points deviate from the best-fit line. The equations for doing this are given here and are 

implemented in the "spreadsheet for linear calibration with error calculation". It is important to realize 

that these error computations are only estimates, because they assume that the calibration data set is 

representative of all the calibration sets that would be obtained if you repeated the calibration a large 

number of times - in other words, the assumption is that the random errors (volumetric and signal 

measurement errors) in your particular data set are typical. If your random errors happen to be small 

when you run your calibration curve, you will get a deceptively good-looking calibration curve, but 

your estimates of the random error in the slope and intercept will be too low. If your random errors 

happen to be large, you will get a deceptively bad-looking calibration curve, and your estimates of the 

random error in the slope and intercept will be too high. These error estimates can be particularly poor 

when the number of points in a calibration curve is small; the accuracy of the estimates increases if the 

number of data points increases, but of course preparing many standard solutions is time consuming 

and expensive. The bottom line is that you can only expect these error predictions from a single 

calibration curve to be very rough; they could easily be off by a factor of two or more, as demonstrated 

by the simulation "Error propagation in the Linear Calibration Curve Method" (download 

OpenOffice version).  
 

20. How can I estimate the error in the calculated concentrations of the unknowns? 

Answer: You can use the slope and intercept from the least-squares fit to calculate the concentration of 

an unknown solution by measuring its signal and computing (Signal - intercept) / slope, where Signal 

is the signal reading (e.g., absorbance) of the unknown solution. The errors in this calculated 

concentration can then be estimated by the usual rules for the propagation of error: first, the error in 

(Signal - intercept) is computed by the rule for addition and subtraction; second, the error in (Signal - 

http://en.wikipedia.org/wiki/Standard_deviation
https://terpconnect.umd.edu/~toh/models/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/models/CalibrationLinear2.ods
http://terpconnect.umd.edu/~toh/models/CalibrationLinear2.ods
https://terpconnect.umd.edu/~toh/models/CalCurveOOError.ods
https://terpconnect.umd.edu/~toh/models/CalCurveOOError.ods


Page | 460  

intercept) / slope is computed by the rule for multiplication and division. The equations for doing this 

are given here and are implemented in the "spreadsheet for linear calibration with error calculation". It 

is important to realize that these error computations are only estimates, for the reason given in 

Question #19 above, especially if the number of points in a calibration curve is small, as demonstrated 

by the simulation "Error propagation in the Linear Calibration Curve Method" (download OpenOffice 

version).  
 

21. What is the minimum acceptable value of the coefficient of determination (R2) for calibration? 

Answer: It depends on the accuracy required. As a rough rule of thumb, if you need an accuracy of 

about 0.5%, you need an R2 of 0.9998; if a 1% error is good enough, an R2 of 0.997 will do; and if a 5% 

error is acceptable, an R2 of 0.97 will do. The bottom line is that the R2 must be very close to 1.0 for 

quantitative results in analytical chemistry. 

  

https://terpconnect.umd.edu/~toh/models/ErrorPropagation.pdf
https://terpconnect.umd.edu/~toh/models/CalibrationLinear2.ods
http://terpconnect.umd.edu/~toh/models/CalibrationLinear2.ods
https://terpconnect.umd.edu/~toh/models/CalCurveOOError.ods
https://terpconnect.umd.edu/~toh/models/CalCurveOOError.ods


Page | 461  

Catalog of signal processing functions, scripts, 

and spreadsheet templates 
This is a list of the functions, scripts, data files, and spreadsheets used in this book, collected according 

to topic, with brief descriptions. If you are reading this book online, on an Internet connected computer, 

you can Ctrl-Click on any of links and select "Save link as..." to download them to your comput-

er. There are approximately 200 Matlab/Octave m-files (functions and demonstration scripts); place 

these into the Matlab or Octave "path" so you can use them just like any other built-in feature. 

(Difference between scripts and functions). To display the built-in help for these functions and script, 

type "help <name>" at the command prompt (where "<name>" is the name of the script or function).  
 

Many of the figures in this book are screen images of my software in action. Often the screen shots dis-

play a version number that is older than the current version, betraying the date when they were first 

made; there is almost certainly a newer version that includes additional functions. If you are unsure 

whether you have all the latest versions, the simplest way to update all my functions, scripts, tools, 

spreadsheets and documentation files is to download the latest site archive ZIP file (approx. 400 

MBytes), then right-click on the zip file and click "Extract all". Then list the contents of the extracted 

folder by date and then drag and drop any new or newly updated files into a folder in your 

Matlab/Octave path. The ZIP files contains all the files used by this web site in one directory, so you 

can search for them by file name or sort them by date to determine which ones have changed since the 

last time you downloaded them.  
 

If you try to run one of my scripts or functions and it gives you a "missing function" error, look for the 

missing item in this catalog, download it into your path, and try again.   
  

Some of these functions have been requested by users, suggested by Google search terms, or corrected 

and expanded based on extensive user feedback; you could almost consider this an international 

"crowd-sourced" software project. I wish to express my thanks and appreciation for all those who have 

made useful suggestions, corrected errors, and especially those who have sent me data from their work 

to test my programs on. These contributions have really helped to correct bugs and to expand the ca-

pabilities of my programs. 

Peak shape functions (for Matlab and Octave)  

Most of these shape functions take three required input arguments: the independent 

variable ("x") vector, the peak position, "pos", and the peak width, "wid", usually the 

full width at half maximum. The functions marked 'variable shape' require an addi-

tional fourth input argument that determines the exact peak shape. The sigmoidal 

and exponential shapes (alpha function, exponential pulse, up-sigmoid, down-

sigmoid, Gompertz, FourPL, and OneMinusExp) have different variables names. 
 

Gaussian y = gaussian(x,pos,wid)  

Exponentially-broadened Gaussian (variable shape)  
Triangle-broadened Gaussian (variable shape) 

Bifurcated Gaussian (variable shape) 

Flattened Gaussian (variable shape) 

Clipped Gaussian (variable shape) 

Lorentzian (aka 'Cauchy') y = lorentzian(x,pos,wid) 

Exponentially-broadened Lorentzian (variable shape) 

https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#ScriptsVsFunctions
https://terpconnect.umd.edu/~toh/spectrum/SPECTRUM.zip
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/GaussTriangle.m
https://terpconnect.umd.edu/~toh/spectrum/BiGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/flattenedgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/clippedgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/explorentzian.m


Page | 462  

Clipped Lorentzian (variable shape) 

Gaussian/Lorentzian blend (variable shape) 

Voigt profile (variable shape) 

Lognormal 

Sech2pulse (intermediate between Gaussian and Lorentzian)  The self-contained script 

Sech2ShapeComparison.m compares Gaussian, Lorentzian, and sech2 pulse shapes (graphic).  

Logistic distribution (On the other hand, for the logistic function, see up-sigmoid) 

Pearson 5 (variable shape) 

Alpha function 

Exponential pulse 

Plateau (variable shape, symmetrical product of sigmoid and down sigmoid, similar to Flattened Gauss-

ian) 

Breit-Wigner-Fano resonance (BWF) (variable shape) 

Triangle 

Exponentially-broadened triangle (variable shape) 

Gaussian/Triangle blend (variable shape) 

Rectanglepulse 

Tsallis distribution (variable shape, similar to Pearson 5) 

up-sigmoid (logistic function or "S-shaped"). Simple upward going sigmoid.  

Down-sigmoid ("Z-shaped") Simple downward going sigmoid. 

Gompertz, 3-parameter logistic, a variable-shape sigmoidal:  
y=Bo*exp(-exp((Kh*exp(1)/Bo)*(L-t) +1)) 

FourPL, 4-parameter logistic, y = maxy+(miny-maxy)./(1+(x./ip).^slope) 

OneMinusExp, Asymptotic rise to flat plateau: g = 1-exp(-wid.*(x-pos)) 

peakfunction.m, a function that generates many different peak types specified by number. 
 

modelpeaks, a function that simulates multi-peak time-series signal data consisting of any number of 

peaks of the same shape. Syntax is model= modelpeaks(x, NumPeaks, peakshape, Heights, Positions, 

Widths, extra), where 'x' is the independent variable vector, 'NumPeaks' is the number of peaks, 

'peakshape' is the peak shape number, 'Heights' is the vector of peak heights, 'Positions' is the vector of 

peak positions, 'Widths' is the vector of peak widths, and 'extra' is the additional shape parameter re-

quired by the exponentially broadened, Pearson, Gaussian/Lorentzian blend, BiGaussian and Bi-

Lorentzian shapes. Type 'help modelpeaks'. To create noisy peaks, use one of the following noise func-

tions to create some random noise to add to the modelpeaks array.  
 

modelpeaks2, a function that simulates multi-peak time-series signal data consisting of any number of 

peaks of different shapes. Syntax is y=modelpeaks2(t, Shape, Height, Position, Width, extra) where 

'shape' is a vector of peak type numbers and the other input arguments are the same as for mod-

elpeaks.m. Type 'help modelpeaks2'. 
 

ShapeDemo demonstrates 16 basic peak shapes graphically, showing the variable-shape peaks as mul-

tiple lines. (Graphic on page 419) 
 

SignalGenerator.m is a script that uses the modelpeaks.m function above to create and plot realistic 

computer-generated signal consisting of multiple peaks on a variable baseline plus variable random 

noise. You may change the lines marked by “<<<” to modify the character of the signal peaks, base-

line, and noise. 

https://terpconnect.umd.edu/~toh/spectrum/clippedlorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/GL.m
https://terpconnect.umd.edu/~toh/spectrum/voigt.m
https://terpconnect.umd.edu/~toh/spectrum/lognormal.m
https://terpconnect.umd.edu/~toh/spectrum/sech2pulse
https://terpconnect.umd.edu/~toh/spectrum/Sech2ShapeComparison.m
https://terpconnect.umd.edu/~toh/spectrum/Sech2ShapeComparison.png
https://terpconnect.umd.edu/~toh/spectrum/logistic.m
https://terpconnect.umd.edu/~toh/spectrum/logistic.m
https://terpconnect.umd.edu/~toh/spectrum/upsigmoid.m
https://terpconnect.umd.edu/~toh/spectrum/pearson.m
https://terpconnect.umd.edu/~toh/spectrum/alphafunction.m
https://terpconnect.umd.edu/~toh/spectrum/exppulse.m
https://terpconnect.umd.edu/~toh/spectrum/plateau.m
https://terpconnect.umd.edu/~toh/spectrum/flattenedgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/flattenedgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/BWF.m
https://terpconnect.umd.edu/~toh/spectrum/triangle.m
https://terpconnect.umd.edu/~toh/spectrum/exptriangle.m
https://terpconnect.umd.edu/~toh/spectrum/GT.m
https://terpconnect.umd.edu/~toh/spectrum/GT.m
https://terpconnect.umd.edu/~toh/spectrum/rectanglepulse
https://terpconnect.umd.edu/~toh/spectrum/tsallis.m
https://terpconnect.umd.edu/~toh/spectrum/upsigmoid.m
https://terpconnect.umd.edu/~toh/spectrum/downsigmoid.m
https://terpconnect.umd.edu/~toh/spectrum/gompertz.m
https://terpconnect.umd.edu/~toh/spectrum/FourPL.m
https://terpconnect.umd.edu/~toh/spectrum/OneMinusExp.m
https://terpconnect.umd.edu/~toh/spectrum/peakfunction.m
https://terpconnect.umd.edu/~toh/spectrum/modelpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/modelpeaks2.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SignalGenerator.m


Page | 463  

Signal Arithmetic  

stdev.m Octave and Matlab compatible standard deviation function (because the regular built-in std.m 

function behaves differently in Matlab and in Octave). rsd.m is the relative standard deviation (the 

standard deviation divided by the mean). 

PercentDifference.m A simple function that calculates the percent difference between two numbers or 

vectors, i.e., 100.*(b-a)./a, where a and b can be scalar or vector. 

halfwidth and tenthwidth: [FWHM,slope1,slope2,hwhm1,hwhm2] = halfwidth(x,y,xo) uses 

linear interpolation between points to compute the approximate FWHM (full width at half maximum) 

of any smooth peak whose maximum is at x=xo, has a zero baseline, and falls to below one-half of the 

maximum height on both sides. Not accurate if the peak is noisy or sparsely sampled. If the additional 

output arguments are supplied, it also returns the leading and trailing edge slopes, slope1 and slope2, 

and the leading and trailing edge half widths at half maximum, hwhm1 and hwhm2, respectively. If x0 
is omitted, it determines the halfwidth of the largest peak. Example: xo=500; width=100; 
x=1:1000; y=exp(-1.*((x-xo)/(0.60056120439323.*width)).^2); half-

width(x,y,xo). The analogous function [twidth,slope1,slope2,hwhm1,hwhm2] = 

tenthwidth(x,y,xo) computes the full width at 1/10 maximum, and just for the heck of 
it, hundredthwidth, [hwidth,slope1,slope2] = hundredthwidth(x,y,xo), computes the full 

width at 1/100 maximum.  
 

MeasuringWidth.m is a script that compares two methods of measuring the full width at half maximum 

of a peak: Gaussian fitting (using peakfit.m) and direct interpolation (using halfwidth.m). The two 

methods agree exactly for a finely-sampled noiseless Gaussian on a zero baseline but give slightly dif-

ferent answers if any of these conditions are not met. The halfwidth function works well for any finely-

sampled smooth peak shape on a zero baseline, but the peakfit function is better at resisting random 

noise and it can correct for some types of baselines and it has a wide selection of peak shapes to use as 

a model. See the help file. 
 

IQrange.m, estimates the standard deviation of a set of numbers by dividing its “interquartile range” 

(IQR) by 1.34896, an alternative to the usual standard deviation calculation that works better for com-

puting the dispersion (spread) of a data set that contains outliers. Essentially it is the standard deviation 

with outliers removed. Syntax is b = IQrange(a). 
 

rmnan(a), which stands for "ReMove Not A Number", removes NaNs ("Not a Number") and Infs ("In-

finite") from vectors, replacing with nearest real numbers and printing out the number of changes (if 

any are made). Use this to prevent subsequent operations from stopping on an error. 
 

rmz(a) ReMoves Zeros from vectors, replacing with nearest non-zero numbers and printing out the 

number of changes (if any are made). Use this to remove zeros from vectors that will subsequently be 

used as the denominator of a division. 
 

[a,changes]=nht(a,b); "no higher than" replaces any numbers in vector a that are above the scalar b with 

b. Optionally "changes" returns the number of changes. The similar function [a,changes]=nlt(a,b), "no 

lower than", replaces any numbers in vector a that are lower than the scalar b with b. Optionally 

"changes" returns the number of changes. 
 

makeodd(a): Makes the elements of vector "a" the next higher odd integers. This can be useful in com-

puting smooth widths to ensure that the smooth will not shift the maximum of peaks. For exam-
ple, makeodd([1.1 2 3 4.8 5 6 7.7 8 9]) = [1 3 3 5 5 7 9 9 9] 
 

condense(y,n), function to reduce the length of vector y by replacing each group of n successive values 

https://terpconnect.umd.edu/~toh/spectrum/stdev.m
https://terpconnect.umd.edu/~toh/spectrum/rsd.m
https://terpconnect.umd.edu/~toh/spectrum/PercentDifference.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/tenthwidth.m
https://terpconnect.umd.edu/~toh/spectrum/hundredthwidth.m
https://terpconnect.umd.edu/~toh/spectrum/MeasuringWidth.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/IQrange.m
https://en.wikipedia.org/wiki/Interquartile_range
https://terpconnect.umd.edu/~toh/spectrum/rmnan.m
https://terpconnect.umd.edu/~toh/spectrum/rmz%28a%29
https://terpconnect.umd.edu/~toh/spectrum/nht.m
https://terpconnect.umd.edu/~toh/spectrum/nlt.m
https://terpconnect.umd.edu/~toh/spectrum/makeodd.m
https://terpconnect.umd.edu/~toh/spectrum/condense.m


Page | 464  

by their average. The similar function condensem.m works for matrices. Use to re-sample an over-

sampled signal. Mentioned on Smoothing (page 39) and iSignal (page 385) 
 

val2ind(x,val), returns the index and the value of the element of vector x that is closest to val. Example: 
if x=[1 2 4 3 5 9 6 4 5 3 1], then val2ind(x,6)=7 and val2ind(x,5.1)=[5 9]. 

This is useful for accessing subsets of x, y data sets; for example,  the code sequence x1=7;x2=8; 
irange = val2ind(x,x1):val2ind(x,x2); xx=x(irange); yy=y(irange); 

plot(xx,yy) will isolate the subset xx, yy and plot it only over the range of x values from 7 to 8. For 

some other examples of how this can be used, see page 246.  
 

testcondense.m is a script that demonstrates of the effect of boxcar averaging using the condense.m 

function to reduce noise without changing the noise color. Shows that it reduces the measured noise, 

removing the high frequency components, resulting in a faster fitting execution time and a lower fitting 

error, but no more accurate measurement of peak parameters.  

 

NumAT(m,threshold): "Numbers Above Threshold": Counts the number of adjacent elements in the 

vector 'm' that are greater than or equal to the scalar value 'threshold'. It returns a matrix listing each 

group of adjacent values, their starting index, the number of elements in that group, and the sum of that 

group, and the mean. Type "help NumAT" and try the example. 

isOctave.m  Returns 'true' if this code is being executed by Octave. It returns 'false' if this code is being 

executed by MATLAB, or any other MATLAB variant. Useful in those few cases where there is a 

small difference between the syntax or operation of Matlab and Octave functions, as for exam-

ple trypoly(x,y), tablestats.m, and trydatatrans.m. 

Data plotting 

The Matlab/Octave scripts plotting.m and plotting2.m show how to plot multiple signals using matrices 

and subplots (multiple small plots in a single Figure window). The scripts realtimeplotautoscale.m 

and realtimeplotautoscale2.m demonstrate plotting in   (Click for animated graphic). 
 

plotit, version 2, is an easy-to-use function for plotting x,y data in matrices or in separate vectors. Syn-

tax: [coef,RSquared,StdDevs,BootResults]=plotit(xi,yi,polyorder,datastyle,fit

style). It can also fit polynomials to the data and compute the errors. Click here or type "help plotit" 

at the Matlab/Octave prompt for some examples. 
 

plotxrange extracts and plots values of vectors x,y only for x values between x1 and x2. Returns ex-

tracted values in vectors xx,yy and the range of index values in irange. Ignores values of x1 and x2 out-

side the range of x. 
 

segplot, syntax [s,xx,yy]=segplot(x,y,NumSegs,seg), divides y into "NumSegs" equal-length 

segments and plots the x, y data with segments marked by vertical lines, each labeled with a small 

segment number at the bottom. Returns a vector   's' of segment indexes, and the subset xx,yy, of values 

in the segment number 'seg'. If the 4th input argument, 'seg', is included, it plots this segment only. 

Signals and Noise 

whitenoise, pinknoise, bluenoise propnoise, sqrtnoise, bimodal: different types of random noise that 

might be encountered in physical measurements. Type "help whitenoise", etc., for help and examples. 

noisetest.m is a self-contained Matlab/Octave function for demonstrating different noise types. It plots 

Gaussian peaks with four different types of added noise with the same standard deviation: constant 

white noise; constant pink (1/f) noise; proportional white noise; and square-root white noise, then fits a 

Gaussian model to each noisy data set and computes the average and the standard deviation of the peak 

https://terpconnect.umd.edu/~toh/spectrum/condensem.m
https://terpconnect.umd.edu/~toh/spectrum/val2ind.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#UsingP
https://terpconnect.umd.edu/~toh/spectrum/testcondense.m
https://terpconnect.umd.edu/~toh/spectrum/NumAT.m
https://terpconnect.umd.edu/~toh/spectrum/isOctave.m
https://terpconnect.umd.edu/~toh/spectrum/trypoly.m
https://terpconnect.umd.edu/~toh/spectrum/tablestats.m
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.m
https://terpconnect.umd.edu/~toh/spectrum/plotting.m
https://terpconnect.umd.edu/~toh/spectrum/plotting2.m
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale.m
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale2.zip
https://terpconnect.umd.edu/~toh/spectrum/realtimeplotautoscale2.gif
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Matlab
https://terpconnect.umd.edu/~toh/spectrum/plotxrange.m
https://terpconnect.umd.edu/~toh/spectrum/segplot.m
https://terpconnect.umd.edu/~toh/spectrum/whitenoise.m
https://terpconnect.umd.edu/~toh/spectrum/pinknoise.m
https://terpconnect.umd.edu/~toh/spectrum/bluenoise.m
https://terpconnect.umd.edu/~toh/spectrum/propnoise.m
https://terpconnect.umd.edu/~toh/spectrum/sqrtnoise.m
https://terpconnect.umd.edu/~toh/spectrum/bimodal.m
https://terpconnect.umd.edu/~toh/spectrum/noisetest.m


Page | 465  

height, position, width, and area for each noise type. See page 23. See also NoiseColorTest.m. 
 

SubtractTwoMeasurements.m is a Matlab/Octave script demonstration of measuring the noise and sig-

nal-to-noise ratio of a stable waveform by subtracting two measurements of the signal waveform, m1 

and m2 and computing the standard deviation of the difference. The signal must be stable between 

measurements (except for the random noise). The standard deviation of the measured noise is given 

by sqrt((std(m1-m2).^2)/2).  

NoiseColorTest.m, a function that demonstrates the effect of smoothing white, pink, and blue noise. It 

displays a graphic of five noise color types both before and after smoothing, as well as their frequency 

spectra. All noise samples have a standard deviation of 1.0 before smoothing. You can change the 

smooth width and type in lines 6 and 7. 
 

CurvefitNoiseColorTest.m, a function that demonstrates the effect of white, pink, and blue noise on 

curve fitting a single Gaussian peak. 
 

RANDtoRANDN.m is a script that demonstrates how the expression 1.73*(RAND() - RAND() + 

RAND() - RAND()) approximates normally-distributed random numbers with zero mean and a stand-

ard deviation of 1. See page 23.  
 

RoundingError.m. A script that demonstrates digitization (rounding) noise and shows that adding noise 

and then ensemble averaging multiple signals can reduce the overall noise in the signal. This is a rare 

example where adding noise is beneficial. See page 304. 
 

DigitizedSpeech.m, an audible/graphic demonstration of rounding error on digitized speech. It starts 

with an audio recording of the spoken phrase "Testing, one, two, three", previously recorded at 44000 

Hz and saved in WAV format (download link), rounds off the amplitude data progressively to 8 bits 

(256 steps), 4 bits (16 steps), and 1 bit (2 steps), and then the same with random white noise added be-

fore the rounding (2 steps + noise), plots the waveforms and plays the resulting sounds, demonstrating 

both the degrading effect of rounding and the remarkable improvement caused by adding noise. See 

page 304. See iFilterTesting123.m. 
 

CentralLimitDemo.m, script that demonstrates that the more independent uniform random variables are 

combined, the probability distribution becomes closer and closer to normal (Gaussian). See page 23 

EnsembleAverageDemo.m is a Matlab/Octave script that demonstrates ensemble averaging to improve 

the signal-to-noise ratio of a very noisy signal. Click for graphic. The script requires the "gaussian.m" 

function to be downloaded and placed in the Matlab/Octave path, or you can use any other peak shape 

function, such as lorentzian.m or rectanglepulse.m.  
 

EnsembleAverageDemo2.m is a Matlab/Octave script that demonstrates the effect of amplitude 

noise, frequency noise, and phase noise on the ensemble averaging of a sine waveform.  
 

EnsembleAverageFFT.m is a Matlab/Octave script that demonstration of the effect of amplitude 

noise, frequency noise, and phase noise on the ensemble averaging of a sine waveform signal. Shows 

that: (a) ensemble averaging reduces the white noise in the signal but not the frequency or phase noise, 

(b) ensemble averaging the Fourier transform has the same effect as ensemble averaging the signal it-

self, and (c) the effect of phase noise is reduced if the power spectra are ensemble averaged. Ensem-

bleAverageFFTGaussian.m does the same for a Gaussian peak signal, where variation in peak width is 

frequency noise and variation in peak position is phase noise. 
 

iPeakEnsembleAverageDemo.m is a self-contained demonstration of the iPeak function. In this exam-

ple, the signal contains a repeated pattern of two overlapping Gaussian peaks of width 12, with a 2:1 

https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest.m
https://terpconnect.umd.edu/~toh/spectrum/SubtractTwoMeasurements.m
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest.m
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest1.png
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest2.png
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest3.png
https://terpconnect.umd.edu/~toh/spectrum/NoiseColorTest3.png
https://terpconnect.umd.edu/~toh/spectrum/CurvefitNoiseColorTest.m
https://terpconnect.umd.edu/~toh/spectrum/RANDtoRANDN.m
https://terpconnect.umd.edu/~toh/spectrum/RoundingError.m
https://terpconnect.umd.edu/~toh/spectrum/DigitizedSpeech.m
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/iFilterTesting123.m
https://terpconnect.umd.edu/~toh/spectrum/CentralLimitDemo.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo.png
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/Peak_shape_functions
https://terpconnect.umd.edu/~toh/spectrum/Peak_shape_functions
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/rectanglepulse.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageFFT.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageFFTGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/EnsembleAverageFFTGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.m


Page | 466  

height ratio. These patterns occur at random intervals, and the noise level is about 10% of the average 

peak height. Using iPeak's ensemble average function (Shift-E), the patterns can be averaged and the 

signal-to-noise ratio significantly improved. See page 26. 
 

PeriodicSignalSNR.m is a Matlab/Octave script demonstrating the estimation of the peak-to-peak and 

root-mean-square signal amplitude and the signal-to-noise ratio of a periodic waveform, estimating the 

noise by looking at the time periods where its envelope drops below a threshold. See page 23. 

LowSNRdemo.m is a script that compares several different methods of peak measurement with very 

low signal-to-noise ratios. It creates a single peak, with adjustable shape, height, position, and width, 

adds constant white random noise so the signal-to-noise ratio varies from 0 to 2, then measures the 

peak height and position by each method and computes the average error. Four methods are com-

pared: (1) the peak-to-peak measure of the smoothed signal and background; (2) a peak finding method 

based on findpeakG; (3) unconstrained iterative least-squares fitting (INLS) based on the peakfit.m 

function; and (4) constrained classical least-squares fitting(CLS) based on the cls2.m function. See the 

appendix: How Low can you Go? Performance with very low signal-to-noise ratios. 

RandomWalkBaseline.m simulates a Gaussian peak with randomly variable position and width super-

imposed on a drifting "random walk" baseline. Compare to WhiteNoiseBaseline.m. See page 314. 

AmplitudeModulation.m is a Matlab/Octave script simulation of modulation and synchronous detec-

tion, demonstrating the noise reduction capability. See page 316. 

DerivativeNumericalPrecisionDemo.m. Self-contained function that demonstrates how the numerical 

precision limits of the computer affects the first through fourth derivatives of a smooth ("noiseless") 

Gaussian band, showing both the waveforms (in Figure window 1) and their frequency spectra (in Fig-

ure window 2). The numerical precision limit of the computer creates random noise at very high fre-

quencies, which is emphasized by differentiation, and by the fourth derivative that noise overwhelms 

the signal frequencies at lower frequencies. Most of the noise can be removed by smoothing with a p-

spline (three passes of a sliding-average) with a smooth ratio of 0.2. With real experimental data, even 

the tiniest amounts of noise in the original data would be much greater than this. See page 335. 
 

RegressionNumericalPrecisionTest.m is a Matlab/Octave script that demonstrates how the numerical 

precision limits of the computer effects the Classical Least-squares (multilinear regression) of two very 

closely-spaced "noiseless" overlapping Gaussian peaks. This uses three different mathematical formu-

lation of the least-squares calculation that give different results when the numerical precision limits of 

the computer are reached. But practically, the difference between these methods is unlikely to be seen; 

even the tiniest bit of added random noise (line 15) or signal instability produces a far greater error. 

Used in page 335. 
 

RegressionADCbitsTest.m. Demonstration of the effect of analog-to-digital converter resolution (de-

fined by the number of bits in line 9) on Classical Least-squares (multilinear regression) of two closely-

spaced overlapping Gaussian peaks. Normally, the random noise (line 10) produces a greater error than 

the ADC resolution. Used on page 335. 
 

CreateSimulatedSignal.m. Script that creates a simulated multi-peak signal that is meant to match an 

experimental signal, using a list of peaks in the experimental signal in matrix P, plus added noise and 

baseline. Used to test the accuracy of peak detection and area measurement methods with that type of 

signal. 

https://terpconnect.umd.edu/~toh/spectrum/PeriodicSignalSNR.m
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/cls2.m
https://terpconnect.umd.edu/~toh/spectrum/RandomWalkBaseline.m
https://terpconnect.umd.edu/~toh/spectrum/WhiteNoiseBaseline.m
https://terpconnect.umd.edu/~toh/spectrum/AmplitudeModulation.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeNumericalPrecisionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/RegressionNumericalPrecisionTest.m
https://terpconnect.umd.edu/~toh/spectrum/RegressionADCbitsTest.m
https://terpconnect.umd.edu/~toh/spectrum/CreateSimulatedSignal.m


Page | 467  

Smoothing 

fastsmooth, versatile function for fast data smoothing. The syntax is SmoothY=fastsmooth(Y,w, 

type, ends). See page 39. Note: Greg Pittam has published a modification of the fastsmooth func-

tion that tolerates NaNs (Not a Number) in the data file (nanfastsmooth(Y,w,type,tol)) and a version for 

smoothing angle data (nanfastsmoothAngle(Y,w,type,tol)). Click for animated example. 

SegmentedSmooth.m, segmented multiple-width data smoothing function based on the fastsmooth al-

gorithm. The syntax is SmoothY = SegmentedSmooth(Y,smoothwidths,type,ends). This 

function divides Y into several equal-length segments according to the length of the vector 'smooth-

widths', then smooths each segment with a smooth of width defined by the sequential elements of vec-

tor 'smoothwidths' and smooth type 'type'. Type "help SegmentedSmooth" for exam-

ples. DemoSegmentedSmooth.m demonstrates the operation (click for graphic). See page 39. 

medianfilter , median-based filter function for eliminating narrow spike artifacts. The syntax is 

mY=medianfilter(y, Width), where "Width" is the number of points in the spikes that you wish to elim-

inate. Type "help medianfilter" at the command prompt. 

killspikes.m is a threshold-based filter function for eliminating narrow spike artifacts. The syntax 

is fy=killspikes(x,y,threshold,width). Each time it finds a positive or negative jump in 

the data between y(n) and y(n+1) that exceeds "threshold", it replaces the next "width" points of data 
with a linearly interpolated segment spanning x(n) to x(n+width+1), See killspikesdemo. Type 

"help killspikes" at the command prompt. 

testcondense.m is a script that demonstrates of the effect of boxcar averaging using the condense.m 

function, which performs a non-overlapping boxcar averaging function, to reduce noise without chang-

ing the noise color. Shows that it reduces the measured noise, removing the high frequency compo-

nents, resulting in a faster fitting execution time and a lower fitting error, but unfortunately no more 

accurate measurement of peak parameters. 

SmoothWidthTest.m is a Matlab/Octave script that demonstrates the effect of smoothing on the peak 

height, random white noise, and signal-to-noise ratio of a noisy peak signal. Produces an animation 

showing the effect of progressively wider smooth widths, then draws a graph of peak height, noise, and 

signal-to-noise ratio vs smooth ratio. Click to see gif animation. You can change the peak shape and 

width in line 8 and the smooth type in line 9: 1=rectangle; 2=triangle; 3=p-spline. The script requires 

the "gaussian.m" function to be downloaded and placed in the Matlab/Octave path, or you can use any 

other peak shape function, such as lorentzian.m or rectanglepulse.m, etc. 
 

SmoothExperiment.m, very simple script that demonstrates the effect of smoothing on the position, 

width, and height of a single Gaussian peak. Requires that the fastsmooth.m and peakfit.m functions be 

present in the path. See page 54.  
 

smoothdemo.m, self-contained function that compares the performance and speed of four types of 

smooth operations: (1) sliding-average, (2) triangular, (3) p-spline (equivalent to three passes of a slid-

ing-average), and (4) Savitzky-Golay. These smooth operations are applied to a single noisy Gaussian 
peak. The peak height of the smoothed peak, the standard deviation of the smoothed noise, and the sig-

nal-to-noise ratio are all measured as a function of smooth width. See page 54.  
 

SmoothOptimization.m, script that shows why you do not need to smooth data prior to least-squares 

curve fitting; it compares the effect of smoothing on the signal-to-noise ratio of peak height of a noisy 

Gaussian peak, using three different measurement methods. Requires that the fitgauss2.m, gaussfit.m, 

gaussian.m, and fminsearch.m functions be present in the path. See page 228. 
 

https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
http://uk.mathworks.com/matlabcentral/profile/authors/1859625-greg-pittam
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Matlab
http://uk.mathworks.com/matlabcentral/fileexchange/52688-nan-tolerant-fast-smooth
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Matlab
http://uk.mathworks.com/matlabcentral/fileexchange/52689-angular-fast-smooth-nan-tolerant
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTest.gif
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothDemo.png
https://terpconnect.umd.edu/~toh/spectrum/medianfilter.m
https://terpconnect.umd.edu/~toh/spectrum/killspikes.m
https://terpconnect.umd.edu/~toh/spectrum/killspikesdemo.m
https://terpconnect.umd.edu/~toh/SPECTRUM
https://terpconnect.umd.edu/~toh/spectrum/condense.m
https://terpconnect.umd.edu/~toh/spectrum/testcondense.png
https://terpconnect.umd.edu/~toh/spectrum/testcondense2.png
https://terpconnect.umd.edu/~toh/spectrum/testcondense2.png
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTest.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothWidthTest.gif
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/Peak_shape_functions
https://terpconnect.umd.edu/~toh/spectrum/lorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/rectanglepulse.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothExperiment.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/smoothdemo.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/SmoothOptimization.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2.m
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m


Page | 468  

SmoothVsCurvefit.m, comparison of peak height measurement by taking the maximum of the 

smoothed signal and by curve fitting the original unsmoothed data. Requires peakfit.m and gaussian.m 

in the path. 
 

DemoSegmentedSmooth.m demonstrates the operation of SegmentedSmooth.m with a signal consist-

ing of noisy variable-width peaks that get progressively wider. Requires SegmentedSmooth.m and 

gaussian.m in the path. 

DeltaTest.m. A simple Matlab/Octave script that demonstrates the shape of any smoothing algorithm 

can be determined by applying that smooth to a delta function, a signal consisting of all zeros except 

for one point. The result is called the impulse response function. 
 

iSignal (page 385) performs several different kinds of smoothing, segmented smoothing, median filter-

ing, and spike removal (as well as differentiation, peak sharpening, least-squares measurements of peak 

position, height, width, and area, signal and noise amplitudes, frequency spectra in selected regions of 

the signal, and signal-to-noise ratio of peaks). m-file link: isignal.m. Click here to download the ZIP 

file "iSignal8.zip". Click for animated example. 

The script RealTimeSmoothTest.m demonstrates real-time smoothing, plotting the raw unsmoothed 

data as a black line and the smoothed data in red. In this case the script pre-calculates simulated data in 

line 28 and then accesses the data point-by-point in the processing loop (lines 30-51). The total number 

of data points is controlled by 'maxx' in line 17 (initially set to 1000) and the smooth width (in points) 

is controlled by 'SmoothWidth' in line 20. Animated graphic. 

Data Smoothing Tool (download link: DataSmoothing.mlx) is an interactive Live Script that can apply 

several types of smoothing to experimental data stored on disk. It can perform spike removal, sliding 

average smooths with up to 5 passes, Savitsky-Golay and Fourier low-pass filtering, and wavelet 

denoising (which requires the Matlab Wavelet Toolkit). See page 58. 

Differentiation and peak sharpening 

deriv, deriv2, deriv3, deriv4, derivxy and secderivxy, simple functions for computing the derivatives of 

time-series data without smoothing. See page 73. 

SmoothDerivative.m combines differentiation and smoothing. The syntax is SmoothedDeriv = 

SmoothedDerivative(x, y, DerivativeOrder, w, type, ends) where 'DerivativeOrder' determines the de-

rivative order (0 through 5), 'w' is the smooth width, 'type' determines the smooth mode, and 'ends' con-

trols how the "ends" of the signal (the first w/2 points and the last w/2 points) are handled. 
 

SlopeAnimation.m is an animated Matlab/Octave demonstration that shows that the first derivative of a 

signal is the slope of the tangent to the signal at each point. 

sharpen, peak sharpening by the even-derivative method. Syntax is SharpenedSignal = sharp-

en(signal, factor1, factor2, SmoothWidth). See page 85. Related de-

mos: SegmentedSharpen.m, DemoSegmentedSharpen.m (graphic), SharpenedGaussian-

Demo.m (graphic), SharpenedGaussianDemo4terms.m (graphic), SharpenedLorentzianDemo.m 

(graphic), SharpenedLorentzianDemo4terms.m.  

symmetrize.m converts exponentially broadened peaks into symmetrical peaks by the weighted 

addition or subtraction of the first derivative. The syntax is  ySym = symmetrize(t, y, factor, 

smoothwidth, type, ends), where t, y are the raw data vectors, 'factor' is the derivative weighting factor, 

and 'smoothwidth', 'type', 'ends' are the SegmentedSmooth arguments for smoothing the derivative. To 

perform a segmented symmetrization, "factor" and "smoothwidth" can be vectors. (In version 2, only 

the derivative is smoothed internally, not the entire symmetrized signal). SymmetrizeDemo.m runs all 

https://terpconnect.umd.edu/~toh/spectrum/SmoothVsCurvefit.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/DeltaTest.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/SmoothAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothTest.zip
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmooth.gif
https://terpconnect.umd.edu/~toh/spectrum/DataSmoothing.mlx
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Live_scripts_
https://terpconnect.umd.edu/~toh/spectrum/deriv.m
https://terpconnect.umd.edu/~toh/spectrum/deriv2.m
https://terpconnect.umd.edu/~toh/spectrum/deriv3.m
https://terpconnect.umd.edu/~toh/spectrum/deriv4.m
https://terpconnect.umd.edu/~toh/spectrum/derivxy.m
https://terpconnect.umd.edu/~toh/spectrum/secderivxy.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothDerivative.m
https://terpconnect.umd.edu/~toh/spectrum/SlopeAnimation.m
https://terpconnect.umd.edu/~toh/spectrum/SlopeAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/sharpen.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpen.m
https://terpconnect.umd.edu/~toh/spectrum/DemoSegmentedSharpen.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSharpenDemo.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo4terms.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedGaussianDemo4terms.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo.png
https://terpconnect.umd.edu/~toh/spectrum/SharpenedLorentzianDemo4terms.m
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/symmetrize.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmooth.m
https://terpconnect.umd.edu/~toh/spectrum/SymmetrizeDemo.m


Page | 469  

five examples in the symmetrize.m help file, each in a different figure window. 

First derivative symmetrization can be followed by an application of even derivative sharpening for 

further peak sharpening, as demonstrated for a single exponentially modified Gaussian (EMG) by the 

self-contained Matlab/Octave demo function EMGplusfirstderivative.m and for an exponentially 

modified Lorentzian (EML) by EMLplusfirstderivative.m. In both of these demos, Figure 1 shows 

the symmetrization and Figure 2 shows that the symmetrized peak can be further narrowed 

by additional 2nd and 4th derivative sharpening. SymmetizedOverlapDemo.m demonstrates the 

optimization of the first derivative symmetrization for the measurement of the areas of two overlapping 

exponentially broadened Gaussians. Double exponential symmetrization is performed by the function 

DEMSymm.m. It is demonstrated by the script DemoDEMSymm.m and its two variations (1, 2), which 

creates two overlapping double exponential peaks from Gaussian originals, then calls the function 

DEMSymm.m to perform the symmetrization, using a three-level plus-and-minus bracketing technique 

to help you to determine the best values of the two weighting factors by trial and error. The interactive 

function iSignal (page 385) can perform first derivative symmetrization interactively, with keystrokes 

to increase and decrease the “factor” while watching the effect on the signal. The script 

AsymmetricalOverlappingPeaks.m demonstrates the use of first-derivative symmetrization and curve 

fitting to analyze a complex “mystery” peak. See page 361). 

ProcessSignal, a Matlab/Octave command-line multi-purpose function that includes smoothing, differ-

entiation, peak sharpening, and median filtering on the time-series data set x,y (column or row vectors). 

Like iSignal, without the plotting and interactive keystroke controls. Type "help ProcessSignal". It re-

turns the processed signal as a vector that has the same shape as x, regardless of the shape of y. The 

syntax is Processed= Processed=ProcessSignal(x, y, DerivativeMode, w, type, 
ends, Sharpen, factor1, factor2, Symize, Symfactor, SlewRate, MedianWidth). 

derivdemo1.m, a function that demonstrates the basic shapes of derivatives. See page 62. 
 

DerivativeShapeDemo.m is a function that demonstrates the first derivatives of 16 different peak 

shapes. (Graphic) 

derivdemo2.m, a function that demonstrates the effect of peak width on the amplitude of derivatives. 

See page 62. 

derivdemo3.m, a function that demonstrates the effect of smoothing on the first derivative of a noisy 

signal. See page 62. 
 

derivdemo4.m, a function that demonstrates the effect of smoothing on the second derivative of a noisy 

signal. See page 62. 
 

DerivativeDemo.m is a self-contained Matlab/Octave demo function that uses ProcessSignal.m and 

plotit.m to demonstrate an application of differentiation to the quantitative analysis of a peak buried in 

an unstable background (e.g. as in various forms of spectroscopy). The object is to derive a measure of 

peak amplitude that varies linearly with the actual peak amplitude and is minimally affected by the 

background and the noise. To run it, just type DerivativeDemo at the command prompt. You can 

change several of the internal variables (e.g., Noise, BackgroundAmplitude) to make the problem hard-

er or easier. Note that, even though the magnitude of the derivative is numerically smaller than the 

original signal (because it has different units), the signal-to-noise ratio of the derivative is better, and 

the derivative signal is linearly proportional to the actual peak height, despite the interference of large 

background variations and random noise. See page 73. 
 

iSignal or isignaloctave (page 385) is an interactive function that includes differentiation and smooth-

ing for time-series signals, up to the 5th derivative, automatically including the required type of smooth-

https://terpconnect.umd.edu/~toh/spectrum/EMGplusfirstderivative.m
https://terpconnect.umd.edu/~toh/spectrum/EMLGplusfirstderivative.m
https://terpconnect.umd.edu/~toh/spectrum/FirstDerivativeSymmetricalization.png
https://terpconnect.umd.edu/~toh/spectrum/AdditionalSharpening.png
https://terpconnect.umd.edu/~toh/spectrum/SymmetizedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DEMSymm.m
https://terpconnect.umd.edu/~toh/spectrum/DemoDEMSymm.m
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/derivdemo1.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeShapeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeShapeDemo.png
https://terpconnect.umd.edu/~toh/spectrum/derivdemo2.m
https://terpconnect.umd.edu/~toh/spectrum/derivdemo3.m
https://terpconnect.umd.edu/~toh/spectrum/derivdemo4.m
https://terpconnect.umd.edu/~toh/spectrum/DerivativeDemo.m
https://terpconnect.umd.edu/~toh/spectrum/ProcessSignal.m
https://terpconnect.umd.edu/~toh/spectrum/plotfit.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m


Page | 470  

ing. Simple keystrokes allow you to adjust the smoothing parameters (smooth type, width, and ends 

treatment) while observing the effect on your signal dynamically. It can also perform interactive sym-

metrization and sharpening of exponentially broadened peaks by the first-derivative addition technique 

(page 80). Click here to download the ZIP file "iSignal8.zip". Click for animated example.  
 

demoisignal.m for Matlab is a self-running script that demonstrates several of the features 

of iSignal (and requires that the latest version of iSignal, and version 6 of plotit.m, be present in your 

Matlab path). Demonstrates panning and zooming, smoothing, differentiation, frequency spectrum, 

peak measurement, and derivative spectroscopy calibration (in conjunction with plotit.m version 6). 
 

iSignalDeltaTest is a Matlab/Octave script that demonstrates the frequency response (power spectrum) 

of the smoothing and differentiation functions of iSignal by a applying them to a delta function. 

Change the smooth type, smooth width, and derivative order and see how the power spectrum changes. 

  The script RealTimeSmoothFirstDerivative.m demonstrates real-time smoothed differentiation, using 

a simple adjacent-difference algorithm (line 47) and plotting the raw data as a black line and the first 

derivative data in red. The script RealTimeSmoothSecondDerivative.m computes the 

smoothed second derivative by using a central difference algorithm (line 47). Both scripts pre-calculate 

the simulated data in line 28 and then access the data point-by-point in the processing loop (lines 31-

52). In both cases the maximum number of points is set in line 17 and the smooth width is set in line 

20. 

  The script RealTimePeakSharpening.m demonstrates real-time peak sharpening using the second de-

rivative technique. It uses pre-calculated simulated data in line 30 and then accesses the data point-by-

point in the processing loop (lines 33-55). In both cases the maximum number of points is set in line 17 

and the smooth width is set in line 20 and the weighting factor (K1) is set in line 21. In this example the 

smooth width is 101 points, which accounts for the delay in the sharpened peak compared to the origi-

nal. 

Harmonic Analysis 

FrequencySpectrum.m (syntax fs=FrequencySpectrum(x,y)) returns real part of the Fourier pow-

er spectrum of x,y as a matrix. 

PlotFrequencySpectrum.m plots the frequency spectrum or periodogram of the signal x,y on linear or 
log coordinates. The syntax is PowerSpectrum= PlotFrequencySpectrum(x, y, plotmode, 

XMODE, LabelPeaks).Type "help PlotFrequencySpectrum" for details. Try this example:  
 

x= [0:.01:2*pi]'; y=sin(200*x)+randn(size(x));  

subplot(2,1,1); plot(x,y); subplot(2,1,2);  

PowerSpectrum=PlotFrequencySpectrum(x,y,1,0,1); 

CompareFrequencySpectrum.m. A script that compares two signals (upper panel) and their frequency 

spectra (lower panel) with the original signal shown in blue and the modified signal in green. plotmode: 

=1:linear, =2:semilog X, =3:semilog Y; =4: log-log). XMODE: =0 for frequency Spectrum (x is fre-

quency); =1 for periodogram (x is time). Define the signal modification in line 15. You can load a sig-

nal stored in .mat format or create a simulated signal for testing. You must have PlotFrequencySpec-

trum.m in the path. 

PlotSegFreqSpect.m is a segmented Fourier spectrum (syntax PSM=(x,y, NumSegments, MaxHarmon-

ic, LogMode)) breaks y into 'NumSegments' equal length segments, multiplies each by an apodizing 

Hanning window, computes the power spectrum of each segment, returns the power spectrum matrix 

(PSM), and plots the result of the first 'MaxHarmonic' Fourier components as a contour plot. See page 

https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/DerivAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/demoisignal.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/iSignalDeltaTest.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://en.wikipedia.org/wiki/Dirac_delta_function
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothFirstDerivative.zip
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothSecondDerivative.zip
https://terpconnect.umd.edu/~toh/spectrum/RealTimePeakSharpening.zip
https://terpconnect.umd.edu/~toh/spectrum/FrequencySpectrum.m
http://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/CompareFrequencySpectrum.m
http://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
http://terpconnect.umd.edu/~toh/spectrum/PlotFrequencySpectrum.m
https://terpconnect.umd.edu/~toh/spectrum/PlotSegFreqSpect.m


Page | 471  

102 for an example of its application to a signal that is completely buried in an excess of noise and in-

terfering signals. 

iSignalDeltaTest is a Matlab/Octave script that demonstrates the frequency response (power spectrum) 

of the smoothing and differentiation functions of iSignal by a applying them to a delta function. 

Change the smooth type, smooth width, and derivative order and see how the power spectrum changes. 

SineToDelta.m. A demonstration animation (animated graphic) showing the waveform and the power 

spectrum of a rectangular pulsed sine wave of variable duration (whose power spectrum is a "sinc" 

function) changing continuously from a pure sine wave at one extreme (where its power spectrum is a 

delta function) to a single-point pulse at the other extreme (where its power spectrum is a flat line). 

GaussianSineToDelta.m is similar, except that it shows a Gaussian pulsed sine wave, whose power 

spectrum is a Gaussian function, but which is the same at the two extremes of pulse duration (animated 

graphic). 

isignal.m or isignaloctave.m, (page 385) is a multi-purpose interactive signal processing that includes 

a Frequency Spectrum mode, toggled on and off by the Shift-S key; it computes frequency spectrum 

of the segment of the signal displayed in the upper window and displays it in the lower window (in 

red). You can use the pan and zoom keys to adjust the region of the signal to be viewed or press Ctrl-

A to select the entire signal. Press Shift-S again to return to the normal mode. See page 91 for a rele-

vant example. Click for animated example. 

iPower, a keyboard-controlled interactive power spectrum demonstrator, useful for teaching and learn-

ing about the power spectra of different types of signals and the effect of signal duration and sampling 

rate. Single keystrokes allow you to select the type of signal (12 different signals included), the total 

duration of the signal, the sampling rate, and the global variables f1 and f2 which are used in different 

ways in the different signals. When the Enter key is pressed, the signal (y) is sent to the Windows 

WAVE audio device. Press K to see a list of all the keyboard commands. (m-file link: ipower.m). 

Slideshow of examples. 
 

 The script RealTimeFrequencySpectrumWindow.m computes and plots the Fourier frequency spec-

trum of a signal. It loads the simulated real-time data from a “.mat file” (in line 31) and then accesses 

the data point-by-point in the processing 'for' loop. A critical variable in this case is “WindowWidth” 

(line 37), the number of data points taken to compute each frequency spectrum. If the data stream is an 

audio signal, it is also possible to play the sound through the computer's sound system synchronized 

with the display of the frequency spectra (set "PlaySound" to 1). 

 

Fourier convolution and deconvolution 

ExpBroaden, exponential broadening function. Syntax is yb = ExpBroaden(y,t). Convolutes the 

vector y with an exponential decay of time constant t. Mentioned on pages 33 and 411. 
 

GaussConvDemo.m, a script that demonstrates that a Gaussian of unit height, Fourier convoluted with 

a zero-centered Gaussian of the same width is a Gaussian with a height of 1/sqrt(2) and a width of 

sqrt(2) and of equal area to the original Gaussian. When you run this script, the top panel shows the 

convolution and the bottom panel shows how to recover the original y from the convoluted result 

(graphic). You can optionally add noise in line 9 to show how convolution smooths the noise and how 

Fourier deconvolution restores it. Requires gaussian.m in the path. 

CombinedDerivativesAndSmooths.txt. Convolution coefficients for computing the first through fourth 

derivatives, with rectangular, triangular, and P-spline smooths. 

https://terpconnect.umd.edu/~toh/spectrum/iSignalDeltaTest.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://en.wikipedia.org/wiki/Dirac_delta_function
https://terpconnect.umd.edu/~toh/spectrum/SineToDelta.m
https://terpconnect.umd.edu/~toh/spectrum/SineToDelta.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianSineToDelta.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianSineToDelta.gif
https://terpconnect.umd.edu/~toh/spectrum/GaussianSineToDelta.gif
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/isignaloctave.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html#Spectrum
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Harmonic
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#Harmonic
https://terpconnect.umd.edu/~toh/spectrum/iSignalSpectrumMode.gif
https://terpconnect.umd.edu/~toh/spectrum/HarmonicAnalysis.html#ipower
https://terpconnect.umd.edu/~toh/spectrum/ipower.m
https://terpconnect.umd.edu/~toh/spectrum/iPowerAnimated.gif
https://terpconnect.umd.edu/~toh/spectrum/RealTimeFrequencySpectrumWindow.zip
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/ExpBroaden.m
https://terpconnect.umd.edu/~toh/spectrum/GaussConvDemo.m
https://terpconnect.umd.edu/~toh/spectrum/deconvgauss.png
https://terpconnect.umd.edu/~toh/spectrum/CombinedDerivativesAndSmooths.txt


Page | 472  

Convolution.txt, simple examples of whole-number convolution vectors for smoothing and differentia-

tion. 

deconvolutionexample.m, a simple example script that demonstrates the use of the Matlab Fourier de-

convolution 'deconv' function. See page 114. 
 

DeconvDemo.m, a Fourier deconvolution demo script with a signal containing four Gaussians broad-

ened by an exponential function (graphic). DeconvDemo2.m is a similar script for a single Gaussian 

(graphic).DeconvDemo3.m demonstrates deconvolution of a Gaussian convolution function from a 

rectangular pulse (animated graphic). DeconvDemo4.m (animated graphic) demonstrates "self-

deconvolution" applied a signal consisting of a Gaussian peak that is broadened by the measuring in-

strument, and an attempt to recover the original peak width. DeconvDemo5.m (graphic) shows an at-

tempt to resolve two closely-spaced underlying peaks that are completely unresolved in the observed 

signal. See page 302. Variation of this include versions with Lorentzian peaks and one with a triangular 

convolution function. 

deconvgauss.m. ydc=deconvgauss(x,y,w) deconvolutes a Gaussian function of width 'w' from vector y, 

returning the deconvoluted result. 

LorentzianSelfDeconvDemo.m. Demonstration of Lorentzian self-deconvolution. Requires lorentzian, 

halfwidth, and fastsmooth functions. 

deconvexp.m. ydc=deconvexp(y,tc) deconvolutes an exponential function of time constant 'tc' from 

vector y, returning the deconvoluted result. 

SegExpDeconv(x,y,tc) is a segmented version of deconvexp.m; it divides x,y into a number of equal-

length segments defined by the length of the vector ‘tc’, then each segment is deconvoluted with an ex-

ponential decay of the form exp(-x./t) where ‘t’ is the corresponding element of the vector ‘tc’. Any 

number and sequence of t values can be used. Useful when the peak width and/or exponential tailing of 

peaks varies across the signal duration. SegExpDeconvPlot.m is the same except that it plots the origi-

nal and deconvoluted signals and shows the divisions between the segments by vertical magenta 

lines. SegGaussDeconv.m and SegGaussDeconvPlot.m are the same except that they perform a sym-

metrical (zero-centered) Gaussian deconvolu-

tion. SegDoubleExpDeconv.m and SegDoubleExpDeconvPlot.m perform a symmetrical (zero-

centered) exponential deconvolution. 

P=convdeconv(x,y,vmode,smode,vwidth,DAdd), for Matlab or Octave, performs Gaussian, Lorentzian, 

or exponential convolution and deconvolution of the signal in x,y.  

 iSignal 8.3 (page 385) has a Shift-V keypress that displays the menu of Fourier convolution and de-

convolution operations that allow you to convolute a Gaussian or exponential function with the signal, 

or to deconvolute a Gaussian or exponential function from the signal and allows you to adjust the width 

interactively. Click here to download the ZIP file "iSignal8.zip"Data convolution tool. The interactive 

Live Script DeconvoluteData.mlx can perform Fourier self-deconvolution on your own data stored in 

disk. See page 123. 

Fourier Filter 

FouFilter, Fourier filter function, with variable band-pass, low-pass, high-pass, or notch (band reject). 
The syntax is [ry,fy,ffilter,ffy] =FouFilter(y, samplingtime, centerfrequency, 

frequencywidth, shape, mode). Version 2, March 2019. See page 125.  
 

SegmentedFouFilter.m is a segmented version of FouFilter.m that applies different center frequencies 

and widths to different segments of the signal. The syntax is the same as FouFilter.m except that the 

https://terpconnect.umd.edu/~toh/spectrum/Convolution.txt
https://terpconnect.umd.edu/~toh/spectrum/deconvolutionexample.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo2.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo3.gif
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo4.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo4.gif
https://terpconnect.umd.edu/~toh/SPECTRUM
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo5.m
https://terpconnect.umd.edu/~toh/spectrum/GaussianDeconvolution5.png
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo6.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo7.m
https://terpconnect.umd.edu/~toh/spectrum/DeconvDemo7.m
https://terpconnect.umd.edu/~toh/spectrum/deconvgauss.m
https://terpconnect.umd.edu/~toh/spectrum/LorentzianSelfDeconvDemo.m
https://terpconnect.umd.edu/~toh/spectrum/deconvexp.m
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/deconvexp.m
https://terpconnect.umd.edu/~toh/spectrum/SegExpDeconvPlot.m
https://terpconnect.umd.edu/~toh/spectrum/SegGaussDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegGaussDeconvPlot.m
https://terpconnect.umd.edu/~toh/spectrum/SegDoubleExpDeconv.m
https://terpconnect.umd.edu/~toh/spectrum/SegDoubleExpDeconvPlot.m
https://terpconnect.umd.edu/~toh/spectrum/convdeconv.m
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal8.zip
https://terpconnect.umd.edu/~toh/spectrum/DeconvoluteData.mlx
https://terpconnect.umd.edu/~toh/spectrum/FouFilter.m
https://terpconnect.umd.edu/~toh/spectrum/SegmentedFouFilter.m


Page | 473  

two input arguments “centerFrequency” and “FilterWidth” must be vectors with the values of cen-

terFrequency of filterWidth for each segment. The signal is divided equally into several segments de-

termined by the length of centerFrequency and filterWidth, which must be equal in length. Type “help 

SegmentedFouFilter” for help and examples.  

iFilter, interactive Fourier filter. (m-file link: ifilter.m), which uses the pan and zoom keys to control 

the center frequency and the filter width (page 386). Click here for animated example. Select from low-

pass, high-pass, band-pass, band-reject, harmonic comb-pass, or harmonic comb-reject filters. Click 

here to watch or download an mp4 video of iFilter filtering a noisy Morse code signal, with sound 

(watch the title of the figure as the video plays). The Octave versions use the < and > keys (with and 

without shift). 

MorseCode.m is a script that uses iFilter to demonstrate the abilities and limitations of Fourier filtering. 

It creates a pulsed fixed frequency sine wave that spells out “SOS” in Morse code (dit-dit-dit/dah-dah-

dah/dit-dit-dit), adds random white noise so that the SNR is very poor (about 0.1 in this example), then 

uses a Fourier bandpass filter tuned to the signal frequency, to isolate the signal from the noise. As the 

bandwidth is reduced, the signal-to-noise ratio begins to improve and the signal emerges from the noise 

until it becomes clear, but if the bandwidth is too narrow, the step response time is too slow to give dis-

tinct “dits” and “dahs”. Use the “?” and “ " ” keys to adjust the bandwidth. (The step response time is 

inversely proportional to the bandwidth). Press 'P' or the Spacebar to hear the sound. You must in-

stall iFilter.m in the Matlab path. Watch on YouTube at https://youtu.be/agjs1-mNkmY. (look at the 

explanation in the title of the figure as the video plays). 

TestingOneTwoThree.wav is a 1.58 sec duration audio recording of the spoken phrase "Testing, one, 

two, three", recorded at a sampling rate of 44000 Hz and saved in WAV format. When loaded into 

iFilter(v=wavread('TestingOneTwoThree.wav');), set to bandpass mode, and tuned to a narrow 

segment that is well above the frequency range of most of the signal, it might seem as if though this 

passband would miss most of the frequency components in the signal, yet even in this case the speech 

is intelligible, demonstrating the remarkable ability of the ear-brain system to make do with a highly 

compromised signal. Press P or space to hear the filter's output. Different filter settings will change 

the timbre of the sound. See page 386. Click for graphic. You can also use the Live Script version Fou-

rierFilterTool.mlx; See iFilterTesting123.m. 

The script RealTimeFourierFilter.m is a demonstration of a real-time Fourier filter. Like the other real-

time signal processing scripts, this one pre-computes a simulated signal starting in line 38, then access 

the data point-by-point (lines 56, 57), and divides up the data stream into segments to compute each 

filtered section. In this demonstration, a bandpass filter is used to detect a 500 Hz ('f' in line 28) sine 

wave that occurs in the middle third of a very noisy signal (line 32), from about 0.7 sec to 1.3 sec. The 

filter center frequency (CenterFrequency) and width (FilterWidth) are set in lines 46 and 47.  

Wavelets and wavelet denoising 

 Morelet.m demonstrates the application of the wavelet transform to unravel the components of a 

complicated signal. Code written by Michael X. Cohen, in “A better way to define and describe Morlet 

wavelets for time-frequency analysis”, NeuroImage, Volume 199, 1 October 2019, Pages 81-86.  

MorletExample2.m creates and analyzes the “buried peaks” signal consisting of three components: a 

pair of weak Gaussian peaks which are the desirable signal components, a strong interference by a 

variable-frequency sine wave, and an excess of random white noise. The Gaussian peaks are invisible 

in the raw signal. 

https://terpconnect.umd.edu/~toh/spectrum/InteractiveFourierFilter.htm
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://terpconnect.umd.edu/~toh/spectrum/iFilterAnimation.gif
https://terpconnect.umd.edu/~toh/spectrum/MorseCode.mp4
https://terpconnect.umd.edu/~toh/spectrum/MorseCode.mp4
https://terpconnect.umd.edu/~toh/spectrum/MorseCode.m
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://youtu.be/agjs1-mNkmY
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/ifilter.m
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://en.wikipedia.org/wiki/Timbre
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThreeiFilter.png
https://terpconnect.umd.edu/~toh/spectrum/iFilterTesting123.m
https://terpconnect.umd.edu/~toh/spectrum/real-time%20Fourier%20bandpass%20filter.zip
https://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#realtime
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html#realtime
https://en.wikipedia.org/wiki/Band-pass_filter
https://terpconnect.umd.edu/~toh/spectrum/Morelet.m
https://terpconnect.umd.edu/~toh/spectrum/MorletExample2.m


Page | 474  

Peak area measurement 

PerpDropAreas.m [AreaVector]=PerpDropAreas(x,y,startx,endx,MaxVector) measures 

the peak areas of the peaks in x, y, starting an x value of startX and ending at endX, with specified peak 

positions in the vector MaxVector, which can be of any length. Uses the halfwaypoint method. Returns 

the areas in the vector PDMeasAreas and the midpoint indices in the optional second output argument.  
 

HeightAndArea.m is a demonstration script that uses measurepeaks.m to measure the peaks in comput-

er-generated signals consisting of a series of Gaussian peaks with gradually increasing widths that are 

superimposed in a curved baseline plus random white noise. It plots the signal and the individual peaks 

and compares the actual peak position, heights, and areas of each peak to those measured by measure-

peaks.m using the absolute peak height, peak-valley difference, perpendicular drop, and tangent 

skim methods. Prints out a table of the relative percent difference between the actual and measured 

values for each peak and the average error for all peaks. 
 

measurepeaks.m automatically detects peaks in a signal, similar to findpeaksSG. It returns a table of 

peak number, position, absolute peak height, peak-valley difference, perpendicular drop area, and tan-

gent skim area of each peak. It can plot the signal and the individual peaks if the last (7th) input argu-

ment is 1. Type “help measurepeaks” and try the seven examples there or run HeightAndArea.m to run 

a test of the accuracy of peak height and area measurement with signals that have multiple peaks with 

noise, background, and some peak overlap. The script testmeasurepeaks.m will run all of the examples 

with a 1-second pause between each (requires measurepeaks.m and gaussian.m in the path). 
 

The script SharpenedOverlapDemo.m (graphic) demonstrates the effect of sharpening on perpendicular 

drop area measurements of two overlapping Gaussians peaks with adjustable height, separation, and 

width, calculating the percent different between the area measured on the overlapping peak signal 

compared to the true areas of the isolated peaks. 
 

SharpenedOverlapCalibrationCurve.m is a script that simulates quantitative measurement of mixtures 

of three overlapping Gaussian peaks. Even-derivative sharpening (the red line in the signal plots) is 

used to improve the resolution of the peaks to allow perpendicular drop area measurement. A straight 

line is fit to the calibration curve and the R2 is calculated, to demonstrate (1) the linearity of the re-

sponse, and (2) the independence of the overlapping adjacent peaks. Must have gaussian.m, derivxy.m, 

autopeaks.m, val2ind.m, halfwidth.m, fastsmooth.m, and plotit.m in the path. 
 

ComparePDAreas.m compares the effect of digital processing on the areas of a set of peaks measured 
by the perpendicular drop method. Syntax is [P1,P2,coef,R2] = ComparePDAreas(x, orig, 

processed, PeakSensitivity), where x=independent variable (e.g., time); orig = original signal 

y values; processed = processed signal y values; P1 = peak table of original signal; P2 = peak table of 

processed signal; PeakSensitivity = approximate number of peaks that would fit into the entire x-axis 

range (larger numbers > more peak detected). Displays a scatter plot of original areas vs processed are-

as for each peak and returns the peak tables, P1 and P2 respectively, and the slope, intercept, and R2 

values, which should ideally be 1,0, and 1, if the processing has no effect at all on peak area. 
 

iSignal (page 385) is my downloadable Matlab function that performs various signal processing func-

tions described in this tutorial, including one-at-a-time manual measurement of peak area using Simp-

son's Rule and the perpendicular drop method. Click to view or right-click > Save link as... here, or you 

can download the ZIP file with sample data for testing. The animated GIF iSignalAreaAnimation.gif 

(click to view) shows iSignal applying the perpendicular drop method to a series of four peaks of equal 

area. (Look at the bottom panel to see how the measurement intervals, marked by the vertical dotted 

magenta lines, are positioned at the valley minimum on either side of each of the four peaks). It also 

https://terpconnect.umd.edu/~toh/spectrum/HeightAndArea.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaErrors.txt
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapDemo.m
https://terpconnect.umd.edu/~toh/spectrum/SharpenedOverlapDemo.png
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#pdrop
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#pdrop
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://terpconnect.umd.edu/~toh/spectrum/ComparePDAreas.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal7.zip
https://terpconnect.umd.edu/~toh/spectrum/iSignalAreaAnimation.gif


Page | 475  

has a built-in peak fitter, activated by the Shift-F key, based on peakfit.m, that measures the areas of 

overlapping peak of known shape. There is also an automatic peak finding function based on 

the autopeaks function, activated by the J or Shift-J keys, which displays a table listing the peak num-

ber, position, absolute peak height, peak-valley difference, perpendicular drop area, and tangent skim 

area of each peak in the signal. 
 

peakfit, a command-line function for multiple peak fitting by iterative non-linear least-squares. It 

measures the peak position, height, width, and area of overlapping peaks, and it has several ways 

to correct for non-zero baselines. For best results, it requires that the peak shape of your peaks be 

among those listed here. 
 

PeakCalibrationCurve.m is a Matlab/Octave simulation of the calibration of a flow injection or chroma-

tography system that produces signal peaks that are related to an underlying concentration or amplitude 

('amp'). The measurepeaks.m function is used to determine the absolute peak height, peak-valley dif-

ference, perpendicular drop area, and tangent skim area. The Matlab/Octave 

script PeakShapeAnalyticalCurve.m shows that, for a single isolated peak whose shape is constant and 

independent of concentration, if the wrong model shape is used, the peak heights measured by curve 

fitting will be inaccurate, but that error will be exactly the same for the unknown samples and the 

known calibration standards, so the error will “cancel out” and the measured concentrations will be ac-

curate, provided you use the same inaccurate model for both the known standards and the unknown 

samples. See page 332.  
 

PowerTransformTest.m is a simple script that demonstrates the power method of peak sharpening to 

aid in reducing in peak overlap. The scripts PowerMethodGaussian.m and PowerMethodLorentzian.m 

compare the power methods to deconvolution, for Gaussian and Lorentzian peak, respective-

ly. PowerMethodCalibrationCurve is a variant of PeakCalibrationCurve.m that evaluates the power 

method in the context of a flow injection or chromatography measurement. The self-contained function 

PowerMethodDemo.m demonstrates the power method for measuring the area of small shouldering 

peak that is partly overlapped by a much stronger interfering peak (Graphic). It also demonstrates the 

effect of random noise, smoothing, and any uncorrected background under the peaks. 
 

 AsymmetricalAreaTest.m. Test of accuracy of peak area measurement methods for an asymmetrical 

peak, comparing (A) Gaussian estimation, (B) triangulation, (C) perpendicular drop method, and curve 

fitting by (D) exponentially broadened Gaussian, and (E) two overlapping Gaussians. Must have the 

following functions in the Matlab/Octave path: gaussian.m, expgaussian.m, findpeaksplot.m, 

findpeaksTplot.m, autopeaks.m, and peakfit.m. Related script AsymmetricalAreaTest2.m compares the 

standard deviations of those same methods with randomized noise samples.  
 

 SumOfAreas.m. Demonstrates that even drastically non-Gaussian peaks can be fit with up to five over-

lapping Gaussian components, and that the total area of the components approaches the area under the 

non-Gaussian peak as the number of components increases (graphic). In most cases only a few compo-

nents are necessary to obtain a good estimate of the peak area.  

Linear Least-squares 

TestLinearFit effect of number of points.txt. Effect of sample size on least-square error estimates by 

Monte Carlo Simulation, Algebraic propagation-of-errors, and the bootstrap method, using the Matlab 

script TestLinearFit.m. 
 

LeastSquaresCode.txt. Simple pseudocode for calculating the first-order least-square fit of y vs x, in-

cluding the Slope and Intercept and the predicted standard deviation of the slope (SDslope) and inter-

cept (SDintercept). 
 

https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/Integration.html#baseline
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#PeakShapes
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PeakShapeAnalyticalCurve.m
https://terpconnect.umd.edu/~toh/spectrum/PowerTransformTest.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/PowerMethodGaussian.m
https://terpconnect.umd.edu/~toh/spectrum/PowerMethodLorentzian.m
https://terpconnect.umd.edu/~toh/spectrum/PowerMethodCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/PowerMethodDemo.m
https://terpconnect.umd.edu/~toh/spectrum/PowerMethod2.png
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalAreaTest.m
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalAreaTest2.m
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://terpconnect.umd.edu/~toh/spectrum/SumOfAreas.png
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit%20effect%20of%20number%20of%20points.txt
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m
https://terpconnect.umd.edu/~toh/spectrum/LeastSquaresCode.txt


Page | 476  

CalibrationQuadraticEquations.txt. Simple pseudocode for calculating the second order least-square fit 

of y vs x, including the constant, x, and x2 terms. 

plotit, version 2, (previously named 'plotfit'), is a function for plotting x,y data in matrices or in sepa-

rate vectors. It optionally fits the data with a polynomial of order n if n is included as the third input 

argument. In version 6 the syntax is [coef, RSquared, StdDevs] = plotit(x,y) or 

plotit(x,y,n) or optionally plotit(x, y, n, datastyle, fitstyle), 

where datastyle and fitstyle are optional strings specifying the line and symbol style and col-

or, in standard Matlab convention. For example, plotit(x,y,3,'or','-g') plots the data as red 

circles and the fit as a green solid line (the default is red dots and a blue line, respective-

ly). Plotit returns the best-fit coefficients 'coeff', in decreasing powers of x, the standard deviations of 

those coefficients 'StdDevs' in the same order, and the R-squared value. Type "help plotit" at the 

command prompt for syntax options. See page 177. This function works in Matlab or Octave and has a 

built-in bootstrap routine that computes coefficient error estimates (STD and % RSD of each coeffi-

cient) by the bootstrap method and returns the results in the matrix "BootResults" (of size 5 x poly-

order+1). The calculation is triggered by including a 4th output argument, e.g. [coef, RSquared, 

StdDevs, BootResults]= plotit(x,y,polyorder). This works for any positive integer poly-

nomial order. The variation plotfita animates the bootstrap process for instructional purposes. The vari-

ation logplotfit plots and fits log(x) vs log(y), for data that follows a power law relationship or that co-

vers a very wide numerical range. 

RSquared.m Computes the R2 (Rsquared or correlation coefficient) in both Matlab and Octave. Syn-

tax RS=RSquared(polycoeff, x,y). 

trypoly(x,y) fits the data in x,y with a series of polynomials of degree 1 through length(x)-1 and returns 

the coefficients of determination (R2) of each fit as a vector, allowing you to evaluate how polynomials 

of various orders fit your data. To plot as a bar graph, write bar(trypoly(x,y)); xlabel('Polynomial Or-

der'); ylabel('Coefficient of Determination (R2)'). Click for an example. See related func-

tion testnumpeaks.m. 

trydatatrans(x,y,polyorder) tries 8 different simple data transformations on the data x,y, fits the trans-

formed data to a polynomial of order 'polyorder', displays results graphically in 3 x 3 array of small 

plots and returns all the R2 values in a vector. 

LinearFiMC.m, a script that compares standard deviation of slope and intercept for a first order least-

squares fit computed by random-number simulation of 1000 repeats to predictions made by closed-

form algebraic equations. See page 163. 
 

TestLinearFit.m, a script that compares standard deviation of slope and intercept for a first-order least-

squares fit computed by random-number simulation of 1000 repeats to predictions made by closed-

form algebraic equations and to the bootstrap sampling method. Several different noise models can be 

selected by commenting/uncommenting the code in lines 20-26. See page 163. 

GaussFitMC.m, a function that demonstrates Monte Carlo simulation of the measurement of the peak 

height, position, and width of a noisy x,y Gaussian peak. See page 170.  
 

GaussFitMC2.m, a function that demonstrates measurement of the peak height, position, and width of a 

noisy x,y Gaussian peak, comparing the gaussfit parabolic fit to the fitgaussian iterative fit. See page 

170. 

SandPfrom1950.mat is a MAT file containing the daily value of the S&P 500 stock market index vs 

time from 1950 through September of 2016. These data are used by FitSandP.m a Matlab/Octave script 

that performs a least-squares fit of the compound interest equation to the daily value, V, of the S&P 

500 stock market index vs time, T, from 1950 through September of 2016, by two methods: 

https://terpconnect.umd.edu/~toh/spectrum/CalibrationQuadraticEquations.txt
https://terpconnect.umd.edu/~toh/spectrum/plotit.m
https://terpconnect.umd.edu/~toh/spectrum/plotfita.m
https://terpconnect.umd.edu/~toh/spectrum/logplotfit.m
http://en.wikipedia.org/wiki/Power_law
https://terpconnect.umd.edu/~toh/spectrum/RSquared.m
https://terpconnect.umd.edu/~toh/spectrum/trypoly.m
https://terpconnect.umd.edu/~toh/spectrum/trypoly.png
https://terpconnect.umd.edu/~toh/spectrum/testnumpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.m
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.png
https://terpconnect.umd.edu/~toh/spectrum/trydatatrans.png
https://terpconnect.umd.edu/~toh/spectrum/LinearFiMC.m
https://terpconnect.umd.edu/~toh/spectrum/TestLinearFit.m
https://terpconnect.umd.edu/~toh/spectrum/GaussFitMC.m
https://terpconnect.umd.edu/~toh/spectrum/GaussFitMC2.m
https://terpconnect.umd.edu/~toh/spectrum/SandPfrom1950.mat
http://us.spindices.com/indices/equity/sp-500
https://terpconnect.umd.edu/~toh/spectrum/FitSandP.m
http://www.investopedia.com/terms/e/exponential-growth.asp
http://us.spindices.com/indices/equity/sp-500
http://us.spindices.com/indices/equity/sp-500


Page | 477  

(1) the iterative curve fitting method, and (2) by taking the logarithm of the values and fitting those to a 

straight line. SnPsimulation.m. Matlab/Octave script that simulates the S&P 500 stock market index by 

adding proportional random noise to data calculated by the compound interest equation with a known 

annual percent return, then fits the equation to that noisy synthetic data by the two methods above. See 

page 322.  

gaussfit.m function [Height, Position, Width]=gaussfit(x,y). Takes the natural log of y, 

fits a parabola (quadratic) to the (x, ln(y)) data, then calculates the position, width, and height of the 

Gaussian from the three coefficients of the quadratic fit. 

lorentzfit.m function [Height, Position, Width]=lorentzfit(x,y). Takes the reciprocal of 

y, fits a parabola (quadratic) to the (x,1/y) data, then calculates the position, width, and height of the 

Lorentzian from the three coefficients of the quadratic fit. 

OverlappingPeaks.m is a demo script that shows how to use gaussfit.m as a quick way to measure two 
overlapping partially Gaussian peaks. It requires careful selection of the optimum data regions around 

the top of each peak (lines 15 and 16). Try changing the relative position and height of the second peak 

or adding noise (line 3) and see how it affects accuracy. This function needs the gaussian.m and gauss-

fit.m functions in the path. Iterative methods work much better in such cases, but they are slower.  

Peak Finding and Measurement 
allpeaks.m. allpeaks(x,y) A super-simple peak detector for x,y, data sets that lists every y value 

that has lower y values on both sides; allvalleys.m is the same for valleys, lists every y value that 
has higher y values on both sides. A related version, allpeaksw.m, also estimates the width of the peaks. 

peaksat.m. (peaks above threshold) lists every y value that (a) has lower y values on both sides and (b) 

is above the specified threshold. Returns a 2 by n matrix P with the x and y values of each peak, where 

n is the number of detected peaks. A related version, peaksatw.m, also estimates the width of the peaks. 

The variation peaksatG.m ("Peaks Above Threshold/Gaussian") additionally performs a least-squares 

fit to the top of each detected peak to estimate its width and area. 

findpeaksx.m, P=findpeaksx(x,y, SlopeThreshold, AmpThreshold, SmoothWidth, 

FitWidth, smoothtype) is a simple command-line function to locate and count the positive peaks 

in noisy data sets. It is an alternative to the findpeaks function in the Signal Processing Toolkit. It de-

tects peaks by looking for downward zero-crossings in the smoothed first derivative that exceed 

SlopeThreshold and peak amplitudes that exceed AmpThreshold and returns a list (in matrix P) con-

taining the peak number and the position and height of each peak. It can find and count over 10,000 
peaks per second in very large signals. Type "help findpeaksx.m". See PeakFindingandMeasure-

ment.htm. The variant findpeaksxw.m additionally measures the width of the peaks. See the demonstra-

tion script demofindpeaksxw.m.  
 

findpeaksG.m and findvalleys.m automatically find the peaks or valleys in a signal and measure their 

position, height, width, and area by curve fitting. The syntax is P= findpeaksG(x, y, 

SlopeThreshold, AmpThreshold, SmoothWidth, FitWidth, smoothtype). It returns a 

matrix containing the peak parameters for each detected peak. For peak of Lorentzian shape, 

use findpeaksL.m instead. See page 229. There are many variations and extensions based on this basic 

function. See page 232. 

findpeaksplot.m is a simple variant of findpeaksG.m that also plots the x,y data and numbers the peaks 

on the graph (if any are found). Syntax: findpeaksplot(x, y, SlopeThreshold, AmpThresh-
old, SmoothWidth, FitWidth, smoothtype) 

https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#Transforming
https://terpconnect.umd.edu/~toh/spectrum/SnPsimulation.m
http://www.investopedia.com/terms/e/exponential-growth.asp
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/lorentzfit.m
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.png
https://terpconnect.umd.edu/~toh/spectrum/OverlappingPeaks.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/allpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/allvalleys.m
https://terpconnect.umd.edu/~toh/spectrum/peaksat.m
https://terpconnect.umd.edu/~toh/spectrum/peaksatG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksx.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/findpeaksxw.m
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://terpconnect.umd.edu/~toh/spectrum/demofindpeaksxw.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/findvalleys.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksL.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksplot.m


Page | 478  

OnePeakOrTwo.m is a demo script that creates a signal that might be interpreted as either one peak at 

x=3 on a curved baseline or as two peaks at x=.5 and x=3, depending on context. In this demo, the 

findpeaksG.m function was called twice, with two different values of SlopeThreshold to demonstrate. 

iPeak (page 248), or its Octave version ipeakoctave.m, automatically finds and measures multiple 

peaks in a signal. (m-file link: ipeak.m). Check out the Animated step-by-step instructions. The ZIP 

file ipeak8.zip contains several demo scripts (ipeakdemo.m, ipeakdemo1.m, etc.) that illustrate various 

aspects of the iPeak function and how it can be used effectively. testipeak.m is a script that tests for the 

proper installation and operation of iPeak by running quickly through all eight examples and six de-

mos for iPeak. Assumes that ipeakdata.mat has been loaded into the Matlab workspace. Click for 

slideshow of examples. The syntax is P=ipeak(DataMatrix, PeakD, AmpT, SlopeT, 

SmoothW, FitW, xcenter, xrange, MaxError, positions, names) 

findpeaksSG.m is a segmented variant of findpeaksG with the same syntax, except that the peak detec-

tion parameters can be vectors, dividing up the signal into regions optimized for peaks of different 

widths. The syntax is P = findpeaksSG(x, y, SlopeThreshold, AmpThreshold, smooth-

width, peakgroup, smoothtype). This works better than findpeaksG when the peak widths vary 

greatly over the duration of the signal. The script TestPrecisionFindpeaksSG.m demonstrates the appli-

cation. Graphic. See page 329. 

findpeaksSGw.m is like the above except that is uses wavelet denoising (page 133) instead of smooth-

ing. It takes the wavelet level rather than the smooth width as an input argument. The script TestPreci-

sionFindpeaksSGvsW.m compares the precision and accuracy for peak position and height measure-

ment. 

autofindpeaks.m (and autofindpeaksplot.m) are similar to findpeaksSG.m except that you can leave out 

the peak detection parameters and just write “autofindpeaks(x,y)” or autofindpeaks(x,y,n) where n is 

the peak capacity, roughly the number of peaks that would fit into that signal record (greater n looks for 

many narrow peaks; smaller n looks for fewer wider peaks). It also prints out the input argument list for 

use with any of the findpeaks... functions. In version 1.1, you can call autofindpeaks with the output 

arguments [P,A] and it returns the calculated peak detection parameters as a 4-element row vector A, 

which you can then pass on to other functions such as measurepeaks, effectively giving that function 

the ability to calculate the peak detection parameters from a single number n . For example: 

x=[0:.1:50]; 

y=5+5.*sin(x)+randn(size(x));  

[P,A]=autofindpeaks(x,y,3);  

P=measurepeaks(x,y,A(1),A(2),A(3),A(4),1); 

Type "help autofindpeaks" and run the examples. The script testautofindpeaks.m runs all the exam-

ples in the help file, additionally plotting the data and numbering the peaks (like autofindpeak-

splot.m). Graphic animation. 

[M,A]=autopeaks.m and autopeaksplot.m. Peak detection and height and area measurement for peaks 

of arbitrary shape in x,y time series data. The syntax is [P, DetectionParameters] =  
autofindpeaks(x, y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, 

smoothtype), but like autofindpeaks.m, the peak detection parameters SlopeThreshold, AmpThresh-

old, smoothwidth peakgroup, and smoothtype can be omitted and the function will calculate estimated 

initial values. Uses the measurepeaks.m algorithm for measurement, returning a table in the matrix M 

containing the peak number, position, absolute peak height, peak-valley difference, perpendicular drop 

area, and tangent skim area of each peak. Optionally returns the peak detection parameters that it calcu-

lates in vector A. Using the simple syntax M=autopeaks(x,y) works well in some cases, but if not try 

M=autopeaks(x,y,n), using different values of n (roughly the number of peaks that would fit into the 

https://terpconnect.umd.edu/~toh/spectrum/OnePeakOrTwo.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/ipeak.html
https://terpconnect.umd.edu/~toh/spectrum/ipeak8.zip
https://terpconnect.umd.edu/~toh/spectrum/testipeak.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#ipeak
https://terpconnect.umd.edu/~toh/spectrum/ipeakdata.mat
https://terpconnect.umd.edu/~toh/spectrum/animationlarger.gif
https://terpconnect.umd.edu/~toh/spectrum/animationlarger.gif
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaskSG.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSGw.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSGvsW.m
https://terpconnect.umd.edu/~toh/spectrum/TestPrecisionFindpeaksSGvsW.m
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autofindpeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/testautofindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testautofindpeaks.gif
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt


Page | 479  

signal record) until it detects the peaks that you want to measure. For the most precise control over 

peak detection, you can specify all the peak detection parameters by typing M=autopeaks(x,y, 

SlopeThreshold, AmpThreshold, smoothwidth, peakgroup); autopeaksplot.m is the same but it also 

plots the signal and the individual peaks (in blue) with the maximum (red circles), valley points (ma-

genta), and tangent lines (cyan) marked. The script testautopeaks.m runs all the examples in the au-

topeaks help file, with a 1-second pause between each one, printing out results in the command window 

and additionally plotting and numbering the peaks (Figure window 1) and each individual peak (Figure 

window 2); it requires gaussian.m and fastsmooth.m in the path. iSignal (page 385) has a peak finding 

function based on the autopeaks function, activated by the J or Shift-J keys, which displays a table of 

peak number, position, absolute peak height, peak-valley difference, perpendicular drop area, and tan-

gent skim area of each peak in the signal. 

findpeaksG2d.m is a variant of findpeaksSG that can be used to locate the positive peaks and shoul-

ders in a noisy x-y time series data set. Detects peaks in the negative of the second derivative of the 

signal, by looking for downward slopes in the third derivative that exceed SlopeThreshold. 

See TestFindpeaksG2d.m. Syntax: P = findpeaksG2d(x, y, SlopeThreshold, AmpThresh-
old, smoothwidth, peakgroup, smoothtype) 

measurepeaks.m automatically detects peaks in a signal, like findpeaksSG. M = measurepeaks(x, 

y, SlopeThreshold, AmpThreshold, SmoothWidth, FitWidth, plots). It returns a table 

M of peak number, position, absolute peak height, peak-valley difference, perpendicular drop area, and 

tangent skim area of each peak. It can plot the signal and the individual peaks if the last (7th) input ar-

gument is 1. Type “help measurepeaks” and try the seven examples there or run HeightAndArea.m to 

run a test of the accuracy of peak height and area measurement with signals that have multiple peaks 

with noise, background, and some peak overlap. Generally, its values for perpendicular drop area are 

best for peaks that have no background, even if they are slightly overlapped, whereas its values for tan-

gential skim area are better for isolated peaks on a straight or slightly curved background. Note: this 

function uses smoothing (specified by the SmoothWidth input argument) only for peak detection; it 

performs measurements on the raw unsmoothed y data. In some cases, it may be beneficial to smooth 

the y data yourself before calling measurepeaks.m, using any smooth function of your choice. The 

script testmeasurepeaks.m will run all the examples in the measurepeaks help file with a 1-second 

pause between each (requires measurepeaks.m and gaussian.m in the path). Graphic animation. The 

related functions wmeasurepeaks.m and testwmeasurepeaks.m utilize wavelet denoising (page 133) ra-

ther than smoothing. 

findpeaksT.m and findpeaksTplot.m are variants of findpeaks that measure the peak parameters by 

constructing a triangle around each peak with sides tangent to the sides of the peak. Graphic example. 

findpeaksb.m is a variant of findpeaksG.m that more accurately measures peak parameters by using 

iterative least-square curve fitting based on peakfit.m. This yields better peak parameter values than 

findpeaks alone, because it fits the entire peak, not just the top part, and because it has provision for 33 

different peak shapes and for background subtraction (linear or quadratic). Works best with isolated 

peaks that do not overlap. Syntax is P = findpeaksb(x,y, SlopeThreshold, AmpThreshold, 
smoothwidth, peakgroup, smoothtype, window, PeakShape, extra, BASELINEMODE). 

The first seven input arguments are exactly the same as for the findpeaksG.m function; if you have 

been using findpeaks or iPeak (page 248) to find and measure peaks in your signals, you can use those 

same input argument values for findpeaksb.m. The demonstration script DemoFindPeaksb.m shows 

how findpeaksb3 works with multiple overlapping peaks. Type "help findpeaksb" at the command 

prompt. See PeakFindingandMeasurement.htm. Compare this to the related findpeaksfit.m and 

findpeaksb3, next. Click for slideshow of examples. 

https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/autopeaksplot.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/testautopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/fastsmooth.m
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/autopeaks.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/measurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.txt
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndAreaTest2.png
https://terpconnect.umd.edu/~toh/spectrum/HeightAndArea.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testmeasurepeaks.gif
https://terpconnect.umd.edu/~toh/spectrum/wmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/testwmeasurepeaks.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksT.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksTplot.m
https://terpconnect.umd.edu/~toh/spectrum/triangulation.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/Peak_shape_functions
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb.gif


Page | 480  

findpeaksSb.m is a segmented variant of findpeaksb.m. It has the same syntax as findpeaksb.m, P = 
findpeaksb(x, y, SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, 

smoothtype, window, PeakShape, extra, NumTrials, BASELINEMODE), except that the 

input arguments SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, window, width, 

PeakShape, extra, NumTrials, BaselineMode, and fixedparameters, can all optionally be scalars or vec-

tors with one entry for each segment, in the same manner as findpeaksSG.m. It returns a matrix P list-

ing the peak number, position, height, width, area, percent fitting error and "R2" of each detected peak. 

DemoFindPeaksSb.m demonstrates this function by creating a series of Gaussian peaks whose widths 

increase by a factor of 25-fold and that are superimposed in a curved baseline with random white noise 

that increases gradually; four segments are used, changing the peak detection and curve fitting values 

so that all the peaks are measured accurately. Graphic. Printout. See page 329. 

findpeaksb3.m is a variant of findpeaksb.m that fits each detected peak together with the previous and 

following peaks found by findpeaksG.m. It deals better with overlapping peaks than findpeaksb.m does, 

and it handles larger numbers of peaks better than findpeaksfit.m, but it fits only those peaks that are 
found by findpeaks. The syntax is P=findpeaksb3(x,y, SlopeThreshold, AmpThreshold, 
smoothwidth, peakgroup, smoothtype, PeakShape, extra, NumTrials, BASELINE-

MODE, ShowPlots). The first seven input arguments are exactly the same as for the 

findpeaksG.m function; if you have been using findpeaks or iPeak (page 248) to find and measure 

peaks in your signals, you can use those same input argument values for findpeaksb3.m. The demon-

stration script DemoFindPeaksb3.m shows how findpeaksb3 works with multiple overlapping peaks. 

findpeaksfit.m is essentially a serial combination of findpeaksG.m and peakfit.m. It uses the number of 

peaks found by findpeaks and their peak positions and widths as input for the peakfit.m function, which 

then fits the entire signal with the specified peak model. This deals with non-Gaussian and overlapped 

peaks better than findpeaks alone. However, it fits only those peaks that are found by findpeaks. The 

syntax is [P, FitResults, LowestError, BestStart, xi, yi] = findpeaksfit(x, y, 
SlopeThreshold, AmpThreshold, smoothwidth, peakgroup, smoothtype, 

peakshape, extra, NumTrials, BaselineMode, fixedparameters, plots).The first 

seven input arguments are exactly the same as for the findpeaksG.m function; if you have been using 

findpeaks or iPeak (page 248) to find and measure peaks in your signals, you can use those same input 

argument values for findpeaksfit.m. The remaining six input arguments of findpeaksfit.m are for the 

peakfit function; if you have been using peakfit.m or ipf.m (page 411) to fit peaks in your signals, you 

can use those same input argument values for findpeaksfit.m. Type "help findpeaksfit" for more infor-

mation. See page 229. Click for animated example. 
 

peakstats.m uses the same algorithm as findpeaksG.m, but it computes and returns a table of summary 

statistics of the peak intervals (the x-axis interval between adjacent detected peaks), heights, widths, 

and areas, listing the maximum, minimum, average, and percent standard deviation of each, and op-

tionally displaying the x, t data plot with numbered peaks in Figure window 1, the table of peak statis-

tics in the command window, and the histograms of the peak intervals, heights, widths, and areas in 

Figure window 2. Type "help peakstats". See page 229. Version 2, March 2016, adds median and 

mode. 
 

tablestats.m (PS=tablestats(P, displayit)) is similar to peakstats.m except that it accepts as 

input a peak table P such as generated by findpeaksG.m, findvalleys.m, findpeaksL.m, findpeaksb.m, 

findpeaksplot.m, findpeaksnr.m, findpeaksGSS.m, findpeaksLSS.m, or findpeaksfit.m, any function 

that return a table of peaks with at least 4 columns listing peak number, height, width, and area. Com-

putes the peak intervals (the x-axis interval between adjacent detected peaks) and the maximum, mini-

mum, average, and percent standard deviation of each, and optionally displaying the histograms of the 

https://terpconnect.umd.edu/~toh/spectrum/findpeaksSb.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksSG.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksSb.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksSbLarge.png
https://terpconnect.umd.edu/~toh/spectrum/DemoFindpeaksSb.txt
https://terpconnect.umd.edu/~toh/spectrum/findpeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeaksb3.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#Keypress_operated_version:_ipf.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.gif
https://terpconnect.umd.edu/~toh/spectrum/peakstats.m
https://terpconnect.umd.edu/~toh/spectrum/histograms.png
https://terpconnect.umd.edu/~toh/spectrum/tablestats.m


Page | 481  

peak intervals, heights, widths, and areas in Figure window 2. The optional last argument displayit = 1 

if the histograms are to be displayed, otherwise not. 

findpeaksnr.m is a variant of findpeaksG.m that additionally computes the signal-to-noise ratio (SNR) 

of each peak and returns it in the 5th column of the peak table. The SNR is computed as the ratio of the 

peak height to the root-mean-square residual (difference between the actual data and the least-squares 

fit over the top part of the peak). See PeakFindingandMeasurement.htm. 

findpeaksE.m is a variant of findpeaksG.m that additionally estimates the percent relative fitting error 

of each peak (assuming a Gaussian peak shape) and returns it in the 6th column of the peak table. 

findpeaksGSS.m and findpeaksLSS.m, for Gaussian and Lorentzian peaks respectively, are variants of 

findpeaksG.m and findpeaksL.m that additionally compute the 1% start and end positions return them 

in the 6th and 7thcolumns of the peak table. See PeakFindingandMeasurement.htm. 
 

findsquarepulse.m (syntax S=findsquarepulse(t, y, threshold) locates the rectangular pulses 

in the signal t, y that exceed a y-value of "threshold" and determines their start time, average height 

(relative to the adjacent baseline) and width. DemoFindsquare.m creates a test signal and calls find-

squarepulse.m to demonstrate. 
 

findsteps.m P= findsteps(x, y, SlopeThreshold, AmpThreshold, SmoothWidth, 

peakgroup) locates positive transient steps in noisy x-y time series data, by computing the first deriv-

ative of y that exceed SlopeThreshold, computes the step height as the difference between the maxi-
mum and minimum y values over a number of data point equal to "Peakgroup". It returns list (P) with 

step number, x and y positions of the bottom and top of each step, and the step height of each step de-

tected; "SlopeThreshold" and "AmpThreshold" control step sensitivity; higher values will neglect 

smaller features. Increasing "SmoothWidth" ignores small sharp false steps caused by random noise or 

by "glitches" in the data acquisition. See findsteps.png for a real example. findstepsplot.m plots the 

signal and numbers the peaks. 
 

idpeaks, peak identification function. The syntax is [IdentifiedPeaks, AllPeaks] = 

idpeaks(DataMatrix, AmpT, SlopeT, sw, fw, maxerror, Positions, Names). Locates 

and identifies peaks in DataMatrix that match the position of peaks in the array "Positions" with 

matching names "Names". Type "help idpeaks" for more information. Download and extract 

idpeaks.zip for a working example or see Example 8 on page 247.  

idpeaktable.m [IdentifiedPeaks]=idpeaktable(P, maxerror, Positions, Names). 

Compares the found peak positions in peak table "P" to a database of known peaks, in the form of a cell 

array of known peak maximum positions ("Positions") and matching cell array of names ("Names"). If 

the position of a found peak in the signal is closer to one of the known peaks by less than the specified 

maximum error ("maxerror"), that peak is considered a match and its peak position, name, error, and 

amplitude are entered into the output cell array "IdentifiedPeaks". The peak table may be one returned 

by any of my peak finder or peak fitting functions, having one row for each peak and columns for peak 

number, position, and height as the first three columns. 
 

demoipeak.m is a simple demo script that generates a noisy signal with peaks, calls iPeak, and then 

prints out a table of the actual peak parameters and a list of the peaks detected and measured by iPeak 

for comparison. Before running this demo, ipeak.m (page 248) must be downloaded and placed in the 

Matlab path. The Octave version is demoipeakoctave.m. 
 

DemoFindPeak.m, a demonstration script using the findpeaksG function on noisy synthetic data. Num-

bers the peaks and prints out the peak parameters in the command window. Requires that gaussian.m 

and findpeaksG.m be present in the path. See page 229.  

https://terpconnect.umd.edu/~toh/spectrum/histograms.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaksnr.m
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#SNR
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/findpeaksE.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksGSS.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksLSS.m
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
https://terpconnect.umd.edu/~toh/spectrum/findsquarepulse.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindsquare.m
https://terpconnect.umd.edu/~toh/spectrum/findsteps.m
http://terpconnect.umd.edu/~toh/spectrum/findsteps.png
https://terpconnect.umd.edu/~toh/spectrum/findstepsplot.m
https://terpconnect.umd.edu/~toh/spectrum/idpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/idpeaks.zip
https://terpconnect.umd.edu/~toh/spectrum/idpeaktable.m
https://terpconnect.umd.edu/~toh/spectrum/demoipeak.m
https://terpconnect.umd.edu/~toh/spectrum/ipeak.m
https://terpconnect.umd.edu/~toh/spectrum/demoipeakoctave.m
https://terpconnect.umd.edu/~toh/spectrum/DemoFindPeak.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaks.m


Page | 482  

 

TestFindpeaksG2d.m. Demonstration script for findpeaks2d.m, which shows that this function can lo-

cate peaks resulting in 'shoulders' that do not produce a distinct maximum in the original signal. Detects 

peaks in the negative of the smoothed second derivative of the signal (shown as the dotted line in the 

figure). Requires gaussian.m, findpeaksG.m, findpeaksG2d.m, fastsmooth.m, and peakfit.m in the path. 

Graphic. Also uses theTestFindpeaksG2d results as the "start" value for iterative peak fitting using 

peakfit.m, which takes longer to compute but gives more accurate results, especially for width and area: 
 

DemoFindPeakSNR is a variant of DemoFindPeak.m that uses findpeaksnr.m to compute the signal-to-

noise ratio (SNR) of each peak and returns it in the 5th column.  
 

triangulationdemo.m is a demo function (screen graphic) that compares findpeaksG (which determines 

peak parameters by curve-fitting a Gaussian to the center of each peak) to findpeaksT, which deter-

mines peak parameters by the triangle construction method (drawing a triangle around each peak with 

sides that are tangent to the sides of the peak). Performs the comparison with 4 different peak shapes: 

plain Gaussian, bifurcated Gaussian, exponential modified Gaussian, and Breit-Wigner-Fano). In some 

cases, the triangle construction method can be more accurate than the Gaussian method if the peak 

shape is asymmetric.  
 

findpeaksfitdemo.m, a demonstration script of findpeaksfit automatically finding and fitting the peaks 

in a set of 150 signals, each of which may have 1 to 3 noisy Lorentzian peaks in variable locations. Re-

quires the findpeaksfit.m and lorentzian.m functions installed. This script was used to generate the GIF 

animation findpeaksfit.gif. 
 

FindpeaksComparison.m. Which to use: findpeaksG, findpeaksb, findpeaksb3, or findpeaksfit? This 

script compares all four functions applied to a computer-generated signal with multiple peaks with var-

iable types and amounts of baseline and random noise. (Requires all these functions, plus mod-

elpeaks.m, findpeaksG, and findpeaksL.m, in the Matlab/Octave path. Type "help FindpeaksCompari-

son" for details). Results are displayed graphically in Figure windows 1, 2, and 3 and printed out in 

a table of parameter accuracy and elapsed time for each method. You may change the lines in the 

script marked by <<< to modify the number and character and amplitude of the signal peaks, baseline, 

and noise. (Adjust the parameters to make the simulated signal like your experimental signal to discov-

er which method works best for your type of signal). The best method depends mainly on the shape and 

amplitude of the baseline and on the extent of peak overlap. 
 

iPeakEnsembleAverageDemo.m is a demonstration script for iPeak's ensemble average function. In this 

example, the signal contains a repeated pattern of two overlapping Gaussian peaks, 12 points apart, 

both of width 12, with a 2:1 height ratio. These patterns occur at random intervals throughout the rec-

orded signal, and the random noise level is about 10% of the average peak height. Using iPeak's en-

semble average function (Shift-E), the patterns can be averaged and the signal-to-noise ratio improved. 
 

ipeakdata.mat, data set for demonstrating idpeaks.m or the peak identification function of iPeak; in-

cludes a high-resolution atomic spectrum and a table of known emission wavelenghs. See page 229.  
 

Which to use: iPeak or Peakfit? Try these Matlab demo functions that compare iPeak.m (page 248) 

with peakfit.m (page 229) for signals with a few peaks and signals with many peaks and that shows 

how to adjust iPeak to detect broad or narrow peaks. These are self-contained demos that include all 

required sub-functions. Just place them in your path and type their name at the command prompt. You 

can download all these demos together in idemos.zip. They require no input or output arguments. 
 

SpikeDemo1.m and SpikeDemo2.m are Matlab/Octave scripts that demonstrate how two measure 

spikes (very narrow peaks) in the presence of serious interfering signals. See page 300. 
 

PowerTransformTest.m is a simple script that demonstrates the power method of peak sharpening to 

https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.png
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.m
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.png
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.png
https://terpconnect.umd.edu/~toh/spectrum/TestFindpeaksG2d.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaksnr.m
https://terpconnect.umd.edu/~toh/spectrum/triangulationdemo.m
https://terpconnect.umd.edu/~toh/spectrum/TriangulationComparison.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksT.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfitdemo.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksfit.gif
https://terpconnect.umd.edu/~toh/spectrum/FindpeaksComparison.m
https://terpconnect.umd.edu/~toh/spectrum/findpeakscomparison2large.png
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#FindpeaksComparison
https://terpconnect.umd.edu/~toh/spectrum/iPeakEnsembleAverageDemo.m
https://terpconnect.umd.edu/~toh/spectrum/ipeakdata.mat
https://terpconnect.umd.edu/~toh/spectrum/idemo1.m
https://terpconnect.umd.edu/~toh/spectrum/idemo2.m
https://terpconnect.umd.edu/~toh/spectrum/idemo.m
https://terpconnect.umd.edu/~toh/spectrum/idemos.zip
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo1.m
https://terpconnect.umd.edu/~toh/spectrum/SpikeDemo2.m
https://terpconnect.umd.edu/~toh/spectrum/PowerTransformTest.m
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power


Page | 483  

aid in reducing in peak overlap. PowerMethodCalibrationCurve is a variant of PeakCalibrationCurve.m 

that evaluates the power method in the context of a flow injection or chromatography measurement. 

powertest2 is a self-contained function that demonstrates the power method for measuring the area of 

small shouldering peak (Graphic).  
 

The script realtimepeak.m demonstrates simple real-time peak detection based on derivative zero-

crossing, using mouse clicks to simulate data. Each time your mouse clicks form a peak (that is, go up 

and then down again), the program will register and label the peak on the graph (as illustrated on the 

right) and print out its x and y values. In this case, a peak is defined as any data point that has lower 

amplitude points adjacent to it on both sides, which is determined by the nested 'for' loops in lines 31-

36. The more sophisticated script RealTimeSmoothedPeakDetectionGauss.m uses the technique de-

scribed on page 229 that locates the positive peaks in a noisy data set that rise above a set amplitude 

threshold, performs a least-squares curve-fit of a Gaussian function to the top part of the raw data peak, 

computes the position, height, and width (FWHM) of each peak from that least-squares fit and prints 

out each peak found in the command window. (Animated graphic). 

AreasOfIsolatedPeaks.m.  Script to demonstrate the measurement of the areas of isolated peaks super-

imposed on a variable baseline, by the trapezoidal method, using the inbuilt trapz function.  

Peak detection tool. PeakDetection.mlx (page 248) is an interactive Live Script for peak detection and 

measurement, including a selection of peak detectors, data smoothing, symmetrization, peak sharpen-

ing, and curve fitting, with interactive sliders and drop-down menus to control them interactively. 

Multicomponent Spectroscopy 

cls.m is a classical least-squares function that you can use to fit a computer-generated model, consisting 

of any number of peaks of known shape, width, and position, but of unknown height, to a noisy x,y 

signal. The syntax is heights= cls(x,y, NumPeaks, PeakShape, Positions, Widths, 

extra) where x and y are the vectors of measured signal (e.g. x might be wavelength and y might be 

the absorbance at each wavelength), 'NumPeaks' is the number of peaks, 'PeakShape' is the peak shape 

number (1=Gaussian, 2=Lorentzian, 3=logistic, 4=Pearson, 5=exponentially broadened Gaussian; 

6=equal-width Gaussians; 7=Equal-width Lorentzians; 8=exponentially broadened equal-width 

Gaussian, 9=exponential pulse, 10=sigmoid, 11=Fixed-width Gaussian, 12=Fixed-width Lorentzian; 

13=Gaussian/Lorentzian blend; 14=BiGaussian, 15=BiLorentzian), 'Positions' is the vector of peak 

positions on the x axis (one entry per peak), 'Widths' is the vector of peak widths in x units (one entry 

per peak), and 'extra' is the additional shape parameter required by the exponentially broadened, 

Pearson, Gaussian/Lorentzian blend, BiGaussian and BiLorentzian shapes. cls.m returns a vector of 

measured peak heights for each peak. See clsdemo.m. (Note: this method is now included in the non-

linear iterative peak fitter peakfit.m (page 229) as peak shape 50. See the demonstration script 

peakfit9demo.m) 
 

The cls2.m function is similar to cls.m, except that it also measures the baseline (assumed to be flat) 

and returns a vector containing the background B and measured peak heights H for each peak , e.g. [B 

H1 H2 H3...]. 
 

RegressionDemo.m, script that demonstrates the classical least-squares procedure for a simulated 

absorption spectrum of a 5-component mixture at 100 wavelengths. Requires that gaussian.m be 

present in the path. See page 184.  
 

clsdemo.m is a demonstration script that creates a noisy signal, fits it using the Classical Least-squares 

method with cls.m, computes the accuracy of the measured heights, then repeats the calculation using 

iterative least-squares using peakfit.m (page 229) for comparison. (This script 

requires cls.m, modelpeaks.m, and peakfit.m in the Matlab/Octave path). 

https://terpconnect.umd.edu/~toh/spectrum/PowerMethodCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/PeakCalibrationCurve.m
https://terpconnect.umd.edu/~toh/spectrum/powertest2.m
https://terpconnect.umd.edu/~toh/spectrum/PowerMethod2.png
https://terpconnect.umd.edu/~toh/spectrum/realtimepeak.m
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetectionGauss.zip
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/RealTimeSmoothedPeakDetectionGauss.gif
https://terpconnect.umd.edu/~toh/spectrum/AreasOfIsolatedPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.mlx
https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.html#Live_scripts_
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html#Selfdeconv
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html#Selfdeconv
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/clsdemo.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/cls2.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/clsdemo.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/modelpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m


Page | 484  

 

CLSvsINLS.m is a script that compares the classical least-squares (CLS) method with three different 

variations of the iterative method (INLS) method for measuring the peak heights of three Gaussian 

peaks in a noisy test signal, demonstrating that the fewer the number of unknown parameters, the faster 

and more accurate is the peak height calculation. 

Non-linear iterative curve fitting and peak fitting 

gaussfit, function that performs least-squares fit of a single Gaussian function to an x,y data set, 

returning the height, position, and width of the best-fit Gaussian. Syntax is [Height, Position, 

Width] = gaussfit(x,y).The similar function lorentzfit.m performs the calculation for a 

Lorentzian peak shape. See page 168. The similar function plotgaussfit does the same thing as 

gaussfit.m but also plots the data and the fit. The data set cannot contain any zero or negative values. 
 

bootgaussfit is an expanded version of gaussfit that provides optional plotting and error estimation. The 

syntax is [Height, Position, Width, BootResults] = bootgaussfit(x, y, plots). If 

plots=1, plots the raw data as red dots and the best-fit Gaussian as a line. If the 4th output argument 
(BootResults) is supplied, computes peak parameter error estimates by the bootstrap method. 
 

fitshape2.m, syntax [Positions, Heights, Widths, FittingError] = fitshape2(x, y, 

start), is a simplified general-purpose Matlab/Octave function for fitting multiple overlapping model 

shapes to the data contained in the vector variables x and y. The model is linear combination of any 

number of basic functions that are defined mathematically as a function of x, with two variables that 

the program will independently determine positions and widths for each peak, in addition to the peak 

heights (i.e., the weights of the weighted sum). You must provide the first guess starting vector 'start', in 

the form [position1 width1 position2 width2 ...etc.], which specifies the first-guess position and width 

of each component (one pair of position and width for each peak in the model). The function returns 
the parameters of the best-fit model in the vectors Positions, Heights, Widths, and computes 

the percent error between the data and the model in FittingError. It also plots the data as dots and 

the fitted model as a line. The interesting thing about this function is that the only part that defines the 

shape of the model is the last line. In fitshape2.m, that line contains the expression for a Gaussian peak 

of unit height, but you could change that to any other expression or algorithm that computes g as a 

function of x with two unknown parameters 'pos' and 'wid' (position and width, respectively, for peak-

type shapes, but they could represent anything for other function types, such as the exponential pulse, 

sigmoidal, etc.); everything else in the fitshape.m function can remain the same. This makes fitshape a 

good platform for experimenting with different mathematical expressions as proposed models to fit 

data. There are also two other variations of this function for models with one iterated variable plus peak 

height (fitshape1.m) and three iterated variables plus peak height (fitshape3.m). Each has illustrative 

examples contained in the built-in help file (type “help <filename>”).  An alternative version is 

FitMultipleShapes2, which allows you to specify any of 16 common peak shape functions by number. 

Type "help FitMultipleShapes2" for examples of use. Syntax: 
[Positions,Heights,Widths,FittingError] = FitMultipleShapes2(x,y,shape,start,m)  
 

peakfit (page 229) a versatile command-line function for multiple peak fitting by iterative non-linear 
least-squares. A Matlab File Exchange "Pick of the Week". The full syntax is [FitResults, GOF, 
baseline, coeff, BestStart, xi, yi, BootResults] = peakfit(signal, center, 

window, NumPeaks, peakshape, extra, NumTrials, start, BASELINEMODE, 

fixedwidth, plots, bipolar, minwidth). Type "help peakfit". See page 391. Compared to 

the fitshape.m function described previously, peakfit.m has a large number of built-in peak shapes 

selected by number, it does not require (although it can be given) the first-guess position and width of 

each component, and it has features for background correction and other useful features to improve the 

quality and estimate the reliability of fits. Test the installation on your computer by running the 

https://terpconnect.umd.edu/~toh/spectrum/CLSvsINLS.m
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/lorentzfit.m
https://terpconnect.umd.edu/~toh/spectrum/plotgaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/bootgaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/gaussfit.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#bootstrap
https://terpconnect.umd.edu/~toh/spectrum/fitshape2.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape1.m
https://terpconnect.umd.edu/~toh/spectrum/fitshape3.m
file:///C:/Users/tomoh/Dropbox/SPECTRUM/FitMultipleShapes2.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
http://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/
https://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm


Page | 485  

autotestpeakfit.m script, which runs through the whole gauntlet of fitting tests without pause, printing 

out what it is doing and the results, checking to see if the fitting error is greater than expected and 

printing out a WARNING if it is. This takes 17 seconds to run in Matlab 9.9 2020b on a 3.5Ghx i7 

windows 10 machine. See the version history, page 391, for a brief description of the new features of 

each version of peakfit.m from 3.7 to the present.  
 

testnumpeaks(x,y,peakshape,extra,NumTrials,MaxPeaks). Simple test to estimate the number of model 

peaks required to fit an x,y data set. Fits data x,y, with shape "peakshape", with optional extra shape 

factor "extra", with NumTrials repeat per fit, up to a maximum of "MaxPeaks" model peaks, displays 

each fit and graphs fitting error vs number of model peaks. If two or more numbers of peaks give about 

the same error, it’s best to take the smaller number.  
 

SmoothVsFit.m is a demonstration script that compares iterative least-square fitting to two simpler 

methods for the measurement of the peak height of a single peak of uncertain width and position and 

with a very poor signal-to-noise ratio of 1. The accuracy and precision of the methods are compared. 

SmoothVsFitArea.m does the same thing for the measurement of peak area. See page 170. 
 

ipf.m (page 411) is an interactive multiple peak fitter (m-file link: ipf.m). It uses iterative nonlinear 

least-squares to fit any number of overlapping peaks of the same or different peak shapes to x-y data 

sets. Demoipf.m is a demonstration script for ipf.m, with a built-in simulated signal generator. The true 

values of the simulated peak positions, heights, and widths are displayed in the Matlab command 

window, for comparison to the FitResults obtained by peak fitting. Click for animated step-by-step 

instructions. You can also download a ZIP file containing ipf.m plus some examples and demos. Click 

for animated example.  
 

SmallPeak.m is a demonstration of several curve-fitting techniques applied to the challenging problem 

of measuring the height of a small peak that is closely overlapped with and completely obscured by a 

much larger peak. It compares iterative fits by unconstrained, equal-width, and fixed-position models 

(using peakfit.m, page 229) to a classical least-squares fit in which only the peak heights are unknown 

(using cls.m). Spread out the four Figure windows so you can observe the dramatic difference in 

stability of the different methods. A final table of relative percent peak height errors shows that the 

more the constraints, the better the results (but only if the constraints are justified). See page 318.  
 

BlackbodyDataFit.m, a script that demonstrates iterative least-squares fitting of the blackbody 

equation to a measured spectrum of an incandescent body, for the purpose of estimating its color 

temperature. See page 203. 
 

Demofitgauss.m a script that demonstrates iterative fitting a single Gaussian function to a set of data, 

using the fminsearch function. Requires that gaussian.m and fmsearch.m (in the "Optim 1.2.1"  

package) be installed. Demofitgaussb.m and fitgauss2b.m illustrate a modification of this technique to 

accommodate shifting baseline (Demofitlorentzianb.m and fitlorentzianb.m for Lorentzian peaks). This 

modification is now incorporated to peakfit.m (version 4.2 and later), ipf.m (version 9.7 and later), 

findpeaksb.m (version 3 and later), and findpeaksfit, (version 3 and later). See page 203. 
 

Demofitgauss2.m a script that demonstrates iterative fitting of two overlapping Gaussian functions to a 

set of data, using the fminsearch function. Requires that gaussian.m and fmsearch.m (in the "Optim 

1.2.1" package) be installed. Demofitgauss2b.m is the baseline-corrected extension. See page 203. 
 

VoigtFixedAlpha.m and VoigtVariableAlpha.m demonstrate two different ways to fit peaks 

with variable shapes, such as the Voigt profile, Pearson, Gauss-Lorentz blend, and the bifurcated and 

exponentially-broadened shapes, which are defined not only by a peak position, height, and width, but 

also by an additional "shape" parameter that fine-tunes the shape of the peak. If that parameter is equal 

for all peaks in a group, it can be passed as an additional input argument to the shape function, as 

https://terpconnect.umd.edu/~toh/spectrum/autotestpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/autotestpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfitVersionHistory.txt
https://terpconnect.umd.edu/~toh/spectrum/testnumpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsFit.m
https://terpconnect.umd.edu/~toh/spectrum/SmoothVsFitArea.m
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/ipf.m
https://terpconnect.umd.edu/~toh/spectrum/Demoipf.m
https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html
https://terpconnect.umd.edu/~toh/spectrum/ifpinstructions.html
https://terpconnect.umd.edu/~toh/spectrum/ipf13.zip
https://terpconnect.umd.edu/~toh/spectrum/ipfE.gif
https://terpconnect.umd.edu/~toh/spectrum/ipfE.gif
https://terpconnect.umd.edu/~toh/spectrum/SmallPeak.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/cls.m
https://terpconnect.umd.edu/~toh/spectrum/BlackbodyDataFit.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgaussb.m
https://terpconnect.umd.edu/~toh/spectrum/fitgauss2b.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitlorentzianb.m
https://terpconnect.umd.edu/~toh/spectrum/fitlorentzianb.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitgauss2.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtFixedAlpha.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtVariableAlpha.m


Page | 486  

shown in VoigtFixedAlpha.m. If the shape parameter is allowed to be different for each peak in the 

group and is to be determined by iteration (just as is position and width), then the routine must be 

modified to accommodate three, rather than two, iterated variables, as shown in VoigtVariableAlpha.m. 

Although the fitting error is lower with variable alphas, the execution time is longer and the alphas 

values so determined are not very stable, with respect to noise in the data and the starting guess values, 

especially for multiple peaks. See page 200. The script VoigtShapeFittingDemonstration.m uses 

peakfit.m version 9.5 to fit a single Voigt profile and to calculate the Gaussian width component, 

Lorentzian width component, and alpha. It computes the theoretical Voigt profile and adds random 

noise for realism. VoigtShapeFittingDemonstration2.m does the same for two overlapping Voigt 

profiles, using both fixed alpha and variable alpha models (shape numbers 20 and 30). (Requires 

voigt.m, halfwidth.m, and peakfit.m in the path). 
 

Demofitmultiple.m. Demonstrates an iterative fit to sets of computer-generated noisy peaks of different 

types, knowing only the shape types and variable shape parameters of each peak. Iterated parameters 

are shape, height, position, and width of all peaks. Requires the fitmultiple.m and peakfunction.m 

functions. View screen shot. See page 200.  
 

BootstrapIterativeFit.m, a function that demonstrates bootstrap estimation of the variability of an 

iterative least-squares fit to a single noisy Gaussian peak. The syntax is: BootstrapIterativeFit 

(TrueHeight,TruePosition,TrueWidth,NumPoints,Noise,NumTrials). See page 166.  
 

BootstrapIterativeFit2.m, a function that demonstrates bootstrap estimation of the variability of an 

iterative least-squares fit to two noisy Gaussian peaks. The syntax is: 
BootstrapIterativeFit2(TrueHeight1, TruePosition1, TrueWidth1, TrueHeight2, 

TruePosition2, TrueWidth2, NumPoints, Noise, NumTrials). See page 166.  
 

DemoPeakfitBootstrap.m. Self-contained demonstration function for peakfit.m (page 229), with built-

in signal generator. Demonstrates bootstrap error estimation. See page 166. 
 

DemoPeakfit.m, Demonstration script (for peakfit.m) that generates an overlapping peak signal, adds 

noise, fits it with peakfit.m, then computes the accuracy and precision of peak parameter 

measurements. Requires that peakfit.m be present in the path. See page 408. 
 

peakfit9demo. Demonstrates multilinear regression (shape 50) available in peakfit.m version 9 

(Requires modelpeaks.m and peakfit.m in the Matlab path). Creates a noisy model signal of three peaks 

of known shapes, positions, and widths, but unknown heights. Compares multilinear regression in 

Figure window 1 with unconstrained iterative non-linear least-squares in Figure window 2.  

DemoPeakFitTime.m is a simple script that demonstrates how to use peakfit.m to apply multiple curve 

fits to a signal that is changing with time. The signal contains two noisy Gaussian peaks in which the 

peak position of the second peak increases with time and the other parameters remain constant, except 

for the noise. (click to play animation. 
 

isignal (page 385) can be used as a command-line function in Octave, but its interactive features 
currently work only in Matlab. The syntax is isignal(DataMatrix, xcenter, xrange, 
SmoothMode, SmoothWidth, ends, DerivativeMode, Sharpen, Sharp1, Sharp2, 

SlewRate, MedianWidth).  
 

testpeakfit.m, a test script that demonstrates 36 different examples on page 411. Use for testing that 

peakfit and related functions are present in the path. autotestpeakfit.m does the same without pausing 

between functions and waiting for a keypress (takes about 17 seconds to run). 
 

Live Script peak fitting tool, similar to the other Live Script tools for  smoothing, deconvolution, peak 

detection, is described on page 435. It is based on the peakfit.m function and can fit a variety of peak 

https://terpconnect.umd.edu/~toh/spectrum/VoigtFixedAlpha.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtVariableAlpha.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtShapeFittingDemonstration.m
https://terpconnect.umd.edu/~toh/spectrum/VoigtShapeFittingDemonstration2.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitmultiple.m
https://terpconnect.umd.edu/~toh/spectrum/fitmultiple.m
https://terpconnect.umd.edu/~toh/spectrum/peakfunction.m
https://terpconnect.umd.edu/~toh/spectrum/Demofitmultiple.png
https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit.m
https://terpconnect.umd.edu/~toh/spectrum/BootstrapIterativeFit2.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfitBootstrap.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit9demo.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakFitTime.m
https://terpconnect.umd.edu/~toh/spectrum/DemoPeakFitTime.gif
https://terpconnect.umd.edu/~toh/spectrum/isignal.m
https://terpconnect.umd.edu/~toh/spectrum/testpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/autotestpeakfit.m
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#LIveScript
https://terpconnect.umd.edu/~toh/spectrum/Deconvolution.html#Live_script
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#LiveScript
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#LiveScript


Page | 487  

shapes with optional specified start position, baseline correction, and symmetrization. 
 

Multiple peak fits with different profiles. ShapeTestS.m and ShapeTestA.m tests the data in its input 

arguments x,y, assumed to be a single isolated peak, fits it with different candidate model peak shapes 

using peakfit.m, plots each fit in a separate figure window, and prints out a table of fitting errors in the 

command window. ShapeTestS.m tries seven different candidate symmetrical model peaks, and 

ShapeTestA.m tries six different candidate asymmetrical model peaks. The one with the lowest fitting 

error (and R2 closest to 1.000) is presumably the best candidate. Try the examples in their help files. But 

beware: if there is too much noise in your data, the results can be misleading 

WidthTest.m is a script that demonstrates that constraining some of the peak parameters of a fitting 

model to fixed values, if those values are accurately known, improves that accuracy of measurement of 

the other parameters, even though it increases the fitting error. Requires installation of the GL.m and 

peakfit.m functions (version 7.6 or later) in the Matlab/Octave path.  
 

The script NumPeaksDemo.m demonstrates one way to attempt to estimate the minimum number of 

model peaks needed to fit a set of data, plotting the fitting error vs the number of model peaks, and 

looking for the point at which the fitting error reaches a minimum. This script creates a noisy 

computer-generated signal containing a user-selected 3, 4, 5 or 6 underlying Lorentzian peaks and uses 

peakfit.m to fit the data to a series of models containing 1 to 10 model peaks. The correct number of 

underlying peaks is either the fit with the lowest fitting error, or, if two or more fits have about the 

same fitting error, the fit with the least number of peaks, as in this example, which actually has 4 

underlying peaks. If the data are very noisy, however, the determination becomes unreliable. (To make 

this demo closer to your type of data, you could change Lorentzian to Gaussian or any other model 

shape, or change the peak width, number of data points, or the noise level). This script requires 

that peakfit.m and the appropriate shape functions (gaussian.m, lorentzian.m, etc.) be present in the 

path. The function testnumpeaks.m does this for your own x,y data. 
 

Peakfit Time Tests. These are a series of scripts that demonstrate how the execution time of the 

peakfit.m function varies with the peak shape (PeakfitTimeTest2.m and PeakfitTimeTest2a.m, with 

number of peaks in the model (PeakfitTimeTest.m), and with the number of data points in the fitted 

region (PeakfitTimeTest3.m). This issue is discussed on page 427. 
 

TwoPeaks.m is a simple 8-line script that compares findpeaksG.m and peakfit.m with a signal 

consisting to two noisy peaks. findpeaksG.m and peakfit.m must be in the Matlab/Octave path. 
 

peakfitVSfindpeaks.m performs a direct comparison of the accuracy of findpeaksG vs peakfit. This 

script generates four very noisy peaks of different heights and widths, then applies findpeaksG.m and 

peakfit.m to measure the peaks and compares the results. The peaks detected by findpeaks are labeled 

"Peak 1", "Peak 2", etc. If you run this script several times, you'll find that both methods work well 

most of the time, with peakfit giving smaller errors in most cases, but occasionally findpeaks will miss 

the first (lowest) peak and rarely it will detect an extra peak that is not there if the signal is very noisy. 
 

CaseStudyC.m is a self-contained Matlab/Octave demo function that demonstrates the application of 

several techniques described on this site to the quantitative measurement of a peak buried in an 

unstable background, a situation that can occur in the quantitative analysis applications of various 

forms of spectroscopy and remote sensing. See Case Studies C. 
 

GaussVsExpGauss.m Comparison of alternative models for the unconstrained exponentially-broadened 

Gaussians, shapes 31 and 39. Shape 31 (expgaussian.m) creates the shape by performing a Fourier 

convolution of a specified Gaussian by an exponential decay of specified time constant, whereas shape 

39 (expgaussian2.m) uses a mathematical expression for the final shape so produced. Both result in 

the same shape but are parameterized differently. Shape 31 reports the peak height and position as that 

https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestA.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/ShapeTestS.m
https://terpconnect.umd.edu/~toh/spectrum/widthtest.m
https://terpconnect.umd.edu/~toh/spectrum/GL.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/NumPeaksDemo.m
https://terpconnect.umd.edu/~toh/spectrum/NumPeaksTest.png
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/functions.html#Peak_shape_functions
https://terpconnect.umd.edu/~toh/spectrum/testnumpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest2a.m
https://terpconnect.umd.edu/~toh/spectrum/PeakfitTimeTest.m
https://terpconnect.umd.edu/~toh/spectrum/FitSandP.m
https://terpconnect.umd.edu/~toh/spectrum/TwoPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/peakfitVSfindpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/peakfitVSfindpeaks.png
https://terpconnect.umd.edu/~toh/spectrum/CaseStudyC.m
https://terpconnect.umd.edu/~toh/spectrum/CaseStudies.html
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGauss.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian2.m


Page | 488  

of the original Gaussian before broadening, whereas shape 39 reports the peak height of the broadened 

result. Shape 31 reports the width as the FWHM of the original Gaussian and shape 39 reports the 

standard deviation (sigma) of that Gaussian. Shape 31 reports the exponential factor on the number of 

data points and shape 39 reports the reciprocal of time constant in time units. See Figure windows 2 

and 3. You must have peakfit.m (version 8.4) gaussian.m, expgaussian.m, expgaussian2.m, 

findpeaksG.m, and halfwidth.m in the Matlab/Octave path. DemoExpgaussian.m is a script that gives a 

more detailed exploration of the effect of exponential broadening on a Gaussian peak (requires 

gaussian.m, expgaussian.m, halfwidth.m, val2ind.m, and peakfit.m in the Matlab/Octave path). 

AsymmetricalOverlappingPeaks.m is a multi-step script that demonstrates the use of a combination of 

first-derivative symmetrization before curve fitting to analyze a complex mystery peak. See page 361). 

 Keystroke-operated interactive functions  

The interactive functions ipeak, isignal, ipf, and ifilter run in the Figure window and use a simple set 

of single keystroke commands, rather than on-screen buttons or menus or sliders, to reduce screen clut-

ter, minimize overhead, maximize processing speed, and allow you to explore data and try out various 

approaches easily and quickly. All have several keystroke commands in common: all share the same set 

of pan and zoom to adjust the portion of the signal that is displayed in the upper panel. (There are also 

Octave versions of all these, ipeakoctave, isignaloctave, ipfoctave, and ifilteroctave, all of which use 

different keys for the pan and zoom adjustments than the Matlab versions). All versions use the K key 

to display the list of keystroke commands. Double-click the figure window title bar to expand to full 

screen for a better view of small signal features. All use the T key to cycle through the baseline correc-

tion modes. All use the Shift-Ctrl-S, Shift-Ctrl-F, and Shift-Ctrl-P keys to transfer the current signal 

between iSignal, ipf, and iPeak, respectively. To make it easier to transfer settings from one of these 

functions to other related functions, all use the W key to print out the syntax of other related functions, 

with the pan and zoom settings and other numerical input arguments specified, ready for you to Copy, 

Paste and edit into your own scripts or back into the command window. For example, you can convert a 

curve fitting operation performed in ipf.m into the command-line peakfit.m function; or you can con-

vert a peak finding operation performed in ipeak.m into a command-line findpeaksG.m or 

findpeaksb.m function. The W key is useful with signals that require different signal processing in dif-

ferent regions of their x-axis ranges, by allowing you to create a series of command-line functions for 

each local region that, when executed in sequence, quickly processes each segment of the signal appro-

priately and can be repeated easily for any number of other examples of that same type of signal. To 

adjust continuously variable parameters, these programs use pairs of adjacent keys to increase or de-

crease each parameter in steps, often with the shift-key controlling the step size. 

Hyperlinear Quantitative Absorption Spectrophotometry 

tfit.m, a self-contained command-line Matlab/Octave function that demonstrates a computational 

method for quantitative analysis by multiwavelength absorption spectroscopy which uses convolution 

and iterative curve fitting to correct for spectroscopic non-linearity. The syntax is tfit(TrueAbsorbance). 

TFitStats.m is a script that demonstrates the reproducibility of the method. TFitCalCurve.m compares 

the calibration curves for single-wavelength, simple regression, weighted regression, and TFit 

methods. TFit3.m is a demo function for a mixture of 3 absorbing components; the syntax is 

TFit3(TrueAbsorbanceVector), e.g., TFit3([3 .2 5]). Download all these as a ZIP file. Click for 

animated example. TFitDemo.m is a keypress-operated interactive explorer for the Tfit method, 

applied to the measurement of a single component with a Lorentzian (or Gaussian) absorption peak, 

with controls that allow you to adjust the true absorbance (“Peak A”), spectral width of the absorption 

peak (“AbsWidth”), spectral width of the instrument function (“InstWidth”), stray light, and the noise 

level (“Noise”) continuously while observing the effects graphically and numerically. See page 271. 

https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGaussFigure2.png
https://terpconnect.umd.edu/~toh/spectrum/GaussVsExpGaussFigure3.png
https://terpconnect.umd.edu/~toh/spectrum/peakfit.m
https://terpconnect.umd.edu/~toh/spectrum/gaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/expgaussian2.m
https://terpconnect.umd.edu/~toh/spectrum/findpeaksG.m
https://terpconnect.umd.edu/~toh/spectrum/halfwidth.m
https://terpconnect.umd.edu/~toh/spectrum/DemoExpgaussian.m
https://terpconnect.umd.edu/~toh/spectrum/AsymmetricalOverlappingPeaks.m
https://terpconnect.umd.edu/~toh/spectrum/functions.html#Top
https://terpconnect.umd.edu/~toh/spectrum/tfit.m
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/TFit.html
https://terpconnect.umd.edu/~toh/spectrum/TFitStats.m
https://terpconnect.umd.edu/~toh/spectrum/TFitCalCurve.m
https://terpconnect.umd.edu/~toh/spectrum/TFit3.m
https://terpconnect.umd.edu/~toh/spectrum/TFit.zip
https://terpconnect.umd.edu/~toh/spectrum/TFitAnimated.gif
https://terpconnect.umd.edu/~toh/spectrum/TFitAnimated.gif
https://terpconnect.umd.edu/~toh/spectrum/TFitDemo.m


Page | 489  

Click for animated example. These functions and scripts also work in the latest version of Octave. 

MAT files (for Matlab and Octave) and Text files (.txt)  

DataMatrix2 is a computer-generated test signal consisting of 16 symmetrical Gaussian peaks with 

random white noise added. Can be used to test the peakfit.m function. See page 224. 
 

DataMatrix3 is a computer-generated test signal consisting of 16 Gaussian peaks with random white 

noise that have been exponentially broadened with a time constant of 33 x-axis units. See page 224. 
 

udx.txt: a text file containing the 2 x 1091 matrix that consists of two Gaussian peaks with different 

sampling intervals. It is used as an example in Smoothing and in Curve Fitting.  
 

TimeTrial.txt, a text file comparing the speed of several different signal processing tasks, using the fol-

lowing different software configurations: 

(a) Matlab 2020b on Windows 10, 64-bit, 3.6 GHz, core i7, 16 GBytes RAM 

(b) Matlab 2009a, on older Windows machine 

(c) Matlab 2017b Home, on older Windows machine 

(d) Matlab Online, R2018b, in Google Chrome 

(e) Matlab Mobile (on recent iPad) 

(f) Octave 6.2.0 on Windows 10, 64-bit, 3.6 GHz, core i7, 16 GBytes RAM 

The Matlab/Octave code that generated this is TimeTrial.m, which runs all of the tasks one after the 

other and prints out the elapsed times for your machine plus the times previously recorded for each 

tasks on each of the five software systems. TimeTrial.xlsx summarizes the comparison of Matlab to 

Octave. 
 

Readability.txt. Report on the English language readability analysis 

of IntroToSignalProcessing.pdf performed by http://www.online-

utility.org/english/readability_test_and_improve.jsp 

Spreadsheets (for Excel or OpenOffice Calc)  

Notes. These spreadsheets are self-contained and so do not rely on external files. You may transfer 

your data to them by using the Data tab and/or Copy and Paste. 
 

If you see a yellow bar at the top of the spreadsheet window, click the "Enable Editing" button. 
 

If your browser changes the file extension of these spreadsheets to .zip when they are downloaded, re-

name the files to their original file extensions (.ods, .xls, or .xlsx) before running them. 
 

These spreadsheets have no protected cells, so there is nothing stopping you from changing the formu-

las accidentally. This means you can modify any aspect of these spreadsheets for your own purposes, 

which you are invited to do. If you mess up, just use the Undo function (Ctrl-Z) or you can download 

another copy.  
 

Random numbers and noise (page 23). The spreadsheets RandomNumbers.xls (for Excel) and Ran-

domNumbers.ods (for OpenOffice) demonstrate how to create a column of normally-distributed ran-

dom numbers (like white noise) in a spreadsheet that has only a uniformly-distributed random number 

function. Also shows how to compute the interquartile range and the peak-to-peak value and how they 

compare to the standard deviation. See page 23. The same technique is used in the spreadsheet Simu-

latedSignal6Gaussian.xlsx, which computes and plots a simulated signal consisting of up to 6 overlap-

ping Gaussian bands plus random white noise.  
 

Smoothing (page 41). The spreadsheets smoothing.ods (for Open office Calc) and smoothing.xls (for 

https://terpconnect.umd.edu/~toh/spectrum/TFitAnimated.gif
https://terpconnect.umd.edu/~toh/spectrum/SignalArithmetic.html#Octave
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix2.mat
https://terpconnect.umd.edu/~toh/spectrum/DataMatrix3.mat
https://terpconnect.umd.edu/~toh/spectrum/udx.txt
https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html#Examples
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Noise
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.txt
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.m
https://terpconnect.umd.edu/~toh/spectrum/TimeTrial.xlsx
https://terpconnect.umd.edu/~toh/spectrum/Readability.txt
https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing.pdf
http://www.online-utility.org/english/readability_test_and_improve.jsp
http://www.online-utility.org/english/readability_test_and_improve.jsp
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.xls
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.ods
https://terpconnect.umd.edu/~toh/spectrum/RandomNumbers.ods
https://terpconnect.umd.edu/~toh/spectrum/SimulatedSignal6Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SimulatedSignal6Gaussian.xlsx
https://terpconnect.umd.edu/~toh/spectrum/smoothing.ods
https://terpconnect.umd.edu/~toh/spectrum/smoothing.xls


Page | 490  

Microsoft Excel) demonstrate a 7-point rectangular (sliding average) in column C and a 7-point trian-

gular smooth in column E, applied to the data in column A. You can type in (or Copy and Paste) any 

data you like into column A. You can extend the spreadsheet to longer columns of data by dragging the 

last row of columns A, C, and E down as needed. You can change the smooth width by changing the 

equations in columns C or E. The spreadsheet MultipleSmoothing.xls for Excel or Calc demonstrates a 

more flexible method that allows you to define various types of smooths by typing a few integer num-

bers. The spreadsheets UnitGainSmooths.xls and UnitGainSmooths.ods contain a collection of unit-

gain convolution coefficients for rectangular, triangular, and P-spline smooths of width 3 to 29 in both 

vertical (column) and horizontal (row) format. You can Copy and Paste these into your own spread-

sheets. Convolution.txt lists some simple whole-number coefficient sets for performing single and mul-

ti-pass smoothing. VariableSmooth.xlsx demonstrates an even more powerful and flexible technique, 

especially for very large and variable smooth widths, which uses the spreadsheet AVERAGE and IN-

DIRECT functions (page 348). It allows you to change the smooth width simply by changing the value 

of a single cell. See page 52 for details. SegmentedSmoothTemplate.xlsx is a segmented multiple-width 

data smoothing spreadsheet template, which can apply individually specified different smooth widths 

to different regions of the signal, especially useful if the widths of the peaks or the noise level varies 

substantially across the signal. In this version there are 20 segments. SegmentedSmoothExample.xlsx is 

an example with data (graphic). A related sheet GradientSmoothTemplate.xlsx (graphic) performs a 

linearly increasing (or decreasing) smooth width across the entire signal, given only the start and end 

values, automatically generating as many segments are necessary.  

 

Differentiation (page 61). DerivativeSmoothingOO.ods (for OpenOffice Calc) and DerivativeSmooth-

ing.xls (for Excel) demonstrate the application of differentiation for measuring the amplitude of a peak 

that is buried in a broad curved background. Differentiation and smoothing are both performed togeth-

er. Higher order derivatives are computed by taking the derivatives of previously computed deriva-

tives. DerivativeSmoothingWithNoise.xlsx is a related spreadsheet that demonstrates the dramatic ef-

fect of smoothing on the signal-to-noise ratio of derivatives on a noisy signal. It uses the same signal 

as DerivativeSmoothing.xls, but adds simulated white noise to the Y data. You can control the amount 

of added noise. SecondDerivativeXY2.xlsx, demonstrates locating and measuring changes in the sec-

ond derivative (a measure of curvature or acceleration) of a time-changing signal, showing the apparent 

increase in noise caused by differentiation and the extent to which the noise can be reduced by smooth-

ing (in this case by two passes of a 5-point triangular smooth). The smoothed second derivative shows 

a large peak at the point where the acceleration changes and plateaus on either side showing the magni-

tude of the acceleration before and after the change (2 and 4, respectively). Convolution.txt lists simple 

whole-number coefficient sets for performing differentiation and smoothing. CombinedDeriva-

tivesAndSmooths.txt lists the sets of unit-gain coefficients that perform 1st through 4th derivatives with 

various degrees of smoothing. See page 61. 
 

Peak sharpening (page 76). The derivative sharpening method with two derivative terms (2nd and 4th) 

is available in the form of an empty template (PeakSharpeningDeriv.xlsx and PeakSharpening-

Deriv.ods) or with example data entered (PeakSharpeningDerivWithData.xlsx and PeakSharpening-

DerivWithData.ods). You can either type in the values of the derivative weighting factors K1 and K2 

directly into cells J3 and J4, or you can enter the estimated peak width (FWHM in number of data 

points) in cell H4 and the spreadsheet will calculate K1 and K2. There is a demo version with adjusta-

ble simulated peaks (PeakSharpeningDemo.xlsx and PeakSharpeningDemo.ods), as well as a version 

with clickable buttons for convenient interactive adjustment of the K1 and K2 factors by 1% or by 10% 

for each click. There is also a 20-segment version where the sharpening constants can be specified for 

each of 20 signal segments (SegmentedPeakSharpeningDeriv.xlsx). For applications where the peak 

widths gradually increase (or decrease) with time, there is also a gradient sharpening template 

https://terpconnect.umd.edu/~toh/spectrum/MultipleSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.xls
https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.ods
https://terpconnect.umd.edu/~toh/spectrum/Convolution.txt
https://terpconnect.umd.edu/~toh/spectrum/VariableSmooth.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SegmentedSmoothExample.png
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientSmoothExample.png
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothingOO.ods
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothingWithNoise.xlsx
https://terpconnect.umd.edu/~toh/spectrum/DerivativeSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/SecondDerivativeXY2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/Convolution.txt
https://terpconnect.umd.edu/~toh/spectrum/CombinedDerivativesAndSmooths.txt
https://terpconnect.umd.edu/~toh/spectrum/CombinedDerivativesAndSmooths.txt
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDeriv.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDeriv.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDeriv.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDerivWithData.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDerivWithData.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDerivWithData.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/SegmentedPeakSharpeningDeriv.xlsx


Page | 491  

(GradientPeakSharpeningDeriv.xlsx) and an example with some data already entered 

(GradientPeakSharpeningDerivExample.xlsx); you need only set the starting and ending peak widths 

and the spreadsheet will apply the required sharpening factors K1 and K2.  PeakSymmetricaliza-

tionDemo.xlsm (graphic) demonstrates the symmetrization of exponentially modified Gaussians 

(EMG) by the weighted addition of the first derivative (and also allows further second derivative 

sharpening of the resulting symmetrized peak). There is also an empty template PeakSymmetricaliza-

tionTemplate.xlsm (graphic) and an example application with sample data already typed in: PeakSym-

metricalizationExample.xlsm. PeakDoubleSymmetrizationExample.xlsm performs the symmetrization 

of a doubly exponential broadened peak. It has buttons to interactively adjust the two stages of first-

derivative weighting. Two variations (1, 2) include example data for two overlapping peaks, for which 

the areas after symmetrization are measured by perpendicular drop. ComparisonOfPerpendicularDro-

pAreaMeasurements.xlsx (graphic) demonstrates the effect of the power sharpening method on per-

pendicular drop area measurements of Gaussian and exponentially broadened Gaussian peaks, includ-

ing the effect of resolution, relative peak height, random noise, smoothing, and non-zero baseline has 

on the normal and power sharpening method. PowerSharpeningTemplate.xlsx is an empty template that 

preforms this method and PowerSharpeningExample.xlsx is the same with example data. 
 

Convolution (page 106). Spreadsheets can be used to perform "shift-and-multiply" convolution for 

small data sets (for example, MultipleConvolution.xls or MultipleConvolution.xlsx for Excel 

and MultipleConvolutionOO.ods for Calc), which is essentially the same technique as the above 

spreadsheets for smoothing and differentiation. Use this spreadsheet to investigate convolution, 

smoothing, differentiation, and the effect of those operations on noise and signal-to-noise ratio. (For 

larger data sets the performance is slower than Fourier convolution, which is much easier done in 

Matlab or Octave than in spreadsheets). Convolution.txt lists simple whole-number coefficient sets for 

performing differentiation and smoothing. 
 

Peak Area Measurement (page 129). EffectOfDx.xlsx demonstrates that the simple equation 

sum(y)*dx accurately measures the peak area of an isolated Gaussian peak if there are at least 4 or 5 

points visibly above the baseline. EffectOfNoiseAndBaseline.xlsx demonstrates the effect of random 

noise and non-zero baseline, showing that the area is more sensitive to non-zero baseline that the same 

amount of random noise. PeakSharpeningAreaMeasurementDemo.xlsm (screen image) demonstrates 

the effect of derivative peak sharpening on perpendicular drop area measurements of two overlapping 

Gaussian peaks. Sharpening the peaks reduces the degree of overlap and can greatly reduce the peak 

area measurement error errors made by the perpendicular drop method (page 139). The spreadsheets 

listed under “Peak Sharpening” on the previous page include peak area measurement. 
 

Curve Fitting (page 157).  LeastSquares.xls and LeastSquares.odt perform polynomial least-squares 

fits to a straight-line model and QuadraticLeastSquares.xls and QuadraticLeastSquares.ods does the 

same for a quadratic (parabolic) model. There are specific versions of these spreadsheets that also cal-

culate the concentrations of the unknowns (download complete set as CalibrationSpreadsheets.zip).  
 

Multi-component spectroscopy (page 184). RegressionTemplate.xls and RegressionTemplate.ods 

(graphic with example data) perform multicomponent analysis using the matrix method for a fixed 5-

component, 100 wavelength data set. RegressionTemplate2.xls uses a more advanced spreadsheet tech-

nique (page 348) that allows the template to automatically adjust to different numbers of components 

and wavelengths. Two examples show the same template with data entered for a mixture of 5 compo-

nents measured at 100 wavelengths (RegressionTemplate2Example.xls) and for 2 components at 59 

wavelengths (RegressionTemplate3Example.xls).  

Peak fitting (page 170). A set of spreadsheets using the Solver function to perform iterative non-linear 

peak fitting for multiple overlapping peak models is described here. There are versions for Gaussian 

https://terpconnect.umd.edu/~toh/spectrum/GradientPeakSharpeningDeriv.xlsx
https://terpconnect.umd.edu/~toh/spectrum/GradientPeakSharpeningDerivExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemoEMG3.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#Asymmetrical
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationTemplate.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationExample.png
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationExample.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSymmetricalizationExample.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample1.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakDoubleSymmetrizationExample2.xlsm
https://terpconnect.umd.edu/~toh/spectrum/ComparisonOfPerpendicularDropAreaMeasurements.xlsx
https://terpconnect.umd.edu/~toh/spectrum/ComparisonOfPerpendicularDropAreaMeasurements.xlsx
https://terpconnect.umd.edu/~toh/spectrum/ComparisonOfPerpendicularDropAreaMeasurements.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html#power
https://terpconnect.umd.edu/~toh/spectrum/PowerSharpeningTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PowerSharpeningExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/MultipleSmoothing.xls
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution.xlsx
http://terpconnect.umd.edu/~toh/spectrum/MultipleConvolution.xlsx
https://terpconnect.umd.edu/~toh/spectrum/MultipleConvolutionOO.ods
https://terpconnect.umd.edu/~toh/spectrum/Convolution.txt
https://terpconnect.umd.edu/~toh/spectrum/EffectOfDx.xlsx
https://terpconnect.umd.edu/~toh/spectrum/EffectOfNoiseAndBaseline.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo.xlsm
https://terpconnect.umd.edu/~toh/spectrum/PeakSharpeningAreaMeasurementDemo.png
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/LeastSquares.odt
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.xls
https://terpconnect.umd.edu/~toh/spectrum/QuadraticLeastSquares.ods
http://terpconnect.umd.edu/~toh/models/CalibrationSpreadsheets.zip
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.ods
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate.png
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate2.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate2Example.xls
https://terpconnect.umd.edu/~toh/spectrum/RegressionTemplate3Example.xls
https://www.solver.com/solver-tutorial-using-solver?gclid=CjwKCAjwur7YBRA_EiwASXqIHMFct5zaxGyiACQoUf1tmQ1B0lidPPfxfwgIDsVombZgc-BgNtvH1hoCO_oQAvD_BwE
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Spreadsheets
https://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html#Spreadsheets


Page | 492  

and for Lorentzian peak shapes, with and without baseline, for 2-6 peak models and 100 wavelengths 

(with instructions for modification). All of these have file names beginning with "CurveFitter...". 
 

Peak detection and measurement (page 229). The spreadsheet PeakAndValleyDetectionTem-

plate.xlsx (or PeakAndValleyDetectionExample.xlsx with sample data), is a simple peak and valley 

detector that defines a peak as any point with lower points on both sides and a valley as any point with 

higher points on both sides (see page 474). The spreadsheet PeakDetection.xls implements as more se-

lective derivative zero-crossing peak detection method described on page 232. In both cases, the input 

x,y data are contained in Sheet1, columns A and B, starting in row 9. (You can paste your own data 

there). See PeakDetectionExample.xlsx/.xls) for an example with data already pasted in.  PeakDetec-

tionDemo2.xls/xlsx is a demonstration with a user-controlled computer-generated series of peaks. 

PeakDetectionSineExample.xls is a demo that generates a sinusoid with an adjustable number of peaks. 
 

An extension of that method is made in PeakDetectionAndMeasurement.xlsx (screen image), which 

makes the assumption that the peaks are Gaussian and measures their height, position, and width on the 

unsmoothed data using a least-squares technique, just like "findpeaksG.m". The advantage of this tech-

nique is that it eliminates the peak distortion that might result from smoothing the data to prevent false 

peaks arising from random noise. For the first 10 peaks found, the x,y original unsmoothed data are 

copied to Sheets 2 through 11, respectively, where that segment of data is subjected to a Gaussian least-

squares fit, using the same technique as GaussianLeastSquares.xls. The best-fit Gaussian parameter re-

sults are copied back to Sheet1, in the table in columns AH-AK. (In its present form. The spreadsheet 

is limited to measuring 10 peaks, although it can detect any number of peaks. Also, it is limited in 

Smooth Width and Fit Width by the 17-point convolution coefficients). The spreadsheet is available in 

OpenOffice (.ods) and in Excel (.xls) and (.xlsx) formats. They are functionally equivalent and differ 

only in minor cosmetic aspects. An example spreadsheet, with data, is available. A demo version, with 

a calculated noisy waveform that you can modify, is also available. See page 268. If the peaks in the 

data are too much overlapped, they may not make sufficiently distinct maxima to be detected reliably. 

If the noise level is low, the peaks can be artificially sharped by the derivative sharpening technique 

described previously. This is implemented by PeakDetectionAndMeasurementPS.xlsx and its demo 

version PeakDetectionAndMeasurementDemoPS.xlsx.  
 

Spreadsheets for the TFit Method (page 271): Hyperlinear Quantitative Absorption Spectrophotome-

try. TransmissionFittingTemplate.xls (screen image) is an empty template for a single isolated 

peak;TransmissionFittingTemplateExample.xls (screen image) is the same template with example data 

entered. TransmissionFittingDemoGaussian.xls (screen image) is a demonstration with a simulated 

Gaussian absorption peak with variable peak position, width, and height, plus added stray light, photon 

noise, and detector noise, as viewed by a spectrometer with a triangular slit function. You can vary all 

the parameters and compare the best-fit absorbance to the true peak height and to the conventional 

log(1/T) absorbance. 
 

TransmissionFittingCalibrationCurve.xls (screen image) includes an Excel macro (page 311) that au-

tomatically constructs a calibration curve comparing the TFit and conventional log(1/T) methods, for a 

series of 9 standard concentrations that you can specify.  

 

Special spreadsheet techniques (page 348): “SpecialFunctions.xlsx” (Graphic) demonstrates the ap-

plications of the MATCH, INDIRECT, COUNT, IF, and AND functions when dealing with data arrays 

of variable size. “IndirectLINEST.xls” (Graphic link) demonstrates the particular benefit of using the 

INDIRECT function in conjunction with array functions such as INV and LINEST.  

https://terpconnect.umd.edu/~toh/spectrum/CurveFitterSpreadsheets.png
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionTemplate.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakAndValleyDetectionExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetection.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionDemo2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionSineExample.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingAndMeasurement.png
https://terpconnect.umd.edu/~toh/spectrum/findpeaks.m
https://terpconnect.umd.edu/~toh/spectrum/CurveFitting.html#GaussFit
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xls
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurement.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurementExample.ods
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionExample2.xlsx
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/ResolutionEnhancement.html
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurementPS.xlsx
https://terpconnect.umd.edu/~toh/spectrum/PeakDetectionAndMeasurementDemoPS.xlsx
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplate.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplateExample.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplateExample.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingDemoGaussian.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetDemoGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.xls
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.png
https://terpconnect.umd.edu/~toh/spectrum/macro2.txt
https://terpconnect.umd.edu/~toh/spectrum/SpecialFunctions.xlsx
https://terpconnect.umd.edu/~toh/spectrum/SpecialFunctions.png
https://terpconnect.umd.edu/~toh/spectrum/IndirectLINEST.xls
https://terpconnect.umd.edu/~toh/spectrum/IndirectLINEST.png


Page | 493  

Afterword 

How this book came to be.  
During my career at the University of Maryland in the Department of Chemistry and Biochemistry, I 

did research in analytical chemistry and developed and taught several courses, including an upper-

division undergraduate lab course in “Electronics for Chemists”, which by the 1980s included a labora-

tory computer component and an experiment in digital data acquisition and processing dealing with the 

use of mathematical and numerical techniques used in the processing of experimental data from scien-

tific instruments. Analytical chemists like myself are basically tool builders. In the early days of our 

profession, the tools were mainly chemical (e.g., color reagents), but in later years included instruments 

(e.g., spectroscopy and chromatography), and by the late 20th century included software tools. When 

the Web became available to the academic community in the early 90s, like many instructors, I put up a 

syllabus, experiments, and other reading material for this and for my other courses online for students 

to access.  
 

When I retired from the University in 1999, after 30 years of service, I noticed that I was getting  

pageviews on that course site that came from outside the University and from outside the country, 

especially directed to the lab experiment in digital data processing that I had developed in the 80's, 

when computers were relatively new in chemistry laboratories. I started getting an increasing number 

of emails with questions, suggestions, and comments from people in widely varied scientific fields. 

Ultimately, I decided to make this a long-term retirement project and to broaden this beyond chemistry 

and my specific course. My aim is to help science workers learn and apply computer-based 

mathematical data processing techniques, by producing free tutorial materials that explains things 

intuitively rather than in mathematical formality, with coding examples, practical software, and 

guidance/consulting on specific projects. To make this work useful for the widest possible audience, 

including those with limited funding, I have made several choices: 
 

a. Everything is free: the book (in electronic form), the software, and the help and consulting. 

Only the paperback version of the book, available from Amazon, must be purchased. 

b. The book and documentation are available in multiple formats: HTML, PDF, and DOCX. 

c. The writing is at the 11th grade level, in a plain style, devoid of unnecessary jargon, idioms, 

figures of speech, metaphors, cultural references, sarcasm, irony, and humor, all of which might 

be difficult for those with limited English skills or for machine translators. 

d. Formal mathematics is minimized. I rely more on logic, practical examples, graphics, analogies, 

and animations to explain concepts. 

e. Multiple hardware platforms can be used: PCs, Macs, Unix, and portable devices. 

f. Multiple software platforms are used: Matlab, Octave, Python, Excel and Open office 

spreadsheets. Some are free. 

Who needs this software?  
Isn't software already included in every modern scientific instrument hardware purchase? This is true, 

especially for those who are using conventional instruments in standard ways. But many scientists are 

https://terpconnect.umd.edu/~toh/OHaverCV.html#books
https://terpconnect.umd.edu/~toh/Chem498C/
https://www.amazon.com/dp/B09PHK22ZG?ref_=pe_3052080_397514860


Page | 494  

working in new research areas for which there are no commercial instruments, or they are using modi-

fications of existing systems for which there is no software, or they are building completely new types 

of instruments. In some cases, the software provided with commercial instruments is inflexible, inade-

quately documented, or hard to use. Not every researcher or science worker likes programming, or has 

time for it, or is good at it. Hired programmers typically do not understand the science and in any case 

sooner or later move on and no longer maintain their code. Well-documented code is more important 

than ever. I enjoy writing and coding, so this seemed to be a niche I could fit into. 

Organization 
My project has five parts: 

• A book, entitled "A Pragmatic Introduction to Signal Processing", available in both paper, Kin-

dle, and in DOCX and PDF printable online formats; 

• A Web site (.edu domain), with essentially the same material as the book. No sign-in or registra-

tion is required. 

• Downloadable free software in several different forms, listed on the web site and page 461. 

• Help and consulting via email (optionally with data attachments). 

• A Facebook group and the Matlab File Exchange for announcements and public discussion. 
 

Although the complete book is available freely in DOCX and PDF format, several readers have found 

it too long to print themselves and have requested a pre-printed version, which is now sold through 

Amazon (ISBN 9798794182446 ). The on-line materials, software, help, and consulting are all free. 

Open-source software alternatives are available, namely Octave, Python, and OpenOffice/LibreOffice.  

Methodology 
My policy is that contact with users ("clients") is initiated only from the clients and is strictly in written 

form, in English, mostly by email or Facebook group message - not phone or Skype. Requests for direct 

real-time voice or video communication are politely deflected. This is done to allow extended conver-

sations between time zones, to preserve communications in written form, and to avoid language prob-

lems and my own age-related hearing difficulties (readers have come from at least 162 different coun-

tries). Written communications via email also allow the use of machine translation apps such as Google 

Translate. Moreover, clients can send examples of their data via email attachment or via Google drive. 
 

Information about the affiliation of the client and the nature of the project is not solicited and is strictly 

at the discretion of the client. Client information and data are kept confidential. In many cases, I know 

nothing about the origin of their data and must treat it as abstract numbers. I usually do not know the 

age, gender, race, country of origin, level of education, experience, or employment of clients unless 

they tell me. I must look for clues in their writing to gauge their level of knowledge and experience and 

to avoid insulting them on the one hand or confusing them on the other. Everyone is welcome. 
 

I have attempted to minimize the use of fancy formatting and special effects on my web site, to make it 

compatible with older operating systems and browsers. No account or registration is needed. I allow no 

advertising on my web pages. I minimize the use of video, but I do use simple GIF animations where it 

would be useful, as these can be viewed right on the web page, or from within the “.docx” version in 

https://www.amazon.com/Pragmatic-Introduction-Signal-Processing-applications/dp/153335491X/ref=sr_1_1?s=books&ie=UTF8&qid=1467637283&sr=1-1&keywords=A+Pragmatic+Introduction+to+Signal+Processing
https://terpconnect.umd.edu/~toh/spectrum/TOC.html
https://terpconnect.umd.edu/~toh/spectrum/functions.html
https://www.facebook.com/groups/237474013116361/
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576
https://www.amazon.com/dp/B09PHK22ZG?ref_=pe_3052080_397514860
https://www.amazon.com/dp/B09PHK22ZG?ref_=pe_3052080_397514860


Page | 495  

Microsoft Word 365, without downloading any addition plug-ins or software. I test my formatting to 

make sure it is viewable on mobile devices (tablets, smartphones).  

Influence of the Internet 
There are many different countries, states, universities, departments, specialties, and journals, but only 

one global Internet. Most, but not all, of it is accessible to anyone with an internet connection and a 

computer, tablet, or smartphone. Google (or any search engine) looks at (almost) the entire internet, 

irrespective of the academic specialization, leading to the possibility that a solution arising in one cor-

ner of scholarship will be discovered by a need in another corner. Why, for example, would a neurosci-

entist, or a cancer researcher, or an economist, or a linguist, or a music scholar for that matter, know 

anything about my work? They would surely not, if I published only in the scientific journals of my 

specialty; they understandably do not read those journals. But in fact, all those types of researchers, and 

hundreds more from other diverse fields, have found my work by "stumbling across it" in a search en-

gine query, rather than by reading scholarly publications, and many of them have found it useful 

enough to cite in their own publications. In my own academic career, I published research only in ana-

lytical chemistry journals, which are read mostly by other analytical chemists. In contrast, my Web 

hits, emails, and citations have come from a much wider range of scientists, engineers, researchers, in-

structors, and students working in academia, industry, environmental fields, medical, engineering, earth 

science, space, military, financial, agriculture, communications, and even language and musicology. 

Writing 
I intended my writing to be instructional, not especially scholarly, or rigorous. It is unashamedly prag-

matic, meaning “Relating to matters of fact or practical affairs, often to the exclusion of intellectual or 

artistic matters; practical as opposed to idealistic.” For many people, too much abstract mathematics 

can be a barrier to understanding. I make only basic assumptions about prior knowledge beyond the 

usual college science-major level: minimal math background and an 11th grade (USA high school) 

reading level, according to several automated readability indexes. I have tried to minimize forms of 

speech that might confuse translators (machine and human), and I even try to minimize the use of the 

passive voice. I often explain the same concept more than once in different contexts because I believe 

that can help to make some ideas “stick” better. An important part of my writing process is feedback 

from users, by email, social media, search engine terms, questions, corrections, etc. Moreover, I also 

regularly re-read older sections with “fresh eyes”, correcting errors, and making improvements in 

phrasing. Questions from readers, and even search terms in Google searches, can also suggest areas 

where improvements are possible. 
 

To make access easier, I make my writing available in multiple formats: Web (Simple HTML, with 

graphics and silent self-running GIF animations, and a site-specific search); DOCX (editable Microsoft 

Word), the latest version of which displays the GIF animations running right on the page; PDF (Porta-

ble Document Format) for printing, and paperback and Kindle versions, through Amazon's Kindle Di-

rect Publishing program. All except for the web version has a detailed table of contents. All except the 

paperback and Kindle versions are free. 
 

A paper book is usually read starting from the beginning: the table of contents and the introduction. But 

https://terpconnect.umd.edu/~toh/spectrum/IntroToSignalProcessing2022.docx
https://terpconnect.umd.edu/~toh/spectrum/Readability.txt
https://www.amazon.com/dp/B09PHK22ZG?ref_=pe_3052080_397514860
https://kdp.amazon.com/
https://kdp.amazon.com/


Page | 496  

web site access, especially via search engines (Google, Bing, etc.), is not related to the order of pages. 

This is evident in the data for web page accesses: the table of contents and introduction are not the most 

accessed; in fact, on most days there are no visits at all to the table of contents or to the introduction 

pages. This can cause a problem with sequencing the topics, which is partially reduced by including, in 

the Web and PDF versions of the book, “hot links” to the table of contents and to related previous and 

following material. (The print version has an average of three internal page references per page, plus a 

table of contents with over 200 entries). Also, to facilitate communication, I have added a "mail-to" 

link to each page in the Web version that includes my email address and the title of the page as the sub-

ject line (so I can tell from the email's subject line what page they were on when they clicked the mail-

to link).  

Software platform selection criteria 
As for software platforms, I chose two types: spreadsheets (page 15) and scripted languages Matlab 

(page 16), Octave (page 21), and Python (page 434). All have the advantage of being multi-platform; 

they run on PC, Mac, Unix, even on mobile devices (tablets/iPad) and on miniature deployable devices 

(e.g., Python on Raspberry Pi, page 339). These are popular development environments that have large 

user communities with multiple contributors and are widely used in science applications. All have a 

degree of backward compatibility that allows for interoperability with older legacy versions. Octave 

and Python are free; companies, organizations, and college campuses often have site licenses for Excel 

(or for Microsoft Office, which includes Excel) and for Matlab. These platforms also have the ad-

vantage that they avoid secret algorithms, that is, their algorithms can be viewed in detail by any user. 

Their code is distributed in "open source" and "open document" formats that are either in plain text 

format (such as Matlab ".m" files or Python “.py” files) or in a format that could be opened and in-

spected using even free software (e.g., Microsoft Excel .xls and .xlsx spreadsheets can be opened with 

OpenOffice or LibreOffice). For those who cannot afford expensive software, Python, OpenOffice Calc 

(page 15) and Octave (page 21) can be downloaded without cost. 
 

Most of the Matlab/Octave programs in my signal processing toolkit are “functions”, which are essen-

tially modular bits of code that can be assembled together by the user in different ways, a bit like high-

tech Lego bricks, rather than self-contained stand-alone programs with elaborate graphical user inter-

faces, like commercial programs. User-developed functions like mine can be downloaded and used on 

their own, but they can also be used just like the in-built functions that come with the language, as 

components to construct something bigger. You can write your own functions or, if you wish, you can 

download and use functions written by others. When using functions, you can simply ignore the inter-

nal code and use the well-defined standard inputs and outputs. This is analogous to assembling custom-

ized entertainment or home security systems using separate commercial components, which are con-

nected together with USB and HDMI ports and cables, or Bluetooth and Wi-Fi connections between 

smartphone, tablets, computers, security cameras, doorbells, thermostats, and printers/ earphones/ 

speakers, etc., all without worrying about the internal design of each component. I use Matlab/Octave 

because of its high performance, very wide popularity, and its similarity to other languages that have 

often been used by scientists, such as Fortran, Basic, and Pascal. I have also given many examples in 

Python, another function-based language that is very capable and powerful. Even so, there are other 

languages that have their champions and might have been valid alternatives, such as R, Mathematica, 

https://www.mathworks.com/matlabcentral/fileexchange/


Page | 497  

Julia, and Scilab. In the interests of time and sanity, I have limited myself, for the time being, to 

Matlab/Octave and Python. 
 

I have tried to strike a balance between cost, speed, ease of use, and learning curve, and making my 

software usable even to those who do not read all the documentation, by providing lots of examples and 

demos, including animated GIFs that will play in place on any web browser or in Microsoft Word 365. 

Every script or function has built-in help that is internal to the software. You can display this built-in 

help simply by typing “help __” in Matlab/Octave, or “help(__)” in Python, where __ is the name of 

the script or function. These help files contain not only instructions but often have simple examples of 

use and in many cases include references to other similar functions. Matlab/Octave and Python (with 

the addition of the Spyder desktop) have code editors for inspecting and editing code, with automatic 

error detection. Even this is not necessary if the existing action and inputs and outputs provide all that 

you need. (The spreadsheet templates and their examples and demos also have built-in instructions, and 

most of the spreadsheet have pop-up “cell comments” on certain cells, marked by a red dot, which pop 

up when the mouse pointer is hovered over them, providing an explanation for the function of that 

cell).  

Outcomes 

By 2016 website had received over 2 million page views and over 100,000 downloads of my software 

programs (a few hundred per month), from either my web site or from the Matlab File Exchange. I 

have received thousands of emails with comments, suggestions, corrections, questions, offers to trans-

late, etc. Comments from readers have been overwhelmingly positive, even enthusiastic, as indicated 

by these verbatim excerpts from emails about the website and about my software. In fact, many of 

these comments are so enthusiastic that one wonders: why, for such a nerdy topic? After all, most peo-

ple do not take the time to write to the authors of web sites. One factor is that the number of users of 

the global Internet is so huge that even highly specialized topics can gather a substantial audience. As 

they say, "A wide net catches even the rarest fish". But I also believe that part of the reason for the en-

thusiastic response is that software documentation is often poorly written and is hard to understand, so 

more effort is needed in better explaining software and how it works and where it cannot be expected to 

work. I try to be responsive, answering each email and acting on their suggestions and corrections. The 

growth in social media is also a contributing factor; for a specific example of that, from the Matlab File 

Exchange, see https://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-

entry/.  

Impact 

Positive comments and lots of downloads are nice, but not everyone who downloads something tries it 

in their work, and not everyone who does try it finds it valuable enough to cite it in their publications. 

Most gratifyingly, as of December 2023, over 750 publications had cited my website and programs, 

based on Google Scholar searches, covering an extraordinarily wide range of topics in industry, envi-

ronment, medical, engineering, earth science, space, military, financial, agriculture, communications, 

and even occasionally language and musicology. (These citations are listed beginning on page 480 in 

the PDF version of the book and in https://terpconnect.umd.edu/~toh/spectrum/citations.pdf) 

https://terpconnect.umd.edu/~toh/spectrum/TOC.html
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576
https://terpconnect.umd.edu/~toh/spectrum/index.html#comments
https://terpconnect.umd.edu/~toh/spectrum/SignalProcessingTools.html#comments
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576
https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A24576
https://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/https:/blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/
https://blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/https:/blogs.mathworks.com/pick/2016/09/09/most-activeinteractive-file-exchange-entry/
https://terpconnect.umd.edu/~toh/spectrum/citations.pdf


Page | 498  

 

The Future 
 

Where will all this go in the long run?  As for my own retirement project, I will eventually move on to 

other projects, or pass on, and my work will fade away, to join the terabytes of forgotten material on the 

Internet that, unless specifically deleted, will presumably hang around forever, like moldy books in 

abandoned library shelves. But the techniques that I have written about may become part of the educa-

tion of all science students, or they may be replaced by more sophisticated methods, or the processing 

of scientific data may be entrusted to artificial intelligences (AI). At the very least, some application 

programming will probably be replaced by, or aided by, AI, as described on page 443. 

References 
 

1. Douglas A. Skoog, Principles of Instrumental Analysis, 3rd Edition, Saunders, Philadelphia, 1984. Pages 73-76. 
 

2. Gary D. Christian and James E. O'Reilly, Instrumental Analysis, Second Edition, Allyn and Bacon, Boston, 

1986. Pages 846-851. 
  

3. Howard V. Malmstadt, Christie G. Enke, and Gary Horlick, Electronic Measurements for Scientists, W. A. 

Benjamin, Menlo Park, 1974. Pages 816-870. 
  

4. Stephen C. Gates and Jordan Becker, Laboratory Automation using the IBM PC, Prentice Hall, Englewood 

Cliffs, NJ, 1989.  
  

5. Muhammad A. Sharaf, Deborah L Illman, and Bruce R. Kowalski, Chemometrics, John Wiley and Sons, New 

York, 1986.  
  

6. Peter Wentzell and Christopher Brown, Signal Processing in Analytical Chemistry, in Encyclopedia of 

Analytical Chemistry, R.A. Meyers (Ed.), p. 9764–9800, John Wiley & Sons, Chichester, 2000 

(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.2407&rep=rep1&type=pdf)  
  

7. Constantinos E. Efstathiou, Educational Applets in Analytical Chemistry, Signal Processing, and 

Chemometrics. (http://www.chem.uoa.gr/Applets/Applet_Index2.htm)  
  

8. A. Felinger, Data Analysis and Signal Processing in Chromatography, Elsevier Science (19 May 1998).  
  

9. Matthias Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry, Wiley-VCH 

(March 19, 1999). Some parts viewable in Google Books. 
  

10. Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing. (Downloadable chapter 

by chapter in PDF format from http://www.dspguide.com/pdfbook.htm). This is a much more general treatment 

of the topic.  
  

11. Robert de Levie, How to use Excel in Analytical Chemistry and in General Scientific Data Analysis, 

Cambridge University Press; 1 edition (February 15, 2001), ISBN-10:0521644844. PDF excerpt . 
  

12. Scott Van Bramer, Statistics for Analytical Chemistry, http://science.widener.edu/svb/stats/stats.html. 
  

13. Taechul Lee, Numerical Analysis for Chemical Engineers. 
  

14. Educational Matlab GUIs, Georgia Institute of Technology. (http://spfirst.gatech.edu/matlab/) 
 

15. Jan Allebach, Charles Bouman, and Michael Zoltowski, Digital Signal Processing Demonstrations in Matlab, 

Purdue University (http://www.ecn.purdue.edu/VISE/ee438/demos/Demos.html) 
 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.2407&rep=rep1&type=pdf
http://www.chem.uoa.gr/Applets/Applet_Index2.htm
http://books.google.com/books?q=Matthias+Otto&btnG=Search+Books
http://www.dspguide.com/pdfbook.htm
http://www.amazon.com/Analytical-Chemistry-General-Scientific-Analysis/dp/0521644844
http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fassets.cambridge.org%2F97805216%2F42828%2Fsample%2F9780521642828ws.pdf&ei=4Ul_SKuZH5C48ASVzJzICw&usg=AFQjCNHe4iEMybvyCaXjp0EZy9S81S81HA&sig2=1qzXPv8WgZ9ktQH_v-XeFg
http://science.widener.edu/svb/stats/stats.html
https://www.cheric.org/files/education/cyberlecture/e200113/e200113-101.pdf
http://users.ece.gatech.edu/mcclella/matlabGUIs/
http://www.ecn.purdue.edu/VISE/ee438/demos/Demos.html


Page | 499  

16. Chao Yang , Zengyou He and Weichuan Yu, Comparison of public peak detection algorithms for MALDI 

mass spectrometry data analysis, http://www.biomedcentral.com/1471-2105/10/4 
  

17. Michalis Vlachos, A practical Time-Series Tutorial with MATLAB. 
  

18. Laurent Duval , Leonardo T. Duarte , Christian Jutten, An Overview of Signal Processing Issues in Chemical 

Sensing. 
   

19. Nicholas Laude, Christopher Atcherley, and Michael Heien, Rethinking Data Collection and Signal 

Processing. 1. Real-Time Oversampling Filter for Chemical Measurements, 

https://pubs.acs.org/doi/abs/10.1021/ac302169y 
  

20. P. E. S. Wormer, Matlab for Chemists, http://www.math.ru.nl/dictaten/Matlab/matlab_diktaat.pdf 
  

21. Martin van Exter, Noise and Signal Processing, http://molphys.leidenuniv.nl/~exter/SVR/noise.pdf 
  

22. Scott Sinex, Developer's Guide to Excelets, http://academic.pgcc.edu/~ssinex/excelets/ 
  

23. R. de Levie, Advanced Excel for scientific data analysis, Oxford University Press, New York (2004)  
  

24. S. K. Mitra, Digital Signal Processing, a computer-based approach, 4th ed, McGraw-Hill, New York, 2011. 
  

25. “Calibration in Continuum-Source AA by Curve Fitting the Transmission Profile”, T. C. O'Haver and J. 

Kindervater, J. of Analytical Atomic Spectroscopy 1, 89 (1986) 
  

26. “Estimation of Atomic Absorption Line Widths in Air-Acetylene Flames by Transmission Profile Modeling”, 

T. C. O'Haver and Jing-Chyi Chang, Spectrochim. Acta 44B, 795-809 (1989) 
  

27. “Effect of the Source/Absorber Width Ratio on the Signal-to-Noise Ratio of Dispersive Absorption 

Spectrometry”, T. C. O'Haver, Anal. Chem. 68, 164-169 (1991). 
  

28. “Derivative Luminescence Spectrometry”, G. L. Green and T. C. O'Haver, Anal. Chem. 46, 2191 (1974).  
  

29. “Derivative Spectroscopy”, T. C. O'Haver and G. L. Green, American Laboratory 7, 15 (1975).  
 

30. “Numerical Error Analysis of Derivative Spectroscopy for the Quantitative Analysis of Mixtures”, T. C. 

O'Haver and G. L. Green, Anal. Chem. 48, 312 (1976).  
 

31. “Derivative Spectroscopy: Theoretical Aspects”, T. C. O'Haver, Anal. Proc. 19, 22-28 (1982).  
 

32. “Derivative and Wavelength Modulation Spectrometry," T. C. O'Haver, Anal. Chem. 51, 91A (1979).  
 

33. “A Microprocessor-based Signal Processing Module for Analytical Instrumentation”, T. C. O'Haver and A. 

Smith, American Lab. 13, 43 (1981).  
 

34. “Introduction to Signal Processing in Analytical Chemistry”, T. C. O'Haver, J. Chem. Educ. 68 (1991)  
 

35. “Applications of Computers and Computer Software in Teaching Analytical Chemistry”, T. C. O'Haver, Anal. 

Chem. 68, 521A (1991).  
 

36. “The Object is Productivity”, T. C. O'Haver, Intelligent Instruments and Computers Mar-Apr, 1992, p 67-70.  
 

37. Analysis software for spectroscopy and mass spectrometry, Spectrum Square Associates 

( http://www.spectrumsquare.com/). 
 

38. Fityk, a program for data processing and nonlinear curve fitting. (http://fityk.nieto.pl/) 
 

39. Peak fitting in Origin 

(http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/PeakAnalysis/PeakFitting)   
 

40. IGOR Pro 6, software for signal processing and peak fitting (http://www.wavemetrics.com/index.html) 
 

41. PeakFIT, automated peak separation analysis, Systat Software Inc.. 
 

42. OpenChrom, open-source software for chromatography and mass spectrometry. 

http://www.biomedcentral.com/1471-2105/10/4
http://alumni.cs.ucr.edu/~mvlachos/PKDD05/PKDD05_Handout.pdf
https://pdfs.semanticscholar.org/presentation/a976/389cef473cd218a9ae3204419dfe60112efa.pdf
https://pdfs.semanticscholar.org/presentation/a976/389cef473cd218a9ae3204419dfe60112efa.pdf
https://pubs.acs.org/doi/abs/10.1021/ac302169y
http://www.math.ru.nl/dictaten/Matlab/matlab_diktaat.pdf
http://www.physics.leidenuniv.nl/sections/cm/ip/Onderwijs/SVR/bestanden/noise-final.pdf
http://academic.pgcc.edu/~ssinex/excelets/
http://www.spectrumsquare.com/
http://fityk.nieto.pl/
http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/PeakAnalysis/PeakFitting
http://www.wavemetrics.com/index.html
https://www.bioprocessonline.com/doc/software-for-automated-peak-separation-and-an-0001


Page | 500  

(http://www.openchrom.net/main/content/index.php) 
 

43. W. M. Briggs, Do not smooth times series, you hockey puck!, http://wmbriggs.com/blog/?p=195 
 

44. Nate Silver, The Signal and the Noise: Why So Many Predictions Fail-but Some Do not , Penguin Press, 2012. 

ISBN 159420411X . A much broader look at "signal" and "noise", aimed at a general audience, but still worth 

reading. 
 

45. David C. Stone, Dept. of Chemistry, U. of Toronto, Stats Tutorial - Instrumental Analysis and Calibration. 
 

46. Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook, Richard G. Lyons, John Wiley & 

Sons, 2012.  
 

47. Atomic spectra lines database. 

http://physics.nist.gov/PhysRefData/ASD/ and http://www.astm.org/Standards/C1301.htm 
 

48. Curve fitting to get overlapping peak areas (http://matlab.cheme.cmu.edu/2012/06/22/curve-fitting-to-get-

overlapping-peak-areas) 
 

49. Tony Owen, Fundamentals of Modern UV-Visible Spectroscopy, Agilent Corp, 2000.  
 

50. Nicole K. Keppy, Michael Allen, Understanding Spectral Bandwidth and Resolution in the Regulated 

Laboratory, Thermo Fisher Scientific Technical Note: 51721. 

http://www.analiticaweb.com.br/newsletter/02/AN51721_UV.pdf 
 

51. Martha K. Smith, "Common mistakes in using statistics", 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html 
 

52. Jan Verschelde, “Signal Processing in MATLAB”, 

http://homepages.math.uic.edu/~jan/mcs320s07/matlec7.pdf  
 

53. H. Mark and J. Workman Jr, “Derivatives in Spectroscopy”, Spectroscopy 18 (12). p.106. 
 

54. Jake Blanchard, Comparing Matlab to Excel/VBA, 

https://blanchard.ep.wisc.edu/PublicMatlab/Excel/Matlab_VBA.pdf 
 

55. Ivan Selesnick, "Least-squares with Examples in Signal Processing", 

http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/ 
 

56. Tom O'Haver, "Is there Productive Life after Retirement?", Faculty Voice, University of Maryland, April 24, 

2014. DOI: 10.13140/2.1.1401.6005; URL: https://terpconnect.umd.edu/~toh/spectrum/Retirement.pdf 
 

57. http://www.dsprelated.com/, the most popular independent internet resource for Digital Signal Processing 

(DSP) engineers around the world.  
 

58. John Denker, "Uncertainty as Applied to Measurements and Calculations", 

http://www.av8n.com/physics/uncertainty.htm. Excellent. 
 

59. T. C. O'Haver, Teaching and Learning Chemometrics with Matlab, Chemometrics and Intelligent Laboratory 

Systems 6, 95-103 (1989). 
 

60. Allen B. Downey, "Think DSP", Green Tree Press, 2014. (153-page PDF download). Python code instruction 

using sound as a basis. 
 

61. Purnendu K. Dasgupta, et. al, "Black Box Linearization for Greater Linear Dynamic Range: The Effect of 

Power Transforms on the Representation of Data", Anal. Chem. 2010, 82, 10143–10150. 
 

62. Joseph Dubrovkin, Mathematical Processing of Spectral Data in Analytical Chemistry: A Guide to Error 

Analysis, Cambridge Scholars Publishing, 2018 and 2019, 379 pages. ISBN 978-1-5275-1152-1. Link. 
 

63. Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from 

Partially Resolved Peaks, M. Farooq Wahab, et. al., Chromatographia (2018). https://doi.org/10.1007/s10337-

018-3607-0.  

http://www.openchrom.net/main/content/index.php
http://wmbriggs.com/blog/?p=195
http://www.chem.utoronto.ca/coursenotes/analsci/stats/index.html
http://physics.nist.gov/PhysRefData/ASD/
http://www.astm.org/Standards/C1301.htm
http://matlab.cheme.cmu.edu/2012/06/22/curve-fitting-to-get-overlapping-peak-areas/#13
http://matlab.cheme.cmu.edu/2012/06/22/curve-fitting-to-get-overlapping-peak-areas/#13
http://www.chem.agilent.com/Library/primers/Public/59801397_020660.pdf
http://www.analiticaweb.com.br/newsletter/02/AN51721_UV.pdf
http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html
http://homepages.math.uic.edu/~jan/mcs320s07/matlec7.pdf
https://blanchard.ep.wisc.edu/PublicMatlab/Excel/Matlab_VBA.pdf
http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/
https://terpconnect.umd.edu/~toh/spectrum/Retirement.pdf%22
http://www.dsprelated.com/
http://www.av8n.com/physics/uncertainty.htm
http://greenteapress.com/thinkdsp/thinkdsp.pdf
http://www.cambridgescholars.com/mathematical-processing-of-spectral-data-in-analytical-chemistry
https://doi.org/10.1007/s10337-018-3607-0
https://doi.org/10.1007/s10337-018-3607-0


Page | 501  

 

64. T. C. O’Haver, Interactive Computer Models for Analytical Chemistry Instruction, 

https://terpconnect.umd.edu/~toh/models/, 1995. 
 

65. T. C. O’Haver, Interactive Simulations of Basic Electronic and Operational Amplifier Circuits, 

https://terpconnect.umd.edu/~toh/ElectroSim, (1996) 
 

66. Signal Processing at Rice University. (http://dsp.rice.edu/software/) 
 

67. Steven Pinker, The Sense of Style: The Thinking Person's Guide to Writing in the 21st Century, New York, 

NY: Penguin, 2004. 

68. Joseph Dubrovkin, https://www.researchgate.net/profile/Joseph-Dubrovkin 
 

69. Separations at the Speed of Sensors, D. C. Patel, M. Farooq Wahab, T. C. O’Haver, and Daniel W. Armstrong, 

Analytical Chemistry 2018 90 (5), 3349-3356, DOI: 10.1021/acs.analchem.7b04944 
 

70. MF Wahab, TC O'Haver, F. Gritti, G. Hellinghausen, and DW Armstrong, “Increasing chromatographic 

resolution of analytical signals using derivative enhancement approach,” Talanta, vol. 192, pp. 492–499, 2019 
 

71. Yuri Kalambet, "Reconstruction of exponentially modified functions", 2019. DOI: 

10.13140/RG.2.2.12482.84160. Link.  
 

72. Yuri Kalambet, Yuri Kozmin, Andrey Samokhin, “Comparison of integration rules in the case of very narrow 

chromatographic peaks”, Chemometrics and Intelligent Laboratory Systems 179, May 2018. DOI: 

10.1016/j.chemolab.2018.06.001 
 

73. Yuri Kalambet, et. al., "Reconstruction of chromatographic peaks using the exponentially modified Gaussian 

function", Journal of Chemometrics June 2011, 25(7):352 - 356. DOI: 10.1002/cem.1343 
 

74. Allen, L. C., Gladney, H. M., Glarum, S. H., J. Chem. Phys. 40, 3135 (1964) 
 

75. J. W. Ashley, Charles N. Reilley, "De-Tailing and Sharpening of Response Peaks in Gas 

Chromatography", Anal. Chem., 37, 6, 626-630, 1965. 
 

76. M. Johansson, M. Berglund and D. C. Baxter, “Improving accuracy in the quantitation of overlapping, 

asymmetric, chromatographic peaks by deconvolution: theory and application to coupled gas chromatography 

atomic absorption spectrometry”, Spectrochemica Acta, Vol 48B, p. 1393-1409, 1993. 
 

77. S. Sterlinski, "A Method for Resolution Enhancement of Interfering Peaks in Ge(Li) Gamma-Ray Spectra", J. 

of Radioanalytical Chemistry, 31, 195-226, 1976. 
 

78. “Importance of academic blogs”, Teachers Insurance and Annuity Association of America-College 

Retirement Equities Fund, New York, NY. https://careerpurpose.com/industries/education/academic-blogs. 
 

79. Robi Polikar, The Wavelet Tutorial, http://web.iitd.ac.in/~sumeet/WaveletTutorial.pdf 
 

80. C. Valens, “A Really Friendly Guide to Wavelets”, http://agl.cs.unm.edu/~williams/cs530/arfgtw.pdf 
 

81. Brani Vidakovic and Peter Mueller, “Wavelets for Kids”,http://www.gtwavelet.bme.gatech.edu/wp/kidsA.pdf  
 

82. Amara Graps, “An Introduction to Wavelets” https://www.eecis.udel.edu/~amer/CISC651/IEEEwavelet.pdf 
 

83. Muhammad Ryan, “What is Wavelet and How We Use It for Data Science”, 
https://towardsdatascience.com/what-is-wavelet-and-how-we-use-it-for-data-science-d19427699cef 
 

84. Michael X. Cohen, “A better way to define and describe Morlet wavelets for time-frequency analysis”, 

NeuroImage, Volume 199, 1 October 2019, Pages 81-86.  
 

85. Wahab M. F, O’Haver T. C., “Wavelet transforms in separation science for denoising and peak overlap 

detection.” J Sep Sci. 43 (9-10) 1615–2012 (2020). ISSN 1615-9306; https://doi.org/10.1002/jssc.202000013 
 

86. G. K. Wertheim, J. of Electron Spectroscopy and Related Phenomena, 6 (1975) 239-251. 
 

https://terpconnect.umd.edu/~toh/models/RegressionDemo.xls
https://terpconnect.umd.edu/~toh/ElectroSim
http://dsp.rice.edu/software/
https://www.researchgate.net/profile/Joseph-Dubrovkin
https://www.researchgate.net/publication/333237821_Reconstruction_of_exponentially_modified_functions
https://careerpurpose.com/industries/education/academic-blogs
http://web.iitd.ac.in/~sumeet/WaveletTutorial.pdf
http://agl.cs.unm.edu/~williams/cs530/arfgtw.pdf
http://www.gtwavelet.bme.gatech.edu/wp/kidsA.pdf
https://www.eecis.udel.edu/~amer/CISC651/IEEEwavelet.pdf
https://towardsdatascience.com/what-is-wavelet-and-how-we-use-it-for-data-science-d19427699cef
https://doi.org/10.1002/jssc.202000013


Page | 502  

87. R. E. Sturgeon, et. al., Atomization in graphite-furnace atomic absorption spectrometry. Peak-height method 

vs. integration method of measuring absorbance. Anal. Chem. 47, 8, 1240–1249 (1975) 

https://doi.org/10.1021/ac60358a039 
 

88. Sunaina et al, “Calculating numerical derivatives using Fourier transform: some pitfalls and how to avoid them”, 

Eur. J. Phys. 39 ,065806, 2018 
 

89. Sinex, Scott A, Investigating types of errors. Spreadsheets in Education 2.1 (2005): 115-124. 
 

90. Catherine Perrin, Beata Walczak, and Désiré Luc Massart, “Quantitative Determination of the Components in 

Overlapping Chromatographic Peaks Using Wavelet Transform”, Analytical Chemistry 2001 73 (20), 4903-4917 

DOI: 10.1021/ac010416a 
 

91. F. Gritti, S. Besner, S. Cormier, M. Gilar, Applications of high-resolution recycling liquid chromatography: 

from small to large molecules, Journal of Chromatography A 1524 (2017) 108-120. 
 

92. Desimoni E. and Brunetti B., "About Estimating the Limit of Detection by the Signal to Noise Approach", 

Pharmaceutica Analytica Acta 67, 4, 2015. DOI: 10.4172/2153-2435.100035. PDF  link. 
 

93. Royal Society of Chemistry Analytical Methods Committee, “Recommendations for the Definition, 

Estimation and Use of the Detection Limit”, Analyst, Feb. 1987, vol.112, p. 199. 
 

94. “MATLAB vs Python: Why and How to Make the Switch”, https://realpython.com/matlab-vs-python/ 
 

95. MLAB, an advanced mathematical and statistical modeling system, by Gary Knott. 
 

96. NIST Engineering Statistics Handbook: https://www.itl.nist.gov/div898/handbook/index.htm 
 

97. “Why and How Savitzky–Golay Filters Should Be Replaced”, Michael Schmid, David Rath, and Ulrike 

Diebold, ACS Measurement Science Au 2022 2 (2), 185-196. DOI: 10.1021/acsmeasuresciau.1c00054 
 

98. Farooq Wahab and Thomas C. O'Haver, “Peak deconvolution with significant noise suppression and stability 

using a facile numerical approach in in Fourier space”, Chemometrics and Intelligent Laboratory Systems 235, 

2023. https://authors.elsevier.com/c/1gVwgcc6MExCW 
 

99. M.F. Wahab, F. Gritti, T.C. O'Haver, Discrete Fourier transform techniques for noise reduction and digital 

enhancement of analytical signals, TrAC, Trends Anal. Chem., 143, Article 116354 (2021) 
 

100. Aditi Gupta, et. al., A-TSPD: autonomous-two stage algorithm for robust peak detection in online 

time series | Cluster Computing (springer.com) 
 

101. Nick Bilton, “Future Tense”, Vanity Fair, Oct. 2013. Future Tense | Vanity Fair | October 2023 

Publications that cite the use of my book, 

programs and/or documentation 
 

Updated annually. MLA format. Last updated June 2024. 
 

If you have published a paper using these programs that you would like me to include here, please 

email the paper, or a citation to it, to Tom O'Haver at toh@umd.edu 
 

1. Poppi, R. J., Vazquez, P. A., & Pasquini, C. (1992). Fast scanning Hadamard spectrophotometer. Applied 

Spectroscopy, 46(12), 1822-1827. 
 

2. Ghatee, M. H., and A. Boushehri. "Modulation of the integrated rate equation of a composite system for the 

kinetic parameters." Chemometrics and intelligent laboratory systems 25.1 (1994): 43-49. 
 

3. C.W.K. Chow, D.E. Davey, Dennis Mulcahy, T.C.W. Yeow , Signal enhancement of potentiometric stripping 

https://doi.org/10.1021/ac60358a039
https://www.longdom.org/open-access/about-estimating-the-limit-of-detection-by-the-signal-to-noise-approach-2153-2435-1000355.pdf
https://realpython.com/matlab-vs-python/
http://www.civilized.com/
https://www.itl.nist.gov/div898/handbook/index.htm
https://authors.elsevier.com/c/1gVwgcc6MExCW
https://link.springer.com/article/10.1007/s10586-024-04369-8
https://link.springer.com/article/10.1007/s10586-024-04369-8
https://archive.vanityfair.com/article/2023/10/01/future-tense
mailto:toh@umd.edu


Page | 503  

analysis using digital signal processing, Analytica Chimica Acta 307(1):15-26, April 1995 
DOI: 10.1016/0003-2670(95)00023-S 
 

4. Ringe, Steven A. "Hydrogen-extended defect interactions in heteroepitaxial InP materials and devices." Solid-

State Electronics 41.3 (1997): 359-380. 
 

5. Chow, Christopher WK, David Edward Davey, and D. E. Mulcahy. "Signal filtering of potentiometric 

stripping analysis using Fourier techniques." Analytica chimica acta 338.3 (1997): 167-178. 
 

6. Leung, Alexander Kai-man, Foo-Tim Chau, and Jun-bin Gao. "Wavelet transform: a method for derivative 

calculation in analytical chemistry." Analytical Chemistry 70.24 (1998): 5222-5229. 
 

7. Harris, D. C. (1998). “Spektralphotometer”. In Lehrbuch der Quantitativen Analyse (pp. 695-746). Vieweg+ 

Teubner Verlag. Link. 
 

8. Keyhani, Ali, Wenzhe Lu, and Gerald T. Heydt. "Neural network based composite load models for power 

system stability analysis." IEEE International Conference on Computational Intelligence for Measurement 

Systems and Applications. 2005. 
 

9. Fernández, Mario, and J. Ricardo Pérez-Correa. "Instrumentation for Monitoring SSF Bioreactors." Solid-

State Fermentation Bioreactors. Springer Berlin Heidelberg, 2006. 363-374 
 

10. Richard Graham , Ring Laser Gain Media, Thesis, 

http://ir.canterbury.ac.nz/bitstream/10092/1377/1/thesis_fulltext. pdf (2006) 
 

11. Sheaff, Chrystal N., Delyle Eastwood, and Chien M. Wai. "Increasing selectivity for TNT-based explosive 

detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic 

amines." Applied spectroscopy 61.1 (2007): 68-73. 
 

12. Hovick, James W., Michael Murphy, and J. C. Poler. "" Audibilization" in the chemistry 

laboratory: An introduction to correlation techniques for data extraction." J. Chem. Educ 84.8 (2007): 1331. 
 

13. de Aragão, Bernardo José Guilherme, and Younes Messaddeq. "PEAK SEPARATION IN SPECTRAL 

ANALYSIS." (2007). Link. 
 

14. Ingersoll, Justin Edward. A Regularization Technique for the Analysis of Photographic Data Used in 

Chemical Release Wind Measurements. ProQuest, 2008. 
 

15. Dinesh, S. "The Effect of Smoothing on the Extraction of Drainage Networks from Simulated Digital 

Elevation Models." Journal of Applied Sciences Research 4.11 (2008): 1356-1360. 
 

16. Jed A. Meltzer, Hitten P. Zaveri, Irina I. Goncharova, Marcello M. Distasio, Xenophon Papademetris, Susan 

S. Spencer, Dennis D. Spencer and R. Todd Constable, ”Effects of Working Memory Load on Oscillatory Power 

in Human Intracranial EEG”, Cereb. Cortex (2008) 18 (8): 1843-1855. doi: 10.1093/cercor/bhm213 
 

17. Sheaff, Chrystal N., et al. "Fluorescence detection and identification of tagging agents and impurities found 

in explosives." Applied spectroscopy 62.7 (2008): 739-746. 
 

18. "A regularization technique for the analysis of photographic data used in chemical release wind 

measurements", JE Ingersoll, 2008, books.google.com 
 

19. "An application of detection function for the eye blinking detection", Pander, T. Przybyla, T. ; Czabanski, 

Human System Interactions 2008 Conference: 25-27 May 2008, Page(s): 287- 291 
 

20. "Isotopically labeled oxygen studies of the NOx exchange behavior of La2CuO4 to determine potentiometric 

sensor response mechanism" F.M. Van Assche IV, E.D. Wachsman, Solid State Ionics, Volume 179, Issue 39, 15 

December 2008, Pages 2225–2233 
 

21. "High-speed laryngoscopic evaluation of the effect of laryngeal parameter variation on aryepiglottic trilling." 

Moisik, Scott R., John H. Esling, and Lise CrevierBuchman. poster, 

http://www.ncl.ac.uk/linguistics/assets/documents/ MoisikEslingBuchman_NewcastleP haryngealsPoster_2009. 

http://ir.canterbury.ac.nz/bitstream/10092/1377/1/thesis_fulltext.
http://www.ncl.ac.uk/linguistics/assets/documents/


Page | 504  

Pdf (2009). 
 

22. Tricas, Marazico, and Juan Ignacio. "Auto configuration dans LTE: procédés de mesure de l’occupation du 

canal radio pour une utilisation optimisée du spectre." ,”Auto configuration in LTE: measuring the occupancy of 

the radio channel for optimized use of the spectrum” (2009). PDF link. 
 

23."Early age concrete strength monitoring with piezoelectric transducers by the harmonic frequencies method", 

Thomas J. Kelleher, 2009.http://www.engin.swarthmore.edu/e90/2008/reports/Thomas%20Kelleher.pdf 
 

24. "Information management for high content live cell imaging", Daniel Jameson, David A Turner, John Ankers, 

Stephnie Kennedy, Sheila Ryan, Neil Swainston, Tony Griffiths, David G Spiller, Stephen G Oliver, Michael RH 

White, Douglas B Kell and Norman W Paton, BMC Bioinformatics 2009, 10:226 doi:10.1186/1471-2105-10-

2263 
 

25. "Human-Computer Systems Interaction: Backgrounds and Applications", edited by Zdzislaw S. Hippe, 

Juliusz Lech Kulikowski, Springer (Sep 30, 2009), page 191. 
 

26. "Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles", SO Meade, 

MY Chen, MJ Sailor, Anal. Chem., 2009, 81 (7), pp 2618–2625. DOI: 10.1021/ac802538x 
 

27. "Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns, Brett A. Johnson, 

Cynthia C. Woo, Yu Zeng, Zhe Xu, Edna E. Hingco, Joan Ong, Michael Leon. The Journal of Comparative 

Neurology, Volume 518, Issue 10, pages 1617–1629, 15 May 2010 
 

28."Alternative Measures of Phonation: Collision Threshold Pressure and Electroglottographic Spectral Tilt: 

Extra: Perception of Swedish Accents." Enflo, Laura. (2010). Full Text. 
 

29. Botcharova, Maria. "Changes in structure of EEG-EMG coherence during brain development: analysis of 

experimental data and modeling of putative mechanisms." (2010) [PDF] from ucl.ac.uk 
 

30."Vowel Dependence for Electroglottography and Audio Spectral Tilt", L Enflo, Proceedings of Fonetik, 2010.  

31. "Rapid and accurate detection of plant miRNAs by liquid northern hybridization.", Wang, Xiaosu, Yongao 

Tong, and Shenghua Wang. International journal of molecular sciences 11.9 (2010): 3138-3148. 
  

32. Nusz, G. J. (2010). Label-free biodetection with individual plasmonic nanoparticles (Doctoral dissertation, 

Duke University). 
  

33. Khudaish, Emad A., and Aysha A. Al Farsi. "Electrochemical oxidation of dopamine and ascorbic acid at a 

palladium electrode modified with in situ fabricated iodine-adlayer in alkaline solution." Talanta 80.5 (2010): 

1919-1925. 
 

34. "Advances in Music Information Retrieval", edited by Zbigniew W. Ras, Alicja Wieczorkowska, Springer, 

2010, page 135. 
 

35. Bilal, M., Sharif, M., Jaffar, M. A., Hussain, A., & Mirza, A. M. (2010, May). Image restoration using 

modified hopfield fuzzy regularization method. In Future Information Technology (FutureTech), 2010 5th 

International Conference on (pp. 1-6). IEEE. 
 

36. Rim, Jung Ho. "Preparation and Characterization of Sources for Ultra-high Resolution Microcalorimeter 

Alpha Spectrometry." The Pennsylvania State University (2010). PDF link. 
 

37. Xiaosu Wang , Yongao Tong and Shenghua Wang, Rapid and Accurate Detection of Plant miRNAs by Liquid 

Northern Hybridization, Int. J. Mol. Sci. 2010, 11(9), 3138-3148; doi:10.3390/ijms11093138 
 

38. “Radio Frequency Fuel Gauging with Neuro-Fuzzy Inference Engine For Future Spacecrafts”. Kumagai, A., 

Liu, T. I., & Sul, D. In Proceedings of the 10th IASTED, International Conference, 2010 (Vol. 674, No. 020, p. 

243). 
 

39. "Automatic Seizure Detection in ECoG by Differential Operator and Windowed Variance," Majumdar, K.K.; 

Vardhan, P., Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.19, no.4, pp.356,365, 

Aug. 2011 

http://www.engin.swarthmore.edu/e90/2008/reports/Thomas%20Kelleher.pdf


Page | 505  

 

40. "Genetic algorithm with peaks adaptive objective function used to fit the EPR powder spectrum", Sebastian 

Grzegorz Żurek, Applied Soft Computing, Volume 11, Issue 1, January 2011, Pages 1000–1007 
 

41. "Determination of sea conditions for wave energy conversion by spectral analysis", B Yagci, P Wegener, EEE 

Transactions on Power Delivery, 18(2): 372–376, 2011. 
 

42. "Push-broom hyperspectral imaging for elemental mapping with glow discharge optical emission 

spectrometry", G Gamez, D Frey, J Michler - J. Anal. At. Spectrom., 2011, 65, 85–98 
 

43."Dual-order snapshot spectral imaging of plasmonic nanoparticles", Gregory J. Nusz, Stella M. Marinakos, 

Srinath Rangarajan, and Ashutosh Chilkoti, Applied Optics, Vol. 50, Issue 21, pp. 4198-4206 (2011) 

http://dx.doi.org/10.1364/AO.50.004198 
 

44. Sugandharaju, Ravi Kumar Chatnahalli. “Gaussian Deconvolution and MapReduce Approach for Chipseq 

Analysis”. Dissertation. University of Cincinnati, 2011. 
 

45. "Parallel Deconvolution Algorithm in Perfusion Imaging" F Zhu, DR Gonzalez, T Carpenter, Healthcare 

Informatics, Imaging and Systems Biology (HISB), 2011 First IEEE International Conference, 26-29 July 2011 
 

46. "Field observations of infragravity waves and their behaviour on rock shore platforms" Edward P. Beetham, 

Paul S. Kench, Earth Surface Processes and Landforms, Volume 36, Issue 14, pages 1872–1888, November 2011 
 

47. "Majority Voting: Material Classification by Tactile Sensing Using Surface Texture", Jamali, N., Sammut, C., 

IEEE Transactions on Robotics, Volume: 27, Issue: 3, Page(s): 508 - 521, June 2011 
 

48. Yuan, Yuan, Yishan Luo, and Albert Chung. "VE-LLI-VO: Vessel enhancement using local line integrals and 

variational optimization." IEEE Transactions on Image Processing 20.7 (2011): 1912-1924. 
 

49. ”Demand Estimation with Automated Meter Reading in a Distribution Network”,Aksela, K. and Aksela, M. , 

J. Water Resour. Plann. Manage., 137(5), 456–467 (2011). doi: 10.1061/(ASCE) WR.1943-5452.0000131 
 

50. Ochoa, Jeimy Catherine Millán. Design and Development of a Localization System for a Sensor Network in 

Collective Symbiotic Organisms. Diss. Universitätsbibliothek der Universität Stuttgart, 2011. 
 

51. "Genetic algorithm with peaks adaptive objective function used to fit the EPR powder spectrum", Sebastian 

Grzegorz Żurek, Journal Applied Soft Computing archive. Volume 11, Issue 1, January 2011, pages 1000-1007 
 

52. Hornung, J. P. (2011). Exploring the potential for using deep-sea bamboo corals (Isidella sp.) for 

paleoceanographic reconstructions (Doctoral dissertation). 
 

53. Boll, Marie-Theres. Ein neues Konzept zur automatisierten Bewertung von Fertigkeiten in der minimal 

invasiven Chirurgie für Virtual-Reality-Simulatoren in GridUmgebungen. Vol. 38. KIT Scientific Publishing, 

2011. Link. 
 

54. "Development of ECG signal interpretation software on Android 2.2, Hermawan, K.; Iskandar, A.A.; 

Hartono, R.N., "Instrumentation, Communications, Information Technology, and Biomedical Engineering 

(ICICI-BME), 2011 2nd International Conference, vol., no., pp.259,264, 8-9 Nov. 2011 

doi: 10.1109/ICICI-BME.2011.6108621 
 

55. Choi, Sheng Heng. "Signal processing and amplifier design for inexpensive genetic analysis instruments." 

(2011). https://era.library.ualberta.ca/files/qr46r139p#.WifTkEqnGUk 
 

56. Hoffman, Galen Brandt. Direct Write of Chalcogenide Glass Integrated Optics Using Electron Beams. Diss. 

The Ohio State University, 2011. Direct link. 
 

57. Bai, Er-Wei, et al. "Detection of radionuclides from weak and poorly resolved spectra using Lasso and 

subsampling techniques." Radiation Measurements 46.10 (2011): 1138-1146. 
 

58. Sugandharaju, Ravi Kumar Chatnahalli. Gaussian Deconvolution and MapReduce Approach for Chipseq 

Analysis. Diss. University of Cincinnati, 2011. 
 

http://dx.doi.org/10.1364/AO.50.004198
https://era.library.ualberta.ca/files/qr46r139p#.WifTkEqnGUk


Page | 506  

59.“Automated peak alignment for nucleic acid capillary electrophoresis data by dynamic programming”. 

Fethullah Karabiber, Kevin Weeks, and Oleg V. Favorov. In Proceedings of the 2nd ACM Conference on 

Bioinformatics, Computational Biology and Biomedicine (BCB '11). ACM, New York, NY, USA, 2011. pages 

544-546. DOI=10.1145/2147805.2147895 http://doi.acm.org/10.1145/2147805.2147895 
 

60. Shin, Sung-Hwan, et al. "Mass estimation of impacting objects against a structure using an artificial neural 

network without consideration of background noise." Nuclear Engineering and Technology 43.4 (2011): 343-354. 
 

61. Taibo, María Luisa Gómez, et al. "Matching needs and capabilities with assistive technology in an 

amyotrophic lateral sclerosis patient." Accessibility, Inclusion and Rehabilitation using Information Technologies 

(2011): 21. 
 

62. Paul, Ruma R., Victor C. Valgenti, and Min Sik Kim. "Real-time Netshuffle: Graph distortion for on-line 

anonymization." Network Protocols (ICNP), 2011 19th IEEE International Conference on. IEEE, 2011. 
 

63. Lopez-Castellanos, V. (2011). Ultrawideband time domain radar for time reversal applications (Doctoral 

dissertation, The Ohio State University). 
 

64. "Electricity gain via integrated operation of turbine generator and cooling tower using local model network." 

Pan, Tian-Hong, et al. Energy Conversion, IEEE Transactions on 26.1 (2011): 245-255. 
 

65. "Dynamic analysis of electronic devices' power signatures, Marcu, M.; Cernazanu, C., " Instrumentation and 

Measurement Technology Conference (I2MTC), 2012 IEEE International , vol., no., pp.117,122, 13-16 May 

2012. doi: 10.1109/I2MTC.2012.6229562 
 

66. "Experimental comparison among pileup recovery algorithms for digital gamma ray spectroscopy" El-Tokhy, 

M.S. Mahmoud, I.I. ; Konber, H.A. Informatics and Systems (INFOS), 2012 8th International Conference on 14-

16, May 2012 
 

67. Kwon, Soonil. "Voice-driven sound effect manipulation." International Journal of Human-Computer 

Interaction 28.6 (2012): 373-382. 

68. "Distributed representation of chemical features and tunotopic organization of glomeruli in the mouse 

olfactory bulb" Limei Maa, Qiang Qiua, Stephen Gradwohla, Aaron Scotta, Elden Q. Yua, Richard Alexandera, 

Winfried Wiegraebea, and C. Ron Yu, Proceeding of the National Academy of Sciences, April 3, 2012 vol. 109, 

no. 14, pages 5481-5486. 
 

69. Hofler, Alicia S. Optimization Framework for a Radio Frequency Gun Based\ Injector. Old Dominion 

University, PhD dissertation, 2012. 
 

70. "A Robust Heart Sound Segmentation and Classification Algorithm using Wavelet Decomposition and 

Spectrogram." Deng, Yiqi, and Peter J. Bentley. 2012. Full text: 

http://www.peterjbentley.com/heartworkshop/challengepaper3.pdf 
 

71.“Detecting STR peaks in degraded DNA samples”. Marasco, E., Ross, A., Dawson, J., Moroose, T., & 

Ambrose, T.Proc. of 4th International Conference on Bioinformatics and Computational Biology (BICoB), (Las 

Vegas, USA), March 2012. Full text: 

http://www.cse.msu.edu/~rossarun/pubs/RossDNAEnhanement_BICoB2011.pdf 
 

72. "Saccades detection in optokinetic nystagmus-a fuzzy approach." PANDER, Tomasz, et al. , Journal of 

Medical Informatics & Technologies 19 (2012): 33-39. 
 

73. "Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma 

lowland, northeastern Siberia", J Strauss, L Schirrmeister, S Wetterich, Andreas Borchers, Sergei P. Davydov, 

Global Biogeochemical Cycles, Volume 12, 2012. 
 

74."An Early Prediction of Cardiac Risk using Augmentation Index Developed based on a 

Comparative Study." Manimegalai, P., Delpha Jacob, and K. Thanushkodi. , 

International Journal of Computer Applications 50 (2012). Abstract. 
 

75. “Determinação Da Estabilidade Oxidativa De Biocombustíveis,” Bruno A. F. Vitorino, Franz H. Neff, Elmar 

http://doi.acm.org/10.1145/2147805.2147895
http://www.peterjbentley.com/heartworkshop/challengepaper3.pdf
http://www.cse.msu.edu/~rossarun/pubs/RossDNAEnhanement_BICoB2011.pdf


Page | 507  

U. K. Melcher, Antonio M. N. Lima, Anais do XIX Congresso Brasileiro de Automática, CBA 2012. 

http://www.eletrica.ufpr.br/anais/cba/2012/Artigos/100018.pdf 

 

76."Efficacy of Differential Operators in Brain Electrophysiological Signal Processing: A Case Study in 

Epilepsy."Majumdar, Kaushik, and Pratap Vardhan. 2012 Full text. 

 

77. Snider, W. (2012). Electro-optically Tunable Microring Resonators for Non-Linear Frequency Modulated 

Waveform Generation (Doctoral dissertation, Texas A & M University). 

 

78."9.0 Experimental–Two-Dimensional GCxGC." Technologies towards the Development of a Lab-on-a-Chip 

GCxGC for Environmental Research (2012). Full text. A Thesis by Jaydene Halliday, BSc MRSC 

 

79. "BaNa: A hybrid approach for noise resilient pitch detection," He Ba; Na Yang; Demirkol, I.; Heinzelman, W., 

Statistical Signal Processing Workshop (SSP), 2012 IEEE , vol., no., pp.369,372, 5-8 Aug. 2012. doi: 

10.1109/SSP.2012.6319706 

 

80. Tripathi, Ashish. THE NEW IMAGE PROCESSING ALGORITHM FOR\ QUALITATIVE AND 

QUANTITATIVE STM DATA ANALYSIS. Diss. 2012. 

 

81. Skelton, Martin. "Diffusion of Innovation System Elements-A Novel Method to Study Technology 

Development and Its Application to Wind Power." (2012). [PDF] from chalmers.se 

 

82. Pander, T., et al. "A new method of saccadic eye movement detection for optokinetic nystagmus analysis." 

Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. 

IEEE, 2012. 

 

83. Mahmoud, I. I., M. S. El_Tokhy, and H. A. Konber. "Pileup recovery algorithms for digital gamma ray 

spectroscopy." Journal of Instrumentation 7.09 (2012): P09013. 

 

84. Zhu, Fan, et al. "Parallel perfusion imaging processing using GPGPU." Computer methods and programs in 

biomedicine 108.3 (2012): 1012-1021. 

 

85. Cuss, C. W., and Celine Guéguen. "Determination of relative molecular weights of fluorescent components 

in dissolved organic matter using asymmetrical flow fieldflow fractionation and parallel factor analysis." 

Analytica chimica acta 733 (2012): 98- 102. 

 

86. Olugboji, Oluwafemi A., and Jack M. Hale. "Development of Damage Reconstruction Techniques from 

Impulsive Events Based on Measurements Made Remotely." ASME 2012 International Mechanical Engineering 

Congress and Exposition. American Society of Mechanical Engineers, 2012. 

 

87. Dickson, B., and M. Craig. "Deconvolving gamma-ray logs by adaptive zone refinement." Geophysics 77.4 

(2012): D159-D169. 

 

88. “SmartBells: RFID-Enhanced System to Monitor Free Weight Exercises. "Chaudhri, Rohit, and Gaetano 

Borriello. 2012 Full text. 

 

89. "Diffusion of Innovation System Elements-A Novel Method to Study Technology Development and Its 

Application to Wind Power." Skelton, Martin. (2012). Fulltext. 

 

90. Grotenhuis, Michael Gary. "An Overview of the Maximum Entropy Method of Image Deconvolution." A 

University of Minnesota–Twin Cities “Plan B” Master’s paper, 2012. 

 

91. "On comet attitude determination of Rosetta lander Philae through nonlinear optimal system identification." 

http://www.eletrica.ufpr.br/anais/cba/2012/Artigos/100018.pdf


Page | 508  

Caputo, Gianluca. (2012). Full text. 

 

92. Valadares¹, D. C., Vitorino, B. A., Neta, M. L. N., Batista, E. S., Santos, M. V., Neff, F. H., & Melcher, E. N. 

(2012). System for Analysis of the Biodiesel Quality. 

 

93. Mukhopadhyay, C. K., et al. "Acoustic emission during fracture toughness tests of SA333 Gr. 6 steel." 

Engineering Fracture Mechanics 96 (2012): 294-306. 

 

94. Huang, Zifang. "Knowledge-Assisted Sequential Pattern Analysis: An Application in Labor Contraction 

Prediction." (2012). PDF link. 

 

95. van de Voort, Frederik R., and David Pinchuk. "System and Method for Determining Base Content of a 

Hydrophobic Fluid." U.S. Patent Application 13/171,566. 

 

96. Hoerndli, Frédéric J., et al. "Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and 

redistribution of AMPA receptors." Neuron 80.6 (2013): 1421-1437. 

 

97. Brockie, Penelope J., et al. "Cornichons control ER export of AMPA receptors to regulate synaptic 

excitability." Neuron 80.1 (2013): 129-142. 

 

98. Žáčik, Michal. Šumová spektroskopie pro biologii. Diss. Vysoké učení technické v Brně. Fakulta 

elektrotechniky a komunikačních technologií, 2013. 

 

99. Phillips, James William, and Yi Jin. "Systems and methods for modulating the electrical activity of a brain 

using neuro-EEG synchronization therapy." U.S. Patent No. 8,465,408. 18 Jun. 2013. 

 

100. Moon, Jim, et al. "Body-worn vital sign monitor." U.S. Patent No. 8,364,250. 29 Jan. 2013. 

101. Hao, Manzhao, et al. "Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in 

Parkinson's Disease." PloS one 8.11 (2013): e79829. 

 

102. McCOMBIE, Devin, Marshal Dhillon, and Matt Banet. "Method for measuring patient motion, activity 

level, and posture along with PTT-based blood pressure." U.S. Patent No. 8,475,370. 2 Jul. 2013. 

 

103. Banet, Matt, Devin McCombie, and Marshal Dhillon. "Body-worn monitor for measuring respiration rate." 

U.S. Patent No. 8,545,417. 1 Oct. 2013. 

 

104. Banet, Matt, and Jim Moon. "Body-worn vital sign monitor." U.S. Patent No. 8,591,411. 26 Nov. 2013. 

 

105. Mccombie, Devin, et al. "Alarm system that processes both motion and vital signs using specific heuristic 

rules and thresholds." U.S. Patent No. 8,594,776. 26 Nov. 2013. 

 

106. Banet, Matt, Marshal Dhillon, and Devin McCombie. "Body-worn system for measuring continuous non-

invasive blood pressure (cNIBP)." U.S. Patent No. 8,602,997. 10 Dec. 2013. 

 

107. Moon, Jim, et al. "Body-worn pulse oximeter." U.S. Patent No. 8,437,824. 7 May 2013. 

 

108. Cheng, Chunmei, et al. "Remote sensing estimation of Chlorophyll and suspended sediment concentration 

in turbid water based on spectral separation." Optik-International Journal for Light and Electron Optics 124.24 

(2013): 6815-6819. 

 

109. Phillips, James William, and Yi Jin. "Systems and methods for neuro-EEG synchronization therapy." U.S. 

Patent No. 8,585,568. 19 Nov. 2013. 

 



Page | 509  

110. Khvostichenko, Daria S., et al. "An X-ray transparent microfluidic platform for screening of the phase 

behavior of lipidic mesophases." Analyst 138.18 (2013): 5384- 5395. 

 

111. “A signal alignment method based on DTW with new modification”, Karabiber, F. ; Bilgisayar 

Muhendisligi Bolumu ; Balcilar, M. Signal Processing and Communications Applications Conference (SIU), 

2013 21st , 24-26 April 2013 . ISBN: 978-1-4673-5562-9; DOI: 10.1109/SIU.2013.6531176 

 

112. “An automated signal alignment algorithm based on dynamic time warping for capillary electrophoresis 

data”, Turkish Journal of Electrical Engineering & Computer Sciences , Fethullah KARABİBER , 21, (2013), 

851-863. Full text: pdf 

 

113. "Traditional Asymmetric Rhythms: A Refined Model of Meter Induction Based On Asymmetric Meter 

Templates”, Fouloulis, Thanos, Aggelos Pikrakis, and Emilios Cambouropoulos, Proceedings of the Third 

International Workshop on Folk Music Analysis (FMA2013). 2013. ISBN 978-90-70389-78-9 

 

114. "Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in 

cultured human cells: applications for microbeam radiation therapy." Anderson, D., et al. , Journal of 

Instrumentation 8.06 (2013): C06008. Full text PDF. 

 

115. Ayodeji, Olugboji Oluwafemi, Jonathan Yisa Jiya, and Jack M. Hale. "Event Reconstruction by Digital 

Filtering." Advances in Signal Processing 1.3 (2013): 48-56. 

 

116. “A conserved aromatic residue regulating photosensitivity in short-wavelength sensitive cone visual 

pigments”. Kuemmel, C. M., Sandberg, M. N., Birge, R. R., & Knox, B. E. Biochemistry, 52(30), 5084-5091 

(2013). 

 

117. “Measurement of The Lightweight Rotor Eigenfrequencies And Tuning Of Its\ Model Parameters,” Luboš 

SMOLĺK, Michal HAJŽMAN, Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, 

No. 1, 2013, vol. LIX. FullEnglish text. 

 

118. "Investigation of the phase separation of PNIPAM using infrared spectroscopy together with multivariate 

data analysis." Munk, Tommy, et al. , Polymer 54.26 (2013): 6947-6953. Abstract. 

 

119. “Phase separation in InxGa1 xN (0.10< x< 0.40).” Belyaev, K. G., Rakhlin, M. ‐V., Jmerik, V. N., 

Mizerov, A. M., Kuznetsova, Y. V., Zamoryanskaya, M. V., ... & Toropov, A. A. (2013). Physica Status Solidi (c), 

10 (3), 527-531. 

 

120. "Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease." Hao, 

Manzhao, et al. , PloS one 8.11 (2013): e79829. 

 

121. "Sickle-shaped voxel approach to enhance automatic reclaiming operation using bucket wheel reclaimer," 

Maung Thi Rein Myo; Tien-Fu Lu, Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference 

on , vol., no., pp.1700,1705, 19- 21 June 2013. doi: 10.1109/ICIEA.2013.6566642 

 

122. "Review of software tools for design and analysis of large-scale MRM proteomic datasets." Colangelo, 

Christopher M., et al., Methods 61.3 (2013): 287-298. 

 

123. Carabetta, Valerie J., et al. "A complex of YlbF, YmcA and YaaT regulates sporulation, competence and 

biofilm formation by accelerating the phosphorylation of Spo0A." Molecular microbiology 88.2 (2013): 283-300. 

124. Web, N. L. P. M. L., and Andrew Rosenberg. "Ensemble Methods." (2013). 

 

125. Cannon, Robert William, “Automated Spectral Identification of Materials using Spectral Identity Mapping”, 

2013, Master of Science in Chemistry, Cleveland State University, College of Sciences and Health Professions. 



Page | 510  

 

126. MS Freeman, ZI Cleveland, Y Qi , Enabling hyperpolarized 129Xe MR spectroscopy and imaging of 

pulmonary gas transfer to the red blood cells in transgenic mice expressing human hemoglobin”, Magnetic 

Resonance in Medicine, Volume 70, Issue 5, pages 1192–1199, November 2013 

 

127. SMOLÍK, Luboš, and Michal HAJ ˇZMAN. "MEASUREMENT OF THE LIGHTWEIGHT ROTOR 

EIGENFREQUENCIES AND TUNING OF ITS MODEL PARAMETERS . Transactions of the VSB – 

Technical University of Ostrava, Mechanical Series ˇ No. 1, 2013, vol. LIX article No. 1942 

 

128. Kumssa, Aida Meredassa. "Tablet User Interface Evaluation for a Portable Ultrasound System and Real-

time Doppler Spectrum Processing." (2013). 

 

129. Circuit level defects in the developing neocortex of Fragile X mice, J Tiago Gonçalves, James E Anstey, 

Peyman Golshani , Carlos Portera-Cailliau, Nature Neuroscience 16, 903–909 (2013) doi:10.1038/nn.3415 

 

130. A Baradarani, J Sadler, JRB Taylor , High-resolution blood flow imaging through the skull, Electronics 

Letters, vol. 40, no. 13, 2014, pp. 798–799. 

 

131. Singh, R. (2014). Tune Measurement at GSI SIS-18: Methods and Applications (Doctoral dissertation, 

Technische Universität). 

 

132. Pander, Tomasz, et al. "An automatic saccadic eye movement detection in an optokinetic nystagmus signal." 

Biomedical Engineering/Biomedizinische Technik 59.6 (2014): 529-543. 

 

133. "Demonstration of Large Coupling-Induced Phase Delay in Silicon Directional Cross-Couplers," 

Westerveld, W.J.; Pozo, J.; Leinders, S.M.; Yousefi, M.; Urbach, H.P., Selected Topics in Quantum Electronics, 

IEEE Journal of , vol.20, no.4, pp.1,6, July-Aug. 2014, doi: 10.1109/JSTQE.2013.2292874 

134. “Probabilistic peak detection for first-order chromatographic data”, M. Lopatka, G. Vivo-Truyols, M.J. 

Sjerps, Analytical Chemica Acta, 2014 DOI: http://dx.doi.org/10.1016/j.aca.2014.02.015 

 

135. "A recursive algorithm for optimizing differentiation." Mashreghi, Ali, and Hadi Sadoghi Yazdi. Journal of 

Computational and Applied Mathematics 263 (2014): 1-13. 

 

136. Cade, D. E. (2014). Detection, classification and ecology of acoustic scattering layers (Doctoral 

dissertation). 

 

137. Grubišić, Vladimir, et al. "Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-

helix transcription factors in otherwise non-differentiation growth conditions." Biomaterials 35.7 (2014): 2188-

2198. 

 

138. “Comparison of Signal Smoothing Techniques for Use in Embedded System for Monitoring and 

Determining the Quality of Biofuels”, Dalton Cézane Gomes Valadares , Rute Cardoso Drebes, Elmar Uwe Kurt 

Melcher, Sérgio de Brito Espínola, Joseana Macêdo Fechine Régis de Araújo, Applied Mechanics and Materials, 

Vols. 448-453, pages 1679-1688, Trans Tech Publications, Switzerland, 2014. DOI: 

10.4028/www.scientific.net/AMM.448-453.1679 

 

139. “Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides," Westerveld, W.J.; 

Leinders, S.M.; Muilwijk, P.M.; Pozo, J.; van den Dool, T.C.; Verweij, M.D.; Yousefi, M.; Urbach, H.P., , 

Selected Topics in Quantum Electronics, IEEE Journal of , vol.20, no.4, pp.1,10, July-Aug. 2014. doi: 

10.1109/JSTQE.2013.2289992 

 

140. “Gaussian-function-based deconvolution method to determine the penetration ability of petrolatum oil into 

in vivo human skin using confocal Raman microscopy”, Chun-Sik Choe, Jürgen Lademann, and Maxim E 

http://dx.doi.org/10.1016/j.aca.2014.02.015


Page | 511  

Darvin, Laser Phys. 24 10560, 2014. (http://iopscience.iop.org/1555-6611/24/10/105601) 

 

141. “Borosilicate Glass Containing Bismuth and Zinc Oxides as a Hot Cell Material for Gamma-Ray Shielding”. 

H. A. Saudi, H. A. Sallam, K. Abdullah. Physics and Materials Chemistry. 2014; 2(1):20-24. doi: 10.12691/pmc-

2-1-4. 

 

142. “Theta-Burst Stimulation of Hippocampal Slices Induces Network-Level Calcium Oscillations and 

Activates Analogous Gene Transcription to Spatial Learning”, Graham K. Sheridan , Emad Moeendarbary, Mark 

Pickering, John J. O'Connor, and Keith J. Murphy, PLOS One, June 20, 2014. DOI: 

10.1371/journal.pone.0100546 

 

143. Mahmoud, Imbaby I., and Mohamed S. El_Tokhy. "Development of coincidence summing and resolution 

enhancement algorithms for digital gamma ray spectroscopy." Journal of Analytical Atomic Spectrometry 29.8 

(2014): 1459-1466. 

 

144. M. Rahmat, W. Maulina, Isnaeni, Miftah, N. Sukmawati, E. Rustami, M. Azis, K.B. Seminar, A.S. Yuwono, 

Y.H. Cho, H. Alatas, Development of a novel ozone gas sensor based on sol–gel fabricated photonic crystal, 

Sensors and Actuators A: Physical, Volume 220, 1 December 2014, Pages 53–61 

 

145. “Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling”, E. Peter 

Magennis,Francisco Fernandez-Trillo,Cheng Sui, Sebastian G. Spain, David J. Bradshaw, David Churchley, 

Giuseppe Mantovani, Klaus Winzer & Cameron Alexander, Nature Materials 13, 748–755 (2014) 

doi:10.1038/nmat3949 (http://www.nature.com/nmat/journal/v13/n7/extref/nmat3949-s1.pdf) 

 

146. A COMPUTERIZED DATABASE FOR BULLET COMPARISON BY CONSECUTIVE MATCHING, 

Ashley Chu, David Read and David Howitt, Federally funded grant report, U.S. Department of Justice, 

Document No. 247771, July 2014. (http://www.crime-scene-investigator.net/computerized-database-for-bullet-

comparisonby-consecutive-matching.pdf) 

 

147. Cade David E., Benoit-Bird Kelly J., (2014), An automatic and quantitative approach to the detection and 

tracking of acoustic scattering layers, Limnology and Oceanography: Methods, 12, doi: 10.4319/lom. 

2014.12.742. 

 

148. Blake, Phillip, et al. "Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon 

resonance to refractive index changes." Journal of Nanophotonics 8.1 (2014): 083084-083084. 
 

149. Sprinkhuizen, Sara M., Jerome L. Ackerman, and Yi Qiao Song. "Influence of ‐bone marrow composition 

on measurements of trabecular microstructure using decay due to diffusion in the internal field MRI: Simulations 

and clinical studies." Magnetic Resonance in Medicine 72.6 (2014): 1499-1508. 

 

150. Canlas, Reich Rechner D., Carlo Noel E. Ochotorena, and Elmer P. Dadios,"Fuzzy-genetic 

photoplethysmograph peak detection." Humanoid, Nanotechnology, Information Technology, Communication 

and Control, Environment and Management\(HNICEM), 2014 International Conference on. IEEE, 2014. 

 

151. Duenas, J. A., et al. "Dependency on the silicon detector working bias for proton–deuteron particle 

identification at low energies." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 

Spectrometers, Detectors and Associated Equipment 714 (2013): 48-52. 

 

152. Sterling, Ryan, and Nathaniel Todd. "USING NEURAL SIGNALS TO PROVIDE INPUT FOR 

COMPUTING APPLICATIONS IN AUTONOMOUS PROSTHETICS." [PDF] from 136.142.82.187 

 

153. Wang, Xiao, Yi-Qing Ni, and Ke-Chang Lin. "Comparison of statistical counting methods in SHM-based 

reliability assessment of bridges." Journal of Civil Structural Health Monitoring: 1-12. 

http://iopscience.iop.org/1555-6611/24/10/105601
http://www.nature.com/nmat/journal/v13/n7/extref/nmat3949-s1.pdf
http://www.crime-scene-investigator.net/computerized-database-for-bullet-comparisonby-consecutive-matching.pdf
http://www.crime-scene-investigator.net/computerized-database-for-bullet-comparisonby-consecutive-matching.pdf


Page | 512  

 

154. González-Sáiz, J. M., et al. "Modulation of the phenolic composition and colour of red wines subjected to 

accelerated ageing by controlling process variables", Food chemistry 165 (2014): 271-281. 

 

155. Kurniawan, Itmy Hidayat, and Sahat Simbolon. "Deteksi dan Pengukuran Spektra dalam Analisis 

Spektrografi Emisi dengan Pengolahan Citra." Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) 

3.1 (2014). 

 

156. Souri, Zoha. EEG-BASED ASSESSMENT OF DRIVER’S PERCEPTION OF TRAFFIC 

ENVIRONMENT. Diss. Lamar University, 2014. 

 

157. Lin, Junfang, et al. "Novel method for quantifying the cell size of marine phytoplankton based on optical 

measurements." Optics express 22.9 (2014): 10467-10476. 

 

158. Hammonds Jr, James S., Kimani A. Stancil, and Charlezetta E. Stokes. "Quality factor temperature 

dependence of a surface phonon polariton resonance cavity." Applied Physics Letters 105.11 (2014): 114107. 

 

159. Mall, U., et al. "Characterization of lunar soils through spectral features extraction in the NIR." Advances in 

Space Research 54.10 (2014): 2029-2040. 

 

160. Bucur, R. V. "Structure of the Voltammograms of the Platinum-Black Electrodes: Derivative Voltammetry 

and Data Fitting Analysis." Electrochimica Acta 129 (2014): 76-84. 

 

161. Teixeira, Carlos Esteves. "Sobre a teoria da difração de raios-X em estruturas tridimensionais." (2014). 

[PDF] from ufmg.br 

 

162. Moon, Jim, et al. "Cable system for generating signals for detecting motion and measuring vital signs." U.S. 

Patent No. 8,738,118. 27 May 2014. 
 

163. Thompson, D. Brian, et al. "A Comparison of R-line Photoluminescence of Emeralds from Different 

Origins." The Journal of Gemmology 34.4 (2014): 334. 

 

164. Oliveira, Raphael Rocha de. "Modelos de calibração multivariada por NIRS para a predição de 

características de qualidade da carne bovina." (2014). PDF] from ufg.br 

 

165. Kirley, M. P. (2014). Electrical conductivity of metal surfaces at terahertz frequencies (Doctoral dissertation, 

The University of Wisconsin-Madison). 

 

166. Anderson, Danielle L., et al. "Spatial and temporal distribution of γH2AX fluorescence in human cell 

cultures following synchrotron-generated X-ray microbeams: lack of correlation between persistent γH2AX foci 

and apoptosis. "Synchrotron Radiation 21.4 (2014). 

 

167. Maxfield, Dane Arthur. KINESIN-1 REGULATES SYNAPTIC STRENGTH BY MEDIATING 

DELIVERY, REMOVAL AND REDISTRIBUTION OF AMPARS. Diss. The 

University of Utah, 2014. 

 

168. Zou, Xiaoyu, Magneto-optical properties of ferromagnetic nanostructures on modified nanosphere 

templates. Thesis, CALIFORNIA STATE UNIVERSITY, LONG BEACH, 2014, 87 pages; 1591619 

 

169. A Carrasco, TA Brown, SG Lomber, Spectral and Temporal Acoustic Features Modulate Response 

Irregularities within Primary Auditory Cortex Columns, PloS one, 2014, DOI: 10.1371/journal.pone.0114550 

 

170. Sirotin, Yevgeniy B., Martín Elias Costa, and Diego A. Laplagne. "Rodent ultrasonic vocalizations are 

bound to active sniffing behavior." Frontiers in behavioral neuroscience 8 (2014). 



Page | 513  

 

171. Luo, Changtong, et al. "Wave system fitting: A new method for force measurements in shock tunnels with 

long test duration." Mechanical Systems and Signal Processing (2015). 

 

172. Bleecker, J. V. (2015). Relating phase separation and thickness mismatch in model lipid membranes 

(Doctoral dissertation). 

 

173. Möbius, Klaus, et al. "Möbius–Hückel topology switching in an expanded porphyrin cation radical as 

studied by EPR and ENDOR spectroscopy." Physical Chemistry Chemical Physics 17.9 (2015): 6644-6652. 

 

174. Tariq, Humera, and SM Aqil Burney. "Low Level Segmentation of Brain MR Slices and Quantification 

Challenges.", NCMCS'15 (2015). Link. 

 

175. Nystad, Helle Emilia. Comparison of Principal Component Analysis and Spectral Angle Mapping for 

Identification of Materials in Terahertz Transmission Measurements. Diss. Master’s thesis, Norwegian 

University of Technology and Science, 2015. 

 

176. Hahn, Christian, et al. "Adjusting rheological properties of concentrated microgel suspensions by particle 

size distribution." Food Hydrocolloids 49 (2015): 183-191. 

 

177. Chiuchiú, D. "Time-dependent study of bit reset." EPL (Europhysics Letters)109.3 (2015): 30002. 

 

178. Taghizadeh, Mohammad Taghi, Nazanin Yeganeh, and Mostafa Rezaei. "The investigation of thermal 

decomposition pathway and products of poly (vinyl alcohol) by TG FTIR." ‐ Journal of Applied Polymer 

Science 132.25 (2015). 

 

179. P Sevusu , Real-time air quality measurements using mobile platforms, 2015, Thesis, [PDF] from 

rutgers.edu 

 

180. D. S. Khvostichenko, J. D. D. Ng, S. L. Perry, M. Menon, P. J. A. Kenis, Effects of detergent β-

octyglucoside and phosphate salt solutions on phase behavior of monoolein mesophases , [PDF] from 

researchgate.net 

 

181. Mahmoud, Imbaby I., and Mohamed S. El_Tokhy. "Advanced signal separation and recovery algorithms for 

digital x-ray spectroscopy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 

Spectrometers, Detectors and Associated Equipment 773 (2015): 104-113. 

 

182. Morrow, Justin D. Surface Microstructure and Properties of Pulsed Laser Micro Melted S7 Tool Steel. The 

University of Wisconsin-Madison, 2015. 

 

183. Ubnoske, Stephen M., et al. "Role of nanocrystalline domain size on the electrochemical double-layer 

capacitance of high edge density carbon nanostructures." MRS Communications (2015): 1-6. 

 

184. MUHAMMAD MUFTI AZIS, “Experimental and kinetic studies of H2 effect on lean exhaust after 

treatment processes: HC-SCR and DOC” CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 

2015 

185. Umesh Rudrapatna, S., et al. "Measurement of distinctive features of cortical spreading depolarizations with 

different MRI contrasts." NMR in Biomedicine 28.5 (2015): 591-600. 

 

186. Kühbach, Markus, Brüggemann, Thiemo, Molodov, Konstantin, Gottstein, Günter. “On a Fast and Accurate 

In-Situ Measuring Strategy for Recrystallization Kinetics and Its Application to an Al-Fe-Si Alloy”, 

Metallurgical and Materials Transactions A, March 2015, Volume 46, Issue 3, pp 1337-1348 

 



Page | 514  

187. D. Y. Lipatov, Y. R. Shaltaeva, V. V. Belyakov, A. V. Golovin, V. S. Pershenkov, V. V. Shurenkov, D. Y. 

Yakovlev, “Modeling of IMS Spectra in Medical Diagnostic Purposes”, 3rd International Conference on 

Nanotechnologies and Biomedical Engineering, Volume 55 of the series IFMBE Proceedings, 2015, pp 404-408 

 

188. Y. Meerten, , Y. Swolfs , J. Baets , L. Gorbatikh , I. Verpoebucurst , “Penetration impact testing of self-

reinforced composites”, Composites Part A: Applied Science and Manufacturing, Volume 68, January 2015, 

Pages 289–295 

 

189. Ivanov, I , Optimal filtering of synchronized current phasor measurements in asteady state, 2015 IEEE 

International Conference on Industrial Technology (ICIT), Pages 1362 - 1367 , 17-19 March 2015 

 

190. L Farge, J Boisse, J Dillet, S André, Wide angle X ray scattering study of the lamellar/fibrillar transition for 

a semi crystalline polymer deformed in tension in relation with the evolution of volume strain, Journal of 

Polymer Science B, Volume 53, Issue 20, 15 October 2015, Pages 1470–1480 

 

191. Patrick Schloth , Precipitation in the high strength AA7449 aluminium alloy: implications on internal 

stresses on different length scales, Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 

June 2015. 

 

192. Guzman, P. (2015). Studying the Physical Stability of BSA at the Bulk Solution and Oil/Water Interface 

(Doctoral dissertation, University of Otago). 

 

193. FlavonQ: An Automated Data Processing Tool for Profiling Flavone and Flavonol Glycosides with Ultra-

High-Performance Liquid Chromatography–Diode Array Detection–High Resolution Accurate Mass–Mass 

Spectrometry, Mengliang Zhang, Jianghao Sun, and Pei Chen*, Anal. Chem., 2015, 87 (19), pp 9974–9981, 

DOI: 10.1021/acs.analchem.5b02624 

 

194. Schulze, H. Georg, and Robin FB Turner. "Development and Integration of Block Operations for Data 

Invariant Automation of Digital Preprocessing and Analysis of Biological and Biomedical Raman Spectra." 

Applied spectroscopy 69.6 (2015): 643-664. 

 

195. Hutchison, Richard Stephen. Novel high refractive index, thermally conductive additives for high 

brightness white LEDs. Diss. Rensselaer Polytechnic Institute, 2015. 

 

196. Magnotti, G., et al. "Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and 

propane for combustion applications." Journal of Quantitative Spectroscopy and Radiative Transfer 163 (2015): 

80-101. 

 

197. Chen, Rex Chin-Hao. "Spectral and Temporal Interrogation of Cerebral Hemodynamics Via High-Speed 

Laser Speckle Contrast Imaging." (2015). 

 

198. Maistry, N. (2015). Investigating the concept of Fraunhofer lines as a potential method to detect corona in 

the wavelength region 338nm-405nm during the day (Doctoral dissertation). 

 

199. Parker, Michael J. Coupling Nuclear Induced Phonon Propagation with Conversion Electron Moessbauer 

Spectroscopy. No. AFIT-ENP-MS-15-J-054. AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-

PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT, 2015. 

 

200. Maistry, Nattele. Investigating the concept of Fraunhofer lines as a potential method to detect corona in the 

wavelength region 338nm-405nm during the day. Diss. 2015. 

 

201. Liu, Yanping, et al. "Applications of Savitzky-Golay Filter for Seismic Random Noise Reduction." Acta 

Geophysica (2015). 



Page | 515  

 

202. Kojimoto, N. C. (2015). Ultrasonic inspection methods for defect detection and process control in roll-to-

roll flexible electronics manufacturing (Doctoral dissertation, Massachusetts Institute of Technology). 

 

203. Sheehan, Terry L., and Richard A. Yost. "What’s the most meaningful standard for mass spectrometry: 

instrument detection limit or signal-to-noise ratio" Current Trends Mass Spectrometry 13 (2015): 16-22. 

 

204. Bleecker, J. V. (2015). Relating phase separation and thickness mismatch in model lipid membranes 

(Doctoral dissertation). 

 

205. Ilewicz, Witold, et al. "Comparison of baseline estimation algorithms for chromatographic signals." 

Methods and Models in Automation and Robotics (MMAR), 2015 20th International Conference on. IEEE, 2015. 

 

206. Massimi, Federico. Sviluppo di metodi integrati basati sulle tecniche di nanoindentazione e del fascio 

ionico focalizzato (FIB) per la caratterizzazione, risolta nello spazio, delle proprietà meccaniche dei materiali", 

ArcAdiA." (2015). http://hdl.handle.net/2307/5329 

 

207. Swoboda, Daniel Maximilian, et al. "A Comprehensive Study of Simple Digital Filters for Botball IR 

Detection Techniques." PDF link. 

 

208. CE Funes, EF Cromwell System and method for determining a baseline measurement for a biological 

response curve, US Patent App. 13/308,021, 2 

 

209. AD Beyene, R Bluffstone, Z Gebreegziabher , The Improved Biomass Stove Saves Wood, But How Often 

Do People Use It?, [TXT] from worldbank.com 

 

210. Raunio, Saida. "IMMUNOASSAY TEST FOR A QVANTITATIVE DETERMINATION OF 

HELICOBACTER PYLORI ANTIBODY IN BLOOD DONORS" (2015). PDFAlt, Daniel M. Design and 

Commissioning of a 16.1 MHz Multiharmonic Buncher for the ReAccelerator at NSCL. ProQuest, 2016. 

 

211. Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and 

automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 474. 

 

212. Nguyen, Tuan Ngoc. "An algorithm for extracting the PPG Baseline Drift in realtime." 

(2016). PDF link. 

 

213. Maitre, Léa. "Metabonomic and epidemiological analyses of maternal parameters and exposures during 

pregnancy and their influence on fetal growth amongst the INMA birth cohort." (2016). PDF link. 

 

214. Lipatov, D. Y., et al. "Modeling of IMS Spectra in Medical Diagnostic Purposes." 3rd International 

Conference on Nanotechnologies and Biomedical Engineering. Springer Singapore, 2016. 

 

215. Tong, Xia, et al. "Recursive Wavelet Peak Detection of Analytical Signals." Chromatographia 79.19-20 

(2016): 1247-1255. 
 

216. Wang, Xing. Effects of Interfaces on Properties of Cladding Materials for Advanced Nuclear Reactors. The 

University of Wisconsin-Madison, 2016. PDF link. 
 

217. Dang, Hue, Marian Dekker, Jason Farquhar, and Tom Heskes. "Processing and analyzing functional near-

infrared spectroscopy data." (2016). 
 

218. Damavandi, H. G. (2016). Data analytics, interpretation and machine learning for environmental forensics 

using peak mapping methods (Doctoral dissertation, The University of Iowa). 
 

http://hdl.handle.net/2307/5329


Page | 516  

219. Gill, Ruby K., et al. "The effects of laser repetition rate on femtosecond laser ablation of dry bone: a 

thermal and LIBS study." Journal of biophotonics 9.1-2 (2016): 171-180. 
  

220. Performance evaluation and optimization of X-ray stress measurement for nickel aluminium bronze based 

on the Bayesian method. Journal of Applied Crystallography, 2016 – scripts.iucr.org 
 

221. Top-down modulation of stimulus drive via beta-gamma cross-frequency interaction. CG Richter, WH 

Thompson, CA Bosman, P Fries - bioRxiv, 2016 – biorxiv.org 
 

222. Azpúrua, Marco A., Marc Pous, and Ferran Silva. "Decomposition of Electromagnetic Interferences in the 

Time-Domain." (2016). 
 

223. Barros, Rodrigo Emanoel de Britto Andrade. SISTEMA DE INTERROGAÇÃO DE REDES DE BRAGG: 

PRIMEIROS PASSOS NA CRIAÇÃO DE UM PROTÓTIPO. Diss. Universidade Federal do Rio de Janeiro, 

2016. 
 

224. Li, Yuanlu, et al. "A novel signal enhancement method for overlapped peaks with noise immunity." 

Spectroscopy Letters 49.4 (2016): 285-293. 
 

225. Hatterschide, Joshua. "Retroviral-RNA Structure and Function: Investigating the role of aminoacyl-tRNA 

synthetases and retroviral-RNA structural elements in the initiation of reverse transcription." (2016). 
 

226. Guizani, Chamseddine, et al. "Biomass char gasification by H 2 O, CO 2 and their mixture: Evolution of 

chemical, textural and structural properties of the chars." Energy 112 (2016): 133-145. 
 

227. Wagner, C. F. (2016). Transition from transparency to hole-boring in relativistic laser-solid interactions at 

the Texas Petawatt (Doctoral dissertation). 

 

228. Bocaege, E., and S. Hillson. "Disturbances and noise: Defining furrow form enamel hypoplasia." American 

journal of physical anthropology 161.4 (2016): 744-751 
 

229. Merla, Yu, et al. "Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries." 

Journal of Power Sources 331 (2016): 224-231. 
 

230. Besemer, Matthieu, et al. "Identification of Multiple Water–Iodide Species in Concentrated NaI Solutions 

Based on the Raman Bending Vibration of Water." The Journal of Physical Chemistry A 120.5 (2016): 709-714. 
  

231. Cairone, Fabiana, Salvina Gagliano, and Maide Bucolo. "Experimental study on the slug flow in a 

serpentine microchannel." Experimental Thermal and Fluid Science 76 (2016): 34-44. 
 

232. Davison, Adrian K., et al. "Objective Micro-Facial Movement Detection Using FACS-Based Regions and 

Baseline Evaluation." arXiv preprint arXiv:1612.05038 (2016). 
 

233. Ninh, Giang Nguyen, et al. "Radioisotope identification method for poorly resolved gamma-ray spectrum of 

nuclear security concern." AIP Conference Proceedings. Vol. 1704. No. 1. AIP Publishing, 2016. 
 

234. Brachi, Paola, et al. "Pseudo-component thermal decomposition kinetics of tomato peels via 

isoconversional methods." Fuel Processing Technology 154 (2016): 243-250. 
 

235. Lee, Hansol, et al. "Flow suppressed hyperpolarized 13C chemical shift imaging using velocity optimized 

bipolar gradient in mouse liver tumors at 9.4 T.", Magnetic resonance in medicine (2016). 
 

236. Wu, B., et al. "Novel application of differential thermal voltammetry as an in-depth state-of-health 

diagnosis method for lithium-ion batteries." PDF file. 
 

237. Creese, Andrew J., and Helen J. Cooper. "Separation of cis and trans Isomers of Polyproline by FAIMS 

Mass Spectrometry." Journal of The American Society for Mass Spectrometry 27.12 (2016): 2071-2074. 
 



Page | 517  

238. Kvyetnyy, Roman, et al. "Improving the quality perception of digital images using modified method of the 

eye aberration correction." Photonics Applications in Astronomy, Communications, Industry, and High-Energy 

Physics Experiments 2016. Vol. 10031. International Society for Optics and Photonics, 2016. 
 

239. Myers, G. A., Turner, L. G., Morgan, Q., & Pearce, J., “Raman Spectroscopy-detecting SOx and NOx in the 

Precipice Sandstone”. (2016) 
 

240. Pancholi, Manthan, et al. "Relative Translation and Rotation Calibration Between Optical Target and 

Inertial Measurement Unit." International Conference on Sensor Systems and Software. Springer, Cham, 2016. 
 

241. Ferriss, Elizabeth, Terry Plank, and David Walker. "Site-specific hydrogen diffusion rates during 

clinopyroxene dehydration." Contributions to Mineralogy and Petrology 171.6 (2016): 55. 

 

242. Roy, Sujan Kumar, Wei-Ping Zhu, and Benoit Champagne. "Single channel speech enhancement using 

subband iterative Kalman filter." Circuits and Systems (ISCAS), 2016 IEEE International Symposium on. IEEE, 

2016. 
 

243. Langaas, Gjertrud Louise. "Measurements of radioactivity in plant and soil samples taken near a nuclear 

power plant." (2016). PDF link. 
 

244. Benigni, Paolo, and Francisco Fernandez-Lima. "Oversampling selective accumulation trapped ion mobility 

spectrometry coupled to FT-ICR MS: fundamentals and applications." Analytical chemistry 88.14 (2016): 7404-

7412. 
 

245. Geiger, Matthew, and Michael T. Bowser. "Effect of fluorescent labels on and amino acid sample 

dimensionality in two dimensional nLC× μFFE separations." Analytical chemistry 88.4 (2016): 2177-2187. 
 

246. Aldokhail, A. M. (2016). Automated Signal to Noise Ratio Analysis for Resonance Imaging Using a Noise 

Distribution Model (Doctoral dissertation, University of Toledo). 
 

247. Fasching, Joshua, et al. "Automated coding of activity videos from a study." Robotics and Automation 

(ICRA), 2016 IEEE International Conference. IEEE, 2016. 
 

248. Bleecker, J. V., Cox, P. A., Foster, R. N., Litz, J. P., Blosser, M. C., Castner, D. G., & Keller, S. L. (2016). 

Thickness Mismatch of Coexisting Liquid Phases in Non-Canonical Lipid Bilayers. The journal of physical 

chemistry. B, 120(10), 2761. 
 

249. Joshi, Bijal, and Nitu Anil Kumar. "Computationally efficient data rate mismatch compensation for 

telephony clocks." U.S. Patent No. 9,514,766. 6 Dec. 2016. 
 

250. Vallet, Aurélien, et al. "A multi-dimensional statistical rainfall threshold for deep landslides based on 

groundwater recharge and support vector machines." Natural Hazards 84.2 (2016): 821-849. 
  

251. Wang, Lili, Paul DeRose, and Adolfas K. Gaigalas. "Assignment of the number of equivalent reference 

fluorophores to dyed microspheres." J. Res. Nat. Ins. Stand. Technol. 121 (2016): 269-286. 
 

252. Skaret, H. B. (2016). The Arctic Sea Ice-Melting During Summer or not Freezing 

in Winter? (Master's thesis, The University of Bergen). PDF link. 
 

253. Tuan T. Tran, et. al., Synthesis of Ge1−xSnx alloys by ion implantation and pulsed laser melting: Towards a 

group IV direct bandgap material, Journal of Applied Physics 119(18):183102, 2016,  DOI: 10.1063/1.4948960 
 

363. Choi, Jae Sung, et al. "A New Automated Cell Counting Program by Using Hough Transform-Based 

Double Edge." Advances in Computer Science and Ubiquitous Computing. Springer, Singapore, 2016. 712-716. 
 

253. Van der Rest, Guillaume, Human Rezaei, and Frédéric Halgand. "Monitoring Conformational Landscape of 

Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry." Journal of The American 

Society for Mass Spectrometry 28.2 (2017): 303-314. 



Page | 518  

 

254. Mirsafavi, Rustin Y., et al. "Detection of papaverine for the possible identification of illicit opium 

cultivation." Analytical Chemistry 89.3 (2017): 1684-1688. 
 

255. Myers, Grant A., Kelsey Kehoe, and Paul Hackley. "Analysis of Artificially Matured Shales with Confocal 

Laser Scanning Raman Microscopy: Applications to Organic Matter Characterization." Unconventional 

Resources Technology Conference (URTEC), 2017. 
 

256. Torres, Andrei BB, José Adriano Filho, Atslands R. da Rocha, Rubens Sonsol Gondim, and José Neuman de 

Souza. "Outlier detection methods and sensor data fusion for precision agriculture", 2017, PDF link. 
 

257. Desmet, F., Lesaffre, M., Six, J., Ehrlé, N., & Samson, S. (2017). Multimodal analysis of synchronization 

data from patients with dementia. In ESCOM 2017. 
 

258. Seeber, Renato, and Alessandro Ulrici. "Analog and digital worlds: Part 2. Fourier analysis in signals and 

data treatment." ChemTexts 3.2 (2017): 8. 
 

259. Mustafa, M. A., et al. "Nonintrusive Freestream Velocity Measurement in a Large-Scale Hypersonic Wind 

Tunnel." AIAA Journal (2017). 
 

260. Suárez-Cortés, Pablo, et al. "Ned-19 inhibition of parasite growth and multiplication suggests a role for 

NAADP mediated signaling in the asexual development of Plasmodium falciparum." Malaria Journal 16.1 

(2017): 366. 
 

261. Catalbas, M. C., & Dobrisek, S., 3D Moving Sound Source Localization via Conventional Microphones. 

Elektronika ir Elektrotechnika, 23(4), 63-69. (2017). 
 

262. Du, Zhenhui, et al. "High-sensitive carbon disulfide sensor using wavelength modulation spectroscopy in 

the mid-infrared fingerprint region." Sensors and Actuators B: Chemical 247 (2017): 384-391. 
 

263. Hamilton, N. E., Mahjoub, R., Laws, K. J., & Ferry, M. (2017). A blended NPT/NVT scheme for simulating 

metallic glasses. Computational Materials Science, 130, 130-137. 
 

264. Sun, Y. C., Huang, C., Xia, G., Jin, S. Q., & Lu, H. B. (2017). Accurate wavelength calibration method for 

compact CCD spectrometer. JOSA A, 34(4), 498-\505. 
 

265. Mikhailov, I. F., et al. "Rapid diagnostics of urinary iodine using a portable EDXRF spectrometer." Journal 

of X-Ray Science and Technology Preprint (2017): 1-7. PDF link. 
 

266. Bianchi, Davide, et al. "A wavelet filtering method for cumulative gamma spectroscopy used in wear 

measurements." Applied Radiation and Isotopes 120 (2017): 51-59. 
 

267. Xiong, Zheng, et al. "Automated Phase Segmentation for Large-Scale X-ray Diffraction Data Using a 

Graph-Based Phase Segmentation (GPhase) Algorithm." ACS Combinatorial Science 19.3 (2017): 137-144 
 

268. Jiménez-Carvajal, C., et al. "Weighing lysimetric system for the determination of the water balance during 

irrigation in potted plants." Agricultural Water Management 183 (2017): 78-85. 
 

269. Acciarri, R., et al. "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC." arXiv 

preprint arXiv:1705.07341 (2017). PDF link. 
 

270. Mathault, Jessy, Hamza Landari, Frederic Tessier, Paul Fortier, and Amine Miled. "Biological Modeling 

Challenges in a Multiphysics Approach." Circuits and Systems (MWSCAS), 2017 IEEE 60th International 

Midwest Symposium 
 

271. Weiss, Charles J. "Scientific Computing for Chemists: An Undergraduate Course in Simulations, Data 

Processing, and Visualization." Journal of Chemical Education 94.5 (2017): 592-597. 
 

272. Kianifar, Rezvan, et al. "Automated Assessment of Dynamic Knee Valgus and Risk of Knee Injury During 



Page | 519  

the Single Leg Squat." IEEE Journal of Translational Engineering in Health and Medicine 5 (2017): 1-13. 
 

273. Willem deGroot, A., et al. "Molecular Structural Characterization of Polyethylene." Handbook of Industrial 

Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and 

Markets (2017): 139. 
 

274. Mertens, Andreas, and Josef Granwehr. "Two-dimensional impedance data analysis by the distribution of 

relaxation times." Journal of Energy Storage 13 (2017): 401-408. 
 

275. Wu, Yingwen, and Long Chen. "Comparison of spectra processing methods for SERS based quantitative 

analysis." Information, Cybernetics and Computational Social Systems (ICCSS), 2017 4th International 

Conference on. IEEE, 2017. 
 

276. Dehnavi, Sahar, Yasser Maghsoudi, and Mohammadjavad Valadanzoej. "Using spectrum differentiation and 

combination for target detection of minerals." International Journal of Applied Earth Observation and 

Geoinformation 55 (2017): 9-20. 
 

278. Jia, Zhenhua, et al. "HB-phone: a bed-mounted geophone-based heartbeat monitoring system: demo 

abstract." Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor 

Networks. ACM, 2017. 
 

279. Gozé, Perrine, et al. "Effects of ozone treatment on the molecular properties of wheat grain proteins." 

Journal of Cereal Science 75 (2017): 243-251. 
 

280. Giron-Sierra, Jose Maria. "Periodic Signals." Digital Signal Processing with Matlab Examples, Volume 1. 

Springer Singapore, 2017. 3-28. 
 

281. Shojaosadati, Seyed Abbas, Sajjad Naeimipour, and Ahmad Fazeli. "FTIR Investigation of secondary 

structure of Reteplase inclusion bodies produced in Escherichia coli in terms of urea concentration (Spring 

2017)." Iranian Journal of Pharmaceutical Research (2017). 
 

282. Peng, Jiyu, et al. "Rapid Identification of Varieties of Walnut Powder Based on Laser-Induced Breakdown 

Spectroscopy." (2017): 19-28. Abstract. 
 

283. Sun, Lili, et al. "Comprehensive evaluation of chemical stability of Xuebijing injection based on 

multiwavelength chromatographic fingerprints and multivariate chemometric techniques." Journal of Liquid 

Chromatography & Related Technologies 40.14 (2017): 715-724. 
 

284. Thompson, D. Brian, et al. "Photoluminescence Spectra of Emeralds from Colombia, Afghanistan, and 

Zambia." Gems & Gemology 53.3 (2017): 296-311. 
 

285. Choorat, P., et al. "Applied integral intensity projection to find the numbers of the parking spots." 

Knowledge and Smart Technology (KST), 2017 9th International Conference on. IEEE, 2017. 
 

286. Phillips, James William, and Yi Jin. "Devices and methods of low frequency magnetic stimulation therapy." 

U.S. Patent No. 9,649,502. 16 May 2017. 
 

287. Augustyns, Valérie, et al. "Evidence of tetragonal distortion as the origin of the ferromagnetic ground state 

in γ − Fe nanoparticles." Physical Review B 96.17 (2017):174410. 
 

288. Sprague-Klein, Emily A., et al. "Observation of Single Molecule Plasmon-Driven Electron Transfer in 

Isotopically Edited 4, 4-Bipyridine Gold Nanosphere Oligomers." Journal of the American Chemical Society 

139.42 (2017): 15212-15221. 
 

289. Mohan, Varun, and Prashant K. Jain. "Spectral Heterogeneity of Hybrid Lead Halide Perovskites 

Demystified by Spatially Resolved Emission." The Journal of Physical Chemistry C121.35 (2017): 19392-19400. 
 

290. Cuss, Chad W., Iain Grant-Weaver, and William Shotyk. "AF4-ICPMS with the 300 Da Membrane to 



Page | 520  

Resolve Metal-Bearing “Colloids”< 1 kDa: Optimization, Fractogram Deconvolution, and Advanced Quality 

Control." Analytical Chemistry 89.15 (2017): 8027-8035. 
  

291. Shi, Xiaoyu, et al. "Super-Resolution Microscopy Reveals That Disruption of Ciliary Transition Zone 

Architecture Is a Cause of Joubert Syndrome." bioRxiv (2017): 142042. 
 

292. Robinson, M. T., et al. "Photocatalytic photosystem I/PEDOT composite films prepared by vapor-phase 

polymerization." Nanoscale 9.18 (2017): 6158-6166. 
 

293. Ros Martí, Marc. Deep convolutional neural network architecture for effective Image analysis. MS thesis. 

Universitat Politècnica de Catalunya, 2017. 
 

294. Jackson, Philip J., et al. "Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas 

palustris reaction center-light harvesting 1 core complex." Biochimica et Biophysica Acta (BBA)-Bioenergetics 

(2017). 
 

295. Johnson, Alexander C., and Michael T. Bowser. "High-Speed, Comprehensive, Two-Dimensional 

Separations of Peptides and Small Molecule Biological Amines Using Capillary Electrophoresis Coupled with 

Micro Free Flow Electrophoresis." Analytical chemistry 89.3 (2017): 1665-1673. 
 

296. Toose, Peter, et al. "Radio-frequency interference mitigating hyperspectral L band radiometer." 

Geoscientific Instrumentation, Methods and Data Systems 6.1 (2017): 39. 
 

297. Pajankar, Ashwin. "Filters and Their Application." Raspberry Pi Image Processing Programming. Apress, 

2017. 99-110. 
 

298. Taraszewski, Michał, and Janusz Ewertowski. "Complex experimental analysis of rifle-shooter interaction." 

Defence Technology (2017). 
 

299. Manlises, Cyrel Ontimare, et al. "Characterization of an ISFET with Built-in Calibration Registers through 

Segmented Eight-Bit Binary Search in Three-Point Algorithm Using FPGA." Journal of Low Power Electronics 

and Applications 7.3 (2017):19. 
 

300. Kim, Geonha, et al. "Soil sampling strategies for site assessments in petroleum contaminated areas." 

Environmental geochemistry and health 39.2 (2017): 293-305. 
 

301. Lanevski, Dmitri, Koit Mauring, and Eric Tkaczyk. "Interference filter tilting to detect a polycyclic 

aromatic hydrocarbon at the second harmonic of wavelength modulation frequency." Applied Optics 56.11 

(2017): 3155-3161. 
 

302. Hong, Tae-Kee, Iason Rusodimos, and Myung-Hoon Kim. "Higher order derivative voltammetry for 

reversible and irreversible electrode processes under spherical diffusion." Journal of Electroanalytical Chemistry 

785 (2017): 255-264. 
 

303. Root, Katharina, et al. "Insight into Signal Response of Protein Ions in Native ESI-MS from the Analysis of 

Model Mixtures of Covalently Linked Protein Oligomers." Journal of The American Society for Mass 

Spectrometry (2017): 1-13. 
 

304. Du, Zhenhui, et al. "High-sensitive carbon disulfide sensor using wavelength Modulation spectroscopy in 

the mid-infrared fingerprint region." Sensors and Actuators B: Chemical 247 (2017): 384-391. 
 

305. Elzanfaly, Eman S., et al. "Zero and second derivative synchronous fluorescence spectroscopy for the 

quantification of two non-classical β lactams in pharmaceutical vials: Application to stability studies." 

Luminescence (2017). 
 

306. Ferraz de Menezes, Rebeca, et al. "Fs laser ablation of teeth is temperature limited and provides information 

about the ablated components." Journal of Biophotonics (2017). 
 

307. Huang, Yi-Fan, et al. "Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated 



Page | 521  

intracellular cargo transport by coherent brightfield microscopy." Nanoscale 9.19 (2017): 6567-6574. 
 

308. Mahmud, Akib. "Hardware in the Loop (HIL) Rig Design and Electrical Architecture." (2017).  
 

309. Beyerl, Thomas, et al. Reducing Complexity in Routing of Non-Standard Intersections, to Aid in 

Autonomous Vehicle Navigation. No. 2017-01-0103. SAE Technical Paper, 2017. 
 

310. Lee, Hansol, et al. "Flow‐suppressed hyperpolarized 13C chemical shift imaging using velocity‐optimized 

bipolar gradient in mouse liver tumors at 9.4 T." Magnetic resonance in medicine 78.5 (2017): 1674-1682. 
 

311. Haines, Grant E., and S. Laurie Sanderson. "Integration of swimming kinematics and ram suspension 

feeding in a model American paddlefish, Polyodon spathula." Journal of Experimental Biology (2017): jeb-

166835. 
 

312. Zhang, Huajun, and Y. I. N. G. Ning. "Method for Analyzing Mixture Components." U.S. Patent 

Application 15/120,974, filed March 2, 2017. 
 

313. Soto Morras, Marta. "Implementation and Analysis of Real Time Optical Flow Solutions for GPU 

architectures." (2017). 
 

314. Pajankar, Ashwin. Raspberry Pi Image Processing Programming. Apress, 2017. 
 

315. Vintila, Florentin, Thomas C. Kübler, and Enkelejda Kasneci. "Pupil response as an indicator of hazard 

perception during simulator driving." Journal of Eye Movement Research 10.4 (2017): 3. 
 

316. Humera Tariq, Abdul Muqeet, S.M.Aqil Burney, Humera Azam, “Otsu’s Segmentation….”, J. Theoretical 

and Applied Information Technology, Vol.95. No 22, 2017 
 

317 Liu, Yu, et al. "Supersonic transient magnetic resonance elastography for quantitative assessment of tissue 

elasticity." Physics in Medicine & Biology 62.10 (2017): 4083. 
 

318. Manar M. Ouda, et. Al., Development of Pileup Recovery Algorithms by Peak Detection Method of Digital 

Gamma Ray Spectroscopy, 34th National Radio Science Conference (NRSC), 2017. Link to full paper. 
 

319. Xu, Jun-Li, Aoife A. Gowen, and Da-Wen Sun. "Time series hyperspectral chemical imaging (HCI) for 

investigation of spectral variations associated with water and plasticizers in casein-based biopolymers." Journal 

of Food Engineering 218 (2018): 88-105. 
 

320. Smith, Brad C., Bachana Lomsadze, and Steven T. Cundiff. "Optimum repetition rates for dual-comb 

spectroscopy." Optics express 26.9 (2018): 12049-12056. 
 

321. Butler, C. W., et al. "Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display 

Increased Synaptic Strength." eNeuro 5.3 (2018). 
 

322. Pukhlyakova, Ekaterina, et al. "β-Catenin–dependent mechanotransduction dates back to the common 

ancestor of Cnidaria and Bilateria." Proceedings of the National Academy of Sciences 115.24 (2018): 6231-6236.  
 

323. Cheng, Jie. Peak Detection to Count Gold Nanoparticles Translocations in Nanopipette. Diss. UC Santa 

Cruz, 2018.  
 

324. Bonde, Amelie, et al. "VVRRM: Vehicular Vibration-Based Heart RR-Interval Monitoring System. 

"Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications. ACM, 2018.  
 

335. Paige, Cristen, et al. "Characterizing the Normative Voice Tremor Frequency in Essential Vocal Tremor." 

JAMA Otolaryngology–Head & Neck Surgery (2018).  
 

326. Myers, Grant A., Kelsey Kehoe, and Paul Hackley. "Development of Raman Spectroscopy as a Thermal 

Maturity Proxy in Unconventional Resource Assessment." Unconventional Resources Technology Conference, 

Houston, Texas, 23-25 July 2018. Society of Exploration Geophysicists, American Association of Petroleum 

Geologists, Society of Petroleum Engineers, 2018. 
 

327. Taraszewski, Michal, and Janusz Ewertowski. "Small-Caliber Grenade Projectile Applicable to Individual 

https://www.researchgate.net/publication/315865878_Development_of_pileup_recovery_algorithms_by_peak_detection_method_of_digital_gamma_ray_spectroscopy


Page | 522  

Grenade Launchers." Defence Science Journal 68.5 (2018).  
 

328. Trinh, N. D., et al. "Double differential neutron spectra generated by the interaction of a 12 MeV/nucleon 

36S beam on a thick natCu target." Nuclear Instruments and Methods in Physics Research Section A: 

Accelerators, Spectrometers, Detectors and Associated Equipment 896 (2018): 152-164. 
 

329. Swainsbury, David JK, et al. "Probing the local lipid environment of the Rhodobacter sphaeroides 

cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic 

acid." Biochimica et Biophysica Acta (BBA)-Bioenergetics 1859.3 (2018): 215-225. 
 

330. Reynes, Julien, et al. "Experimental constraints on hydrogen diffusion in garnet." Contributions to 

Mineralogy and Petrology 173.9 (2018): 69. 
 

331. Omer, Muhammad, and Elise C. Fear. "Automated 3D method for the construction of flexible and 

reconfigurable numerical breast models from MRI scans." Medical & biological engineering & computing 56.6 

(2018): 1027-1040. 
 

332. Klein, Tobias, et al. "Influence of Liquid Structure on Fickian Diffusion in Binary Mixtures of n-Hexane 

and Carbon Dioxide Probed by Dynamic Light Scattering, Raman Spectroscopy, and Molecular Dynamics 

Simulations." The Journal of Physical Chemistry B (2018). 
 

333. Kielar, A., T. Deschamps, R. Jokel, and J. A. Meltzer. "Abnormal language-related oscillatory responses in 

primary progressive aphasia." NeuroImage: Clinical 18 (2018): 560-574. 
 

334. Prodanov, Milana, et al. "Software Module for Processing EEG Signals in a Biofeedback Based 

System." 2018 Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE, 2018. 
 

335. Fratini, Marta, et al. "Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in 

Clathrin-Mediated Endocytosis." ACS infectious diseases (2018). 
 

336. Siliņš, Kaspars. Plasma Enhanced Chemical-and Physical-Vapor Depositions Using Hollow Cathodes. Diss. 

Acta Universitatis Upsaliensis, 2018. 
 

337 Schito, Andrea, and Sveva Corrado. "An automatic approach for characterization of the thermal maturity of 

dispersed organic matter Raman spectra at low diagenetic stages." Geological Society, London, Special 

Publications 484 (2018): SP484-5. 
 

338. Krystal T. Vasquez, et. al., Low-pressure gas chromatography with chemical ionization mass 

Spectrometry for quantification of multifunctional organic compounds in the atmosphere, Atmos. Meas. Tech. 

2018. PDF. 
 

339. Pushkarsky, I., Tseng, P., Black, D., France, B., Warfe, L., Koziol-White, C. J., ... & Damoiseaux, R. (2018). 

Elastomeric sensor surfaces for high-throughput single-cell force cytometry (vol 2, pg 124, 2018). 
 

340. Ismail, Omar, et al. "The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds 

in Liquid and Supercritical Fluid Chromatography." Molecules 23.10 (2018): 2709. 
 

338. Hellinghausen, Garrett, M. Farooq Wahab, and Daniel W. Armstrong. "Improving visualization of trace 

components for quantification using a power law-based integration approach." Journal of Chromatography 

A 1574 (2018): 1-8. 
 

339. Khundadze, Nana, et al. "On our way to sub-second separations of enantiomers in high-performance liquid 

chromatography." Journal of Chromatography A 1572 (2018): 37-43. 
 

344. Roy, Daipayan, et al. "Frontiers in Ultrafast Chiral Chromatography." LC• GC Europe (2018): 308. 
 

345. Maddalena, Riccardo, Christopher Hall, and Andrea Hamilton. "Effect of silica particle size on the 

formation of calcium silicate hydrate using thermal analysis." Thermochimica Acta (2018). 
 

346. Darweesh, Samar Ahmed, et al. "Advancement and Validation of New Derivative Spectrophotometric 

Method for Individual and Simultaneous Estimation of Diclofenac sodium and Nicotinamide." Oriental Journal 

https://www.atmos-meas-tech-discuss.net/amt-2018-223/amt-2018-223.pdf


Page | 523  

of Chemistry 34.3 (2018). 
 

347. Li, Yuanlu, and Min Jiang. "Spatial-fractional order diffusion filtering." Journal of Mathematical 

Chemistry 56.1 (2018): 257-267. 
 

348. Huang, Dian, et al. "High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug 

Resistance and Heterogeneity." Analytical chemistry 90.5 (2018): 3299-3306. 
 

349. Wu, Rihan, et al. "Demonstration of time-of-flight technique with all-optical modulation and MCT 

detection in SWIR/MWIR range." Emerging Imaging and Sensing Technologies for Security and Defence III; 

and Unmanned Sensors, Systems, and Countermeasures. Vol. 10799. International Society for Optics and 

Photonics, 2018. 
 

350. Pontremoli, Carlotta, et al. "Insight into the interaction of inhaled corticosteroids with human serum 

albumin: A spectroscopic-based study." Journal of pharmaceutical analysis 8.1 (2018): 37-44. 
 

351. Zhao, Chenjiang. Signal Processing: Peak Detection. Diss. UC Santa Cruz, 2018. 
 

352. Coelho, Alan A. "Deconvolution of instrument and Kα2 contributions from X-ray powder diffraction 

patterns using nonlinear least-squares with penalties." Journal of Applied Crystallography 51.1 (2018): 112-123. 
 

353. Al-gawwam, Sarmad, and Mohammed Benaissa. "Robust Eye Blink Detection Based on Eye Landmarks 

and Savitzky–Golay Filtering." Information 9.4 (2018): 93. 
 

354. Yilmaz, Cagatay Murat, Cemal Kose, and Bahar Hatipoglu. "A Quasi-probabilistic distribution model for 

EEG Signal classification by using 2-D signal representation." Computer methods and programs in 

biomedicine 162 (2018): 187-196. 
 

355. Gou, Yonggang, et al. "Motion parameter estimation and measured data correction derived from blast-

induced vibration: new insights." Measurement (2018). 
 

356. Hakala, Teemu, et al. "Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric 

Calibration and System Tests for Forest Reflectance Characterization." Sensors (Basel, Switzerland) 18.5 (2018). 
 

357. Mihálik, A., R. Ďurikovič, and M. Sejč. "Application of Motion Capture Attributes to Individual 

Identification under Corridor Surveillance." Journal of Applied Mathematics, Statistics and Informatics 14.1 

(2018): 37-56. 
 

358. Kianifar, Rezvan, and Dana Kulic. "Automatic assessment of the squat quality and risk of knee injury in the 

single leg squat." U.S. Patent Application 15/826,259, filed October 11, 2018. 
 

359. Parziale, Nick J., et al. "Amplification and Structure of Streamwise-Velocity Fluctuations in Four Shock-

Wave/Turbulent Boundary-Layer Interactions." 2018 Fluid Dynamics Conference. 2018. 
 

360. Simon, David M., and Mark T. Wallace. "Integration and Temporal Processing of Asynchronous 

Audiovisual Speech" Journal of cognitive neuroscience 30.3 (2018): 319-337. 
 

361. Richter, Craig G., Richard Coppola, and Steven L. Bressler. "Top-down beta oscillatory signaling conveys 

behavioral context in early visual cortex." Scientific reports 8.1 (2018): 6991. 
 

362. Dinç, Erdal, and Zehra Yazan. "Wavelet transform-based UV spectroscopy for pharmaceutical analysis" 

Frontiers in Chemistry 6 (2018). 
 

363. Bartussek, Jan, and Fritz-Olaf Lehmann. "Sensory processing by motoneurons: a numerical model for low-

level flight control in flies." Journal of The Royal Society Interface 15.145 (2018): 20180408. 
 

364. Ben Hendrickson, Ralf Widenhorn, Paul R. DeStefano and Erik Bodegom, Detection and Reconstruction of 

Random Telegraph Signals Using Machine Learning, Image Processing (ICIP), Athens, 2018, pp. 2441-2445. 

Link. 
 

365. Oeltzschner, Georg, et al. "Hadamard editing of glutathione and macromolecule‐suppressed GABA." NMR 

https://static1.squarespace.com/static/5cc5cf7eda50d357e986b6f0/t/5cddf6dc4d9e75000152d53a/1558050526419/ML+IEEE+Hendrickson.pdf


Page | 524  

in Biomedicine 31.1 (2018): e3844. 
 

364. Nocco, Mallika A., Matthew D. Ruark, and Christopher J. Kucharik. "Apparent electrical conductivity 

predicts physical properties of coarse soils." Geoderma 335 (2019): 1-11. 
 

366. Лубов, Д. П., М. В. Катков, and Ю. В. Першин. "Вольт–амперные характеристики коммерческих 

сегнетоэлектрических конденсаторов: отклонения от модели Прейзаха." ՀՀ ԳԱԱ Տեղեկագիր. 

Ֆիզիկա 53.1 (2018): 86-95. (Machine translation: Voltage – ampere characteristics of commercial ferroelectric 

capacitors: deviations from the Preisach model. Armenian NAS RA Bulletin: Physics). 
 

367. Thanos Papanicolaou, Achilleas G. Tsakiris, Micah A Wyssmann, Casey Kramer, Boulder Array Effects on 

Bedload Pulses and Depositional Patches, Journal of Geophysical Research: Earth Surface 123(11), 2018. 
 

368. Manuja Sharma, et. al., “Optical pH measurement system using a single fluorescent dye for assessing 

susceptibility to dental caries”, Journal of Biomedical Optics 24(01):1, 2019. 
 

369. Mustafa, Muhammad A., David Shekhtman, and Nick J. Parziale. "Single-Laser Krypton Tagging 

Velocimetry Investigation of Supersonic Air and N 2 Boundary-Layer Flows over a Hollow Cylinder in a Shock 

Tube." Physical Review Applied 11.6 (2019): 064013.Link. 
 

370. Karl Auerswald, Franziska K. Fischer, Tanja Winterrath, Robert Brandhuber, “Rain erosivity map for 

Germany derived from contiguous radar rain data”, Hydrology and Earth System Sciences 23(4):1819-1832,  

April 2019 , DOI: 10.5194/hess-23-1819-2019 
 

371. Martin Leblanc, et. al., Actinide mixed oxide conversion by advanced thermal denitration route, Journal of 

Nuclear Materials 519:157-165, March 2019, DOI: 10.1016/j.jnucmat.2019.03.049 
 

372. Sujan Kumar Roy and Kuldip K. Paliwal, An Iterative Kalman Filter with Reduced-Biased Kalman Gain 

for Single Channel Speech Enhancement in Non-stationary Noise Condition, International Journal of Signal 

Processing Systems Vol. 7, No. 1, March 2019. DOI: 10.18178/ijsps.7.1.7-13 
 

373. J. Chen, C. Yang, H. Zhu & Y. Li, Adaptive signal enhancement for overlapped peaks based on weighting 

factor selection, Spectroscopy Letters, Volume 52, 2019. DOI: 10.1080/00387010.2018.1556219 
 

374. Delfino, I., S. Cavella, and M. Lepore. "Scattering-based optical techniques for olive oil characterization 

and quality control." Journal of Food Measurement and Characterization 13.1 (2019): 196-212. 
 

375. Zhang, G. W., et al. "Decomposition of overlapped ion mobility peaks by sparse representation. 

"International Journal of Mass Spectrometry 436 (2019): 147-152. 
 

376. Demetriou, Demetris. An Investigation into Nonlinear Random Vibrations based on Wiener Series Theory. 

Diss. University of Cambridge, 2019. 
 

377. McLaren, Timothy I., René Verel, and Emmanuel Frossard. "The structural composition of soil 

phosphomonoesters as determined by solution 31P NMR spectroscopy and transverse relaxation (T2) 

experiments." Geoderma 345 (2019): 31-37. 
 

378. Yan, Qi, Rui Yang, and Jiwu Huang. "Detection of Speech Smoothing on Very Short Clips." IEEE 

Transactions on Information Forensics and Security (2019). 
 

379. Zhang, Weifang, et al. "The Analysis of FBG Central Wavelength Variation with Crack Propagation Based 

on a Self-Adaptive Multi-Peak Detection Algorithm." Sensors 19.5 (2019): 1056. 
 

380. Fayolle, Clemence, Mélody Labrune, and Jean-Philippe Berteau. "Raman spectroscopy investigation shows 

that mineral maturity is greater in CD-1 than in C57BL/6 mice distal femurs after sexual maturity." Connective 

Tissue Research (2019). 
 

381. Catlow, C. Richard A., et al. "Synthesis, characterisation and water-gas shift activity of nano-particulate 

mixed-metal (Al, Ti) cobalt oxides.", 2019. researchgate.net. 
 

https://www.researchgate.net/publication/333677717_Single-Laser_Krypton_Tagging_Velocimetry_Investigation_of_Supersonic_Air_and_N2_Boundary-Layer_Flows_over_a_Hollow_Cylinder_in_a_Shock_Tube


Page | 525  

383. Hansen, Lars N., et al. "Low‐temperature plasticity in olivine: Grain size, strain hardening, and the strength 

of the lithosphere." Journal of Geophysical Research: Solid Earth (2019). 
 

384. Shao, Xueguang, et al. "High order derivative to investigate the complexity of the near infrared spectra of 

aqueous solutions." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 213 (2019): 83-89. 
 

385. Choresh, Yael, et al. "Long‐term griffon vulture population dynamics at Gamla Nature Reserve." The 

Journal of Wildlife Management 83.1 (2019): 135-144. 
 

386. DeFelice, Mialy M., et al. "NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory 

loop." Sci. Signal.12.579 (2019): eaau3568. PDF. 
 

387. Xiaoxiao Ge , et al., Mechanism studies and fabrication for the incorporation of carbon into Al alloys by the 

electro-charging assisted process, Carbon. Page: 203-212, April 2019. DOI: 10.1016/j.carbon.2019.04.049 
 

388. Natalia Molinero. Et. al, “The human gallbladder microbiome is related to the physiological state and the 

biliary metabolic profile”, Microbiome 7(1), 2019. DOI: 10.1186/s40168-019-0712-8 
 

389. Ci Song and Tao Pei, “Decomposition of Repulsive Clusters in Complex Point Processes with 

Heterogeneous Components”, International Journal of Geo-Information 8(8):326, 2019. DOI: 

10.3390/ijgi8080326 
 

390. Stephanie Zaleski, et. al., “Application of Fiber Optic Reflectance Spectroscopy for the Detection of 

Historical Glass Deterioration”, Journal of the American Ceramic Society, June 2019. DOI: 10.1111/jace.16703 
 

391. M A Mustafa and Nick Parziale, “Proper Orthogonal Decomposition of Streamwise-Velocity Fluctuations in 

a Compression-Corner Shock-Wave/Turbulent Boundary-Layer Interaction”, Conference: 32nd International 

Symposium on Shock Waves (ISSW32), June 2019, DOI: 10.3850/978-981-11-2730-4_0473-cd 
 

392. Antonio Matus-Vargas, et. al, “Aerodynamic Disturbance Rejection Acting on a Quadcopter Near Ground”,  

Conference: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 

March 2019. DOI: 10.1109/CoDIT.2019.8820321 
 

393. Wenqi Cai, “Modeling and Experimental Study of the Vibration Effects in Urban Free-Space Optical 

Communication Systems”, IEEE Photonics Journal PP(99):1-1, October 2019. DOI: 10.1109/ 

JPHOT.2019.2945695 
 

394. Wei, Lingxiao, et al. "I know what you see: Power side-channel attack on convolutional neural network 

accelerators." Proceedings of the 34th Annual Computer Security Applications Conference. ACM, 2018. 
 

395. Shewcraft, Ryan A., et al. "Coherent neuronal dynamics driven by optogenetic stimulation in the primate 

brain." bioRxiv (2019): 437970. 
 

396. Burke, I. V., and William Johan. "A robust and automated deconvolution algorithm of peaks in 

spectroscopic data." (2019). 
 

397. Tu, Shen, et al. "Enhanced Formation of Solvent-Shared Ion Pairs in Aqueous Calcium Perchlorate Solution 

toward Saturated Concentration or Deep Supercooling Temperature and Its Effects on the Water Structure." The 

Journal of Physical Chemistry B 123.45 (2019): 9654-9667. 
 

398. Noori, Ansara, et al. "Portable Device for Continuous Sensing with Rapidly Pulsed LEDs–Part 1: Rapid 

On-the-fly Processing of Large Data Streams using an Open-Source Microcontroller with Field Programmable 

Gate Array." Measurement (2019). 
 

399. Kim, Tae Hyong, et al. "Machine learning-based pre-impact fall detection model to discriminate various 

types of fall." Journal of biomechanical engineering 141.8 (2019): 081010. 
 

400. Suresh, P. S., Niranjan Kumar Sura, and K. Shankar. "Landing Response Analysis on High-Performance 

Aircraft Using Estimated Touchdown States." SAE International Journal of Aerospace 12.1 (2019): 23-40. 
 

https://stke.sciencemag.org/content/12/579/eaau3568/tab-pdf


Page | 526  

401. Muirhead, David K., et al. "Raman Spectroscopy: an effective thermal marker in low temperature 

carbonaceous fold-thrust belts." Geological Society, London, Special Publications 490 (2019): SP490-2019. 
 

402. Moreira, Mateus Perrisé, Manuel Castro Carneiro, and Andrey Linhares Bezerra de Oliveira. 

"Desenvolvimento de um programa para modelagem da curva de titulação de traços de carbonato em solução de 

hidróxido de lítio concentrado em sistema fechado." (2019). 
 

403. Paruzzo, Federico Maria. New Approaches to NMR Crystallography. No. THESIS. EPFL, 2019. 
 

404. Paruzzo, Federico M., and Lyndon Emsley. "High-resolution 1H NMR of powdered solids by homonuclear 

dipolar decoupling." Journal of Magnetic Resonance 309 (2019): 106598. 
 

405. Alzamil, Yasser. Optimising the quantitative analysis in functional pet brain imaging. Diss. Cardiff 

University, 2019. 
 

406. Walker, Patrick William, "War without oversight: Challenges to the development of autonomous weapons 

systems.", Thesis, University of Buckingham (2019). 
 

407. Yang, Guofeng, et al. "Multiple Constrained Reweighted Penalized Least Squares for Spectral Baseline 

Correction." Applied Spectroscopy (2019): 0003702819885002. 
 

408. Zhang, Jing, Shuai Chen, and Guoxiang Sun. "Spectral and chromatographic overall analysis: An insight 

into chemical equivalence assessment of traditional Chinese medicine." Journal of Chromatography A (2019): 

460556. 
 

409. Richter, Craig G., et al. "Brain rhythms shift and deploy attention." bioRxiv (2019): 795567. 
 

410. Chen, Weiqi, et al. "An automated microfluidic system for the investigation of asphaltene deposition and 

dissolution in porous media." Lab on a Chip 19.21 (2019): 3628-3640. 
 

411. Mukherjee, Soma, Soumi Betal, and Asoke Prasun Chattopadhyay. "Dual sensing and synchronous 

fluorescence spectroscopic monitoring of Cr3+ and Al3+ using a luminescent Schiff base: Extraction and DFT 

studies." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2019): 117837. 
 

412. Roy Daipayan, and Daniel W. Armstrong. "Fast super/subcritical fluid chromatographic enantioseparations 

on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous 

particles." Journal of Chromatography A 1605 (2019): 360339. 
 

413. Kang, Yuhao, and Azriel Z. Genack. "Time delay in a disordered topological system." arXiv preprint 

arXiv:1912.05151 (2019). 
 

414. Chankvetadze, Bezhan. "Recent trends in preparation, investigation and application of polysaccharide-

based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography." TrAC 

Trends in Analytical Chemistry (2019): 115709. 
 

415. de Paula Pedroza, Ricardo Henrique. Development of methods based on NIR and Raman spectroscopies 

together with chemometric tools for the qualitative and quantitative analysis of gasoline. MS thesis. The 

University of Bergen, 2019. 
 

416. Wolf, Moritz, et al. "Synthesis, characterisation and water–gas shift activity of nano-particulate mixed-

metal (Al, Ti) cobalt oxides." Dalton Transactions 48.36 (2019): 13858-13868. 
 

417. Welch, Christopher J. "High throughput analysis enables high throughput experimentation in 

pharmaceutical process research." Reaction Chemistry & Engineering 4.11 (2019): 1895-1911. 
 

418. Mironov, N. A., et al. "Methods for Studying Petroleum Porphyrins." Petroleum Chemistry 59.10 (2019): 

1077-1091. 
 

419. Yang, Guofeng, et al. "Spectral features extraction based on continuous wavelet transform and image 

segmentation for peak detection." Analytical Methods (2019). 
 

420. Briggs, Tokini Kiki. An Auto-Picking Algorithm for the Detection of Clay Seams in Potash Mines Using 



Page | 527  

GPR Data. Diss. Faculty of Graduate Studies and Research, University of Regina, 2019. 
 

421. Hong, Ning, et al. "High-Speed Rail Suspension System Health Monitoring Using Multi-Location Vibration 

Data." IEEE Transactions on Intelligent Transportation Systems (2019). 
 

422. Hu, Jennifer F., et al. "Sequencing-based quantitative mapping of the cellular small RNA 

landscape." bioRxiv (2019): 841130. 
 

423. Elsayad, Kareem. "Spectral Phasor Analysis for Brillouin Microspectroscopy." Frontiers in Physics 7 

(2019): 62. 
  

424. Huang, Weinan, et al. "Morphology and cell wall composition changes in lignified cells from loquat fruit 

during postharvest storage." Postharvest Biology and Technology 157 (2019): 110975. 

425. Kupka, Teobald, et al. "Local aromaticity mapping in the vicinity of planar and nonplanar 

molecules." Magnetic Resonance in Chemistry 57.7 (2019): 359-372. 

426. Parigger, Christian G. "Measurements of Gaseous Hydrogen–Nitrogen Laser-Plasma." Atoms 7.3 (2019): 61. 

427. Venara, J., et al. "Design and development of a portable β-spectrometer for 90Sr activity measurements in 

contaminated matrices." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 

Spectrometers, Detectors and Associated Equipment (2019). 

428. Gallmeier, Esther A., et al. "Real time monitoring of the chemistry of hydroxylamine nitrate and iron as 

surrogates for nuclear materials processing." Separation Science and Technology (2019): 1-9. 

429. Hong, Ning, et al. "High-Speed Rail Suspension System Health Monitoring Using Multi-Location Vibration 

Data." IEEE Transactions on Intelligent Transportation Systems (2019). 

430. Kielar, Aneta, et al. "Slowing is slowing: Delayed neural responses to words are linked to abnormally slow 

resting state activity in primary progressive aphasia." Neuropsychologia 129 (2019): 331-347. 

431. Wu, Wenchang, et al. "Diffusivities in 1-Alcohols Containing Dissolved H2, He, N2, CO, or CO2 Close to 

Infinite Dilution." The Journal of Physical Chemistry B 123.41 (2019): 8777-8790. 

432. Park, Sungchan, K. A. N. G. Jooyoung, and Jungho Kim. "Ultrasound imaging apparatus and method for 

controlling the same." U.S. Patent Application 10/2  47,824, filed April 2, 2019. 

433. Renda, Fioranna, et al. "kSHREC 'Delta' reflects the shape of kinetochore rather than intrakinetochore 

tension." BioRxiv (2019): 811075. 

434. Santiago, Ruben, et al. "Methanol-Promoted Oxidation of Nitrogen Oxide (NO x) by Encapsulated Ionic 

Liquids." Environmental science & technology 53.20 (2019): 11969-11978. 

435. Hu, Jennifer Fan. A systems-level view of the tRNA epitranscriptome: defining the role of tRNA abundance, 

stability, and modifications in the bacterial stress response. Diss. Massachusetts Institute of Technology, 2019. 

436. Weaver, Jordan S., Veronica Livescu, and Nathan A. Mara. "A comparison of adiabatic shear bands in 

wrought and additively manufactured 316L stainless steel using nano-indentation and electron backscatter 

diffraction." Journal of Materials Science 55.4 (2020): 1738-1752. 

437. Li, Dongmei, Zhiwei Zhu, and Da-Wen Sun. "Visualization of the in-situ distribution of contents and 

hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy." Analyst (2020). 

438. Tsai, Chong-Bin, Wei-Yu Hung, and Wei-Yen Hsu. "A Fast and Effective System for Analysis of 

Optokinetic Waveforms with a Low-Cost Eye Tracking Device." Healthcare. Vol. 9. No. 1. Multidisciplinary 

Digital Publishing Institute, 2020. 
 

439. Elsayad, Kareem. "Spectral phasor analysis for Brillouin microspectroscopy." Frontiers in Physics 7 (2019): 

62. 
 

440. Takis, Panteleimon G., et al. "SMolESY: An Efficient and Quantitative Alternative to On-Instrument 

Macromolecular 1 H-NMR Signal Suppression." Chemical Science (2020). 
 



Page | 528  

441. Pipathanapoompron, Thalerngsak, et al. "Magnetic reader testing for asymmetric oscillation noise." Journal 

of Magnetism and Magnetic Materials (2020): 167064. 
 

442. Ito, Motohiro, et al. "Evaluation of cone-beam computed tomography over a small field of view in a water 

bath based on the modulation transfer function with repeating-edge oversampling." Journal of Oral 

Science (2020): 20-0479. 
 

443. Li, Tianjun, Long Chen, and Xiliang Lu. "An Alternating Direction Minimization based denoising method 

for extracted ion chromatogram." Chemometrics and Intelligent Laboratory Systems 206 (2020): 104138. 
 

444. Zhang, Jing, Shuai Chen, and Guoxiang Sun. "Spectral and chromatographic overall analysis: An insight 

into chemical equivalence assessment of traditional Chinese medicine." Journal of Chromatography A 1610 

(2020): 460556. 
 

445. McPherson, David L., Richard Harris, and David Sorensen. "Functional Neuroimaging of the Central 

Auditory System." Advances in Audiology and Hearing Science: Volume 1: Clinical Protocols and Hearing 

Devices (2020): 327. 
 

446. Hebert, Michael J., and David H. Russell. "Tracking the Structural Evolution of 4-Aminobenzoic Acid in 

the Transition from Solution to the Gas Phase." The Journal of Physical Chemistry B 124.11 (2020): 2081-2087. 
 

447. Tang, Hui, et al. "On 2D-3D Image Feature Detections for Image-To-Geometry Registration in Virtual 

Dental Model." 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP). 

IEEE, 2020. 
 

448. Bhatia, Siddharth, and Karthikeyan Vasudevan. "Comparative proteomics of geographically distinct saw-

scaled viper (Echis carinatus) venoms from India." Toxicon: X 7 (2020): 100048. 

 

449. Resentini, Alberto, et al. "Zircon as a provenance tracer: Coupling Raman spectroscopy and UPb 

geochronology in source-to-sink studies." Chemical Geology 555 (2020): 119828. 
 

450. Ajemigbitse, Moses A., Fred S. Cannon, and Nathaniel R. Warner. "A rapid method to determine 226Ra 

concentrations in Marcellus Shale produced waters using liquid scintillation counting." Journal of 

Environmental Radioactivity 220 (2020): 106300. 
 

451. Muirhead, D. K., et al. "Raman spectroscopy: an effective thermal marker in low temperature carbonaceous 

fold–thrust belts." Geological Society, London, Special Publications 490.1 (2020): 135-151. 
 

452. Quilfen, Y., and B. Chapron. "On denoising satellite altimeter measurements for high-resolution 

geophysical signal analysis." Advances in Space Research (2020). 
 

453. Wu, Dan, Pol Mac Aonghusa, and Donal O'Shea. "Correlation of National and Healthcare Workers COVID-

19 Infection Data; Implications for Large-scale Viral Testing Programs." medRxiv (2020). 
 

454. Battini, Davide, et al. "Modeling Approach and Finite Element Analyses of a Shape Memory Epoxy-Based 

Material." Conference of the Italian Association of Theoretical and Applied Mechanics. Springer, Cham, 2019. 
 

455. Wu, Billy, et al. "An Energy Storage Device Monitoring Technique." U.S. Patent Application No. 

16/088,016, 2020. 
 

456. Ge, X., et al. "Electrical and structural characterization of nano-carbon–aluminum composites fabricated by 

electro-charging-assisted process." Carbon 173: 115-125, 2021. 
 

456. Hsu, Gee-Sern Jison, et al. "A deep learning framework for heart rate estimation from facial 

videos." Neurocomputing 417 (2020): 155-166. 
 

457. Hammonds, James S., and Kimani A. Stancil. "Phonon effect based nanoscale temperature measurement." 

U.S. Patent No. 10,520,374. 31 Dec. 2019. 
 

458. Weaver, Jordan S., Veronica Livescu, and Nathan A. Mara. "A comparison of adiabatic shear bands in 

wrought and additively manufactured 316L stainless steel using nanoindentation and electron backscatter 



Page | 529  

diffraction." Journal of Materials Science 55.4 (2020): 1738-1752. 
 

459. Gallagher, John Barry, Vishnu Prahalad, and John Aalders. "Inorganic and black carbon hotspots constrain 

blue carbon mitigation services across tropical seagrass and temperate tidal marshes." bioRxiv (2020). 
 

460. Wu, Wenchang, et al. "Mutual and Thermal Diffusivities as well as Fluid-Phase Equilibria of Mixtures of 1-

Hexanol and Carbon Dioxide." The Journal of Physical Chemistry B 124.12 (2020): 2482-2494. 
 

461. Busa, William, Phillip H. Coelho, and Paul Getchel. "Lateral flow immunoassay test reader and method of 

use." U.S. Patent No. 10,823,746. 3 Nov. 2020. 
 

462. Dubrovkin, Joseph. Mathematical processing of spectral data in analytical chemistry: A guide to error 

analysis. Cambridge Scholars Publishing, 2019. 
 

463. Bonnin-Pascual, Francisco, and Alberto Ortiz. "UWB-Based Self-Localization Strategies: A Novel ICP-

Based Method and a Comparative Assessment for Noisy-Ranges-Prone Environments." Sensors 20.19 (2020): 

5613. 
 

464. Chaumel, Júlia, et al. "Co-aligned chondrocytes: Zonal morphological variation and structured arrangement 

of cell lacunae in tessellated cartilage." Bone (2020): 115264. 
  

465. Bruendl, Stefan A., et al. "A New Emulation Platform for Real-time Machine Learning in Substance Use 

Data Streams." 2020 IEEE 21st International Conference on Information Reuse and Integration for Data 

Science (IRI). IEEE, 2020. 
 

466. Cuyt, Annie, and Wen-shin Lee. "Parameter spectral analysis: scale and shift." arXiv preprint 

arXiv:2008.02125 (2020). 
 

467. Li, Wenda, et al. "A novel processing methodology for traffic-speed road surveys using point lasers." IEEE 

Transactions on Intelligent Transportation Systems (2019). 
 

468. Li, Yuanlu, Kun Li, and Qiyu Lu. "Applying segmentation and classification to improve performance of 

smoothing." Digital Signal Processing 109: 102913, 2021. 
 

469. Rutt, Daryl, et al. "Importance of Accurate and Detailed Data Processing of Laser Mapping in Coke 

Drum." Pressure Vessels and Piping Conference. Vol. 58943. American Society of Mechanical Engineers, 2019. 
 

470. Al-Mbaideen, Amneh A. "Application of moving average filter for the quantitative analysis of the NIR 

spectra." Journal of Analytical Chemistry 74.7 (2019): 686-692. 
 

471. Vitali, L., et al. "Infrared image processing for local convective heat transfer measurements in rib-enhanced 

channels." Journal of Physics: Conference Series. Vol. 1599. No. 1. IOP Publishing, 2020. 
 

472. Vergel, Ángelo Joseph Soto, Luis Enrique Mendoza, and Byron Medina Delgado. "Analysis of energy and 

major components in chromatographic signals for the diagnosis of prostate cancer." Respuestas 24.1 (2019): 76-

85. 
 

473. Zhang, Genwei, et al. "Multiscale orthogonal matching pursuit algorithm combined with peak model for 

interpreting ion mobility spectra and achieving quantitative analysis." Analytica Chimica Acta (2020). 
 

474. Zhang, Lei, et al. "WiDIGR: Direction-Independent Gait Recognition System Using Commercial Wi-Fi 

Devices." IEEE Internet of Things Journal 7.2 (2019): 1178-1191. 
 

475. Wiegand, Patrick. "Raman signal position correction using relative integration parameters." U.S. Patent No. 

10,627,289. 21 Apr. 2020. 
 

476. Botezatu, Irina V., et al. "Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA 

melting analysis of KRAS mutation in colorectal cancer." Analytical Biochemistry 590 (2020): 113517. 
 

477. Joubaud, Thomas, and Grégory Pallone. "Electroacoustic method for the calibration of a heterogeneous 

distributed speaker system." 2020 28th European Signal Processing Conference (EUSIPCO). IEEE. 
 



Page | 530  

478. Xiang, YuChen, et al. "Background-free fibre optic Brillouin probe for remote mapping of 

micromechanics." arXiv preprint arXiv:2005.12266 (2020). 
 

479. Huang, Ronggang, et al. "Optical frequency and phase information-based fusion approach for image 

rotation symmetry detection." Optics Express 28.13 (2020): 18577-18595. 
 

480. Sosin, M., et al. "Impact of vibrations and reflector movements on the measurement uncertainty of Fourier-

based frequency sweeping interferometry." Photonic Instrumentation Engineering VII. Vol. 11287. International 

Society for Optics and Photonics, 2020. 
 

481. Chakraborty, Saikat, and Anup Nandy. "Automatic Diagnosis of Cerebral Palsy Gait Using Computational 

Intelligence Techniques: A Low-Cost Multi-Sensor Approach." IEEE Transactions on Neural Systems and 

Rehabilitation Engineering 28.11 (2020): 2488-2496. 
 

482. Kim, Najin, et al. "Hygroscopicity of urban aerosols and its link to size-resolved chemical composition 

during spring and summer in Seoul, Korea." Atmospheric Chemistry and Physics 20.19 (2020): 11245-11262. 
 

483. Ma, Te, et al. "Rapid and nondestructive evaluation of hygroscopic behavior changes of thermally modified 

softwood and hardwood samples using near-infrared hyperspectral imaging (NIR-HSI)." Holzforschung 1.ahead-

of-print (2020). 
 

484. Laskaris, Nick, et al. "EVIDENCE OF AU-HG GILDING PROCESS IN POST BYZANTINE 

ECCLESIASTICAL SILVERWARES (CHALICES) OF EASTERN THESSALY BY PXRF." Mediterranean 

Archaeology & Archaeometry 13.1 (2020). 
 

485. Obaydo, Reem H., and Amir Alhaj Sakur. "Spectrophotometric strategies for the analysis of binary 

combinations with minor component based on isoabsorptive point's leveling effect: An application on 

ciprofloxacin and fluocinolone acetonide in their recently delivered co-formulation." Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy 219 (2019): 186-194. 
 

486. Ma, Liya, and Peter Schegner. "State duration based event detection for domestic power 

disaggregation." 2019 IEEE Milan PowerTech. IEEE, 2019. 
 

497. Коломиец, O. O., and C. В. Глушен. "Суточный ритм роста листьев и пролиферации клеток у перца 

стручкового (Capsicum annuum L.)." Известия Национальной академии наук Беларуси. Серия 

биологических наук 64.4 (2019): 448-455. 
 

498. Reynes, Julien, Pierre Lanari, and Jörg Hermann. "A mapping approach for the investigation of Ti–OH 

relationships in metamorphic garnet." Contributions to Mineralogy and Petrology 175 (2020): 1-17. 
 

499.  Shumeyko, Christopher M., et al. "Tunable mechanical behavior of graphene nanoribbon-metal composites 

fabricated through an electrocharge-assisted process." Materials Science and Engineering: A 800 (2020): 140289. 
 

500. Psyrras, N., et al. "Physical Modeling of the Seismic Response of Gas Pipelines in Laterally 

Inhomogeneous Soil." Journal of Geotechnical and Geoenvironmental Engineering 146.5 (2020): 04020031. 
 

501. Chen, Hong‐Jia, et al. "Self‐potential ambient noise and spectral relationship with urbanization, seismicity, 

and strain rate revealed via the Taiwan Geoelectric Monitoring Network." Journal of Geophysical Research: 

Solid Earth 125.1 (2020): e2019JB018196. 
 

502. Mustafa, M. A., et al. "Amplification and structure of streamwise-velocity fluctuations in compression-

corner shock-wave/turbulent boundary-layer interactions." Journal of Fluid Mechanics 863 (2019): 1091-1122. 
 

503. Mekonnen, Alemu, et al. "Improved Biomass Cookstove Use in the Longer Run: Results from a Field 

Experiment in Rural Ethiopia." World Bank Policy Research Working Paper 9272 (2020). 
 

504. Bradshaw, Peter R., et al. "Kinetic modelling of acyl glucuronide and glucoside reactivity and development 

of structure–property relationships." Organic & Biomolecular Chemistry 18.7 (2020): 1389-1401. 
 

505. Bluffstone, Randall, et al. "Does providing improved biomass cooking stoves free-of-charge reduce regular 

usage? Do use incentives promote habits?." LAND ECONOMICS (2020). 



Page | 531  

 

506. Guo, Qimei, et al. "Mediterranean Outflow Water dynamics across the middle Pleistocene transition based 

on a 1.3 million-year benthic foraminiferal record off the Portuguese margin." Quaternary Science Reviews 247 

(2020): 106567. 
 

507. Mustafa, Muhammad A., David Shekhtman, and Nick J. Parziale. "Single-Laser Krypton Tagging 

Velocimetry (KTV) Investigation of Air and N2 Boundary-Layer Flows Over a Hollow Cylinder in the Stevens 

Shock Tube." AIAA Scitech 2019 Forum. 2019. 
 

508. Wang, M., et al. "Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain 

rates." Acta Materialia 201 (2020): 102-113. 
 

509. AlOmar, AbdulAzeez S. "Accurate Chebyshev Approximations for the Width of the Voigt Profile, 

Differential Peaks, and Deconvolution of the Lorentzian Width." Optik 225: 165533, 2021. 
 

510. Hoyer, Jorgen, et al. "Mapping calcium dynamics in a developing tubular structure." bioRxiv (2020). 
 

511. Hansen, Lars N., et al. "Low-Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the 

Strength of the Lithosphere." Journal of Geophysical Research. Solid Earth 124.6 (2019). 
 

512. Du, Siqi, et al. "Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS 

based analytical strategy for Alzheimer's research." Chemical Communications 56.10 (2020): 1537-1540. 
 

513. Hebden, Jeremy C. "Exploring the feasibility of wavelength modulated near-infrared spectroscopy." 

Journal of Biomedical Optics 25.11 (2020): 110501. 
 

514. Aikin, Timothy J., et al. "MAPK activity dynamics regulate non-cell autonomous effects of oncogene 

expression." Elife 9 (2020): e60541. 
 

515. Pepermans, Vincent, et al. "Column-in-Valve Designs to Minimize Extra-Column Volumes." Journal of 

Chromatography A (2020): 461779.  
 

516. Chua, Emily J., et al. "A mass spectrometer‐based pore‐water sampling system for sandy 

sediments." Limnology and Oceanography: Methods 19.11 (2021): 769-784. 

 

517. Sanchini, Andrea, and Martin Grosjean. "Quantification of chlorophyll a, chlorophyll b and pheopigments a 

in lake sediments through deconvolution of bulk UV–VIS absorption spectra." Journal of paleolimnology 64 

(2020): 243-256. 
 

518. Yuen, Clement, et al. "Towards malaria field diagnosis based on surface-enhanced Raman scattering with 

on-chip sample preparation and near-analyte nanoparticle synthesis." Sensors and Actuators B: Chemical (2021): 

130162.  

 

519. Pal, Arpan, et al. "Instant Adaptive Learning: An Adaptive Filter Based Fast Learning Model Construction 

for Sensor Signal Time Series Classification on Edge Devices." ICASSP 2020-2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. 

 

520. Razzini, Jhonathan, Marcelo Vandresen, and Luciano Amaury dos Santos. Comparative of the 

Mathematical Smoothing Model for Inertial Dynamometer Software. No. 2020-36-0151. SAE Technical Paper, 

2021. 

 

521. Wang, Yaheng, et al. "High-speed 600-GHz-Band Terahertz Imaging System Using Polygon Mirror." 2021 

International Topical Meeting on Microwave Photonics (MWP). IEEE, 2021. 

 

522. Shanmugarajah, Sujeevan, Janani Tharmaseelan, and Luckman Sivagnanam. "AI Approach In Monitoring 

The Physical And Psychological State Of Car Drivers And Remedial Action For Safe Driving." 2020 2nd 

International Conference on Advancements in Computing (ICAC). Vol. 1. IEEE, 2020. 

 

523. Likhachev, D. V. "On the optimization of knot allocation for B-spline parameterization of the dielectric 



Page | 532  

function in spectroscopic ellipsometry data analysis." Journal of Applied Physics 129.3 (2021): 034903. 

 

524. Li, Yuanlu, Kun Li, and Qiyu Lu. "Applying segmentation and classification to improve performance of 

smoothing." Digital Signal Processing 109 (2021): 102913. 

 

525. C. Dela Cruz, Jennifer, et al. "Deriving Heart Rate and Respiratory Rate from ECG Using Wavelet 

Transform." 2021 11th International Conference on Biomedical Engineering and Technology. 2021. 

 

526. Zhang, Genwei, et al. "Coulombic effects on resolution of ion mobility spectrometry and its application in 

online qualitative analysis." Analytica Chimica Acta 1183 (2021): 338969. 

 

527. Ramakrishnan, Saminathan, et al. "Dependence of phase transition uniformity on crystal sizes characterized 

using birefringence." Structural Dynamics 8.3 (2021): 034301. 

 

528. Gupta, Smith. "Clustering based method for finding spikes in insect neurons." arXiv preprint 

arXiv:2111.11152 (2021). 

 

529. Kocevska, Stefani, et al. "Spectroscopic Quantification of Target Species in a Complex Mixture Using 

Blind Source Separation and Partial Least-Squares Regression: A Case Study on Hanford Waste." Industrial & 

Engineering Chemistry Research 60.27 (2021): 9885-9896. 

 

530. McAvan, Bethan S., et al. "Raman Spectroscopy to Monitor Post-translational Modifications and 

Degradation in mAb Therapeutics." http://www.biospec.net/pubs/pdfs/McAvan-AnalChem2020SI.pdf 

 

531. Torres-Contreras, Ignacio, et al. "Effects of Phase Shift Errors in Recurrence Plot for Rotating Machinery 

Fault Diagnosis." Applied Sciences 11.2 (2021): 873. 

 

532. Renney, Harri, Benedict R. Gaster, and Thomas J. Mitchell. "There and Back Again: The Practicality of 

GPU Accelerated Digital Audio." PDF link 

 

533. Feukeu, Etienne Alain, and Simon Winberg. "Photoplethysmography Heart Rate Monitoring: State-of-the-

Art Design." International Journal of E-Health and Medical Communications (IJEHMC) 12.3 (2021): 17-37. 

 

534. Munier, Pierre, et al. "Assembly of cellulose nanocrystals and clay nanoplatelets studied by time-resolved 

X-ray scattering." Soft Matter 17.23 (2021): 5747-5755. 

 

535. Izima, Obinna, Ruairí de Fréin, and Mark Davis. "Predicting quality of delivery metrics for adaptive video 

codec sessions." 2020 IEEE 9th International Conference on Cloud Networking (CloudNet). IEEE, 2020. 

 

536. Sun, Yuanchang, and Jack Xin. "Lorentzian peak sharpening and sparse blind source separation for NMR 

spectroscopy." Signal, Image and Video Processing (2021): 1-9. 

 

537. Tan, Jiajie, et al. "Implicit Multimodal Crowdsourcing for Joint RF and Geomagnetic Fingerprinting." IEEE 

Transactions on Mobile Computing (2021). 

 

538. Guo, Zhenyu, et al. "Anthropometric-based clustering of pinnae and its application in personalizing 

HRTFs." International Journal of Industrial Ergonomics 81 (2021): 103076. 

 

539. Xu, Susan Shuhong, et al. "Comparison of ISO work of breathing and NIOSH breathing resistance 

measurements for air-purifying respirators." Journal of occupational and environmental hygiene 18.8 (2021): 

369-377. 

 

540. Hovareshti, Pedram, et al. "VestAid: A Tablet-Based Technology for Objective Exercise Monitoring in 

http://www.biospec.net/pubs/pdfs/McAvan-AnalChem2020SI.pdf
https://uwe-repository.worktribe.com/preview/5954445/There_and_back_again_Evaluating_the_practicality_of_GPU_accelerated_digital_audio_nime20.pdf


Page | 533  

Vestibular Rehabilitation." Sensors 21.24 (2021): 8388. 

 

541. Ramakrishnan, Saminathan, et al. "A combined approach to characterize ligand-induced solid–solid phase 

transitions in biomacromolecular crystals." Journal of Applied Crystallography 54.3 (2021). 

 

542. Dioumaev, Andrei K., et al. "Determining material parameters with resonant acoustic 

spectroscopy." Applied Optical Metrology IV. Vol. 11817. International Society for Optics and Photonics, 2021. 

 

543. Lu, Min, et al. "Accurate construction of 3-D numerical breast models with anatomical information through 

MRI scans." Computers in Biology and Medicine 130 (2021): 104205. 

 

544. Pasquali, Mattia, et al. "Nanomechanical Characterization of Organic Surface Passivation Films on 50 nm 

Patterns during Area-Selective Deposition." ACS Applied Electronic Materials (2021). 

 

545. Kalambet, Yuri. "Data acquisition and integration." Gas Chromatography. Elsevier, 2021. 505-524. 

 

546. Ramakrishnan, Saminathan, et al. "Synchronous RNA conformational changes trigger ordered phase 

transitions in crystals." Nature communications 12.1 (2021): 1-10. 

 

547. Ke, Jie, et al. "Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform 

Infrared and Gas Chromatography." Applied Spectroscopy (2021): 00037028211059848. 

 

548. Kim, Namgyun, Jinwoo Kim, and Changbum R. Ahn. "Predicting workers’ inattentiveness to struck-by 

hazards by monitoring biosignals during a construction task: A virtual reality experiment." Advanced 

Engineering Informatics 49 (2021): 101359. 

 

549. Jonker, D., et al. "A wafer-scale fabrication method for three-dimensional plasmonic hollow 

nanopillars." Nanoscale advances 3.17 (2021): 4926-4939. 

 

550. Shekhtman, D., et al. "Freestream velocity-profile measurement in a large-scale, high-enthalpy reflected-

shock tunnel." Experiments in Fluids 62.5 (2021): 1-13. 

 

551. Rezaee, Mohammad, Iulian Iordachita, and John W. Wong. "Ultrahigh dose-rate (FLASH) x-ray irradiator 

for pre-clinical laboratory research." Physics in Medicine & Biology 66.9 (2021): 095006. 

 

552. Chang, Ji Woong, Antonios Armaou, and Robert M. Rioux. "Continuous Injection Isothermal Titration 

Calorimetry for In Situ Evaluation of Thermodynamic Binding Properties of Ligand–Receptor Binding 

Models." The Journal of Physical Chemistry B 125.29 (2021): 8075-8087. 

 

553. Bärmann, Peer, et al. "Solvent Co-intercalation into Few-layered Ti3C2T x MXenes in Lithium Ion 

Batteries Induced by Acidic or Basic Post-treatment." ACS nano 15.2 (2021): 3295-3308. 

 

554. Cuyt, Annie, and Wen-shin Lee. "Parametric spectral analysis: scale and shift." arXiv preprint 

arXiv:2008.02125 (2020). 

 

555. Shekhtman, David, Nick J. Parziale, and Muhammad A. Mustafa. "Excitation Line Optimization for 

Krypton Tagging Velocimetry and Planar Laser-Induced Fluorescence in 200-220 nm Range." AIAA Scitech 

2021 Forum. 2021. 

 

556. Brasiliense, Vitor, et al. "Nanopipette‐based electrochemical SERS platforms: Using electrodeposition to 

produce versatile and adaptable plasmonic substrates." Journal of Raman Spectroscopy 52.2 (2021): 339-347. 

 

557. Qian, Yiwen, et al. "Crystallization of nanoparticles induced by precipitation of trace polymeric 



Page | 534  

additives." Nature communications 12.1 (2021): 1-8. 

 

558. Raman, Narayanan, et al. "GaPt Supported Catalytically Active Liquid Metal Solution Catalysis for 

Propane Dehydrogenation–Support Influence and Coking Studies." ACS catalysis 11.21 (2021): 13423-13433. 

 

559. Phounglamcheik, Aekjuthon, et al. "CO2 Gasification Reactivity of Char from High-Ash Biomass." ACS 

Omega (2021). 

 

560. Leaston, Joshua, et al. "Neurovascular imaging with QUTE-CE MRI in APOE4 rats reveals early vascular 

abnormalities." PLoS One 16.8 (2021): e0256749. 

 

561. Asmala, Eero, Philippe Massicotte, and Jacob Carstensen. "Identification of dissolved organic matter size 

components in freshwater and marine environments." Limnology and Oceanography 66.4 (2021): 1381-1393. 

 

562. Hu, Jennifer F., et al. "Quantitative mapping of the cellular small RNA landscape with AQRNA-

seq." Nature Biotechnology (2021): 1-11. 

 

563. Tomlinson, Lauren J., et al. "Exploring the conformational landscape and stability of Aurora A using ion-

mobility mass spectrometry and molecular modelling." bioRxiv (2021). 

 

564. Zhang, Qin, and Benjamin M. Tutolo. "Geochemical evaluation of glauconite carbonation during 

sedimentary diagenesis." Geochimica et Cosmochimica Acta 306 (2021): 226-244. 

 

565. Parigger, Christian G., Christopher M. Helstern, and Ghaneshwar Gautam. "Hypersonic imaging and 

emission spectroscopy of hydrogen and cyanide following laser-induced optical breakdown." Symmetry 12.12 

(2020): 2116. 

 

566. Parigger, Christian G. "Laser-plasma and stellar astrophysics spectroscopy." Contrib. Astron. Obs. Skalnaté 

Pleso 50 (2020): 15-31. 

 

567. Wolf, Moritz, et al. "Coke formation during propane dehydrogenation over Ga− Rh supported catalytically 

active liquid metal solutions." ChemCatChem 12.4 (2020): 1085. 

 

568. Chen, Weiqi, et al. "Experimental data-driven reaction network identification and uncertainty quantification 

of CO2-assisted ethane dehydrogenation over Ga2O3/Al2O3." Chemical Engineering Science 237 (2021): 

116534. 

 

569. Roy, Sujan Kumar, and Kuldip K. Paliwal. "A noise PSD estimation algorithm using derivative-based high-

pass filter in non-stationary noise conditions." EURASIP Journal on Audio, Speech, and Music 

Processing 2021.1 (2021): 1-18. 

 

570. Fannes Claverol, Jean Paul. Feasibility study of an ADAS using RADAR for In-Cabin pilot health 

parameters monitoring. MS thesis. Universitat Politècnica de Catalunya, 2021. 
 

571. Thu, Nguyen Anh. "Quantification of acetaminophen, caffeine and ibuprofen in solid dosage forms by uv 

spectroscopy coupled with multivariate analysis." Asian Journal of Pharmaceutical Analysis 11.2 (2021): 127-

132. 

 

572. Mutebi, John-Paul, et al. "Diel Activity Patterns of Two Distinct Populations of Aedes Aegypti in Miami, 

FL and Brownsville, TX." (2021). 

 

573. Hobson, Eric C., et al. "Resonant acoustic rheometry for non-contact characterization of viscoelastic 

biomaterials." Biomaterials 269 (2021): 120676. 

 



Page | 535  

574. Kurttila, Moona, et al. "Site-by-site tracking of signal transduction in an azidophenylalanine-labeled 

bacteriophytochrome with step-scan FTIR spectroscopy." Physical Chemistry Chemical Physics 23.9 (2021): 

5615-5628. 

 

575. Wang, Hao, et al. "Rapid SERS quantification of trace fentanyl laced in recreational drugs with a portable 

Raman module." Analytical chemistry 93.27 (2021): 9373-9382. 

 

576. Smith, Alexander J., et al. "Expanded in situ aging indicators for lithium-ion batteries with a blended NMC-

LMO electrode cycled at sub-ambient temperature." Journal of The Electrochemical Society 168.11 (2021): 

110530. 

 

577. Jenkins, Lauren M., et al. "Quantification of Acyl-Acyl Carrier Proteins for Fatty Acid Synthesis Using LC-

MS/MS." Plant Lipids. Humana, New York, NY, 2021. 219-247. 

 

578. Heck, Anisa, et al. "Volume Fraction Measurement of Soft (Dairy) Microgels by Standard Addition and 

Static Light Scattering." Food Biophysics 16.2 (2021): 237-253. 

 

579. Teixeira, Paulo Sérgio, et. Al.. "Avaliação das respostas em frequências naturais de um violão pelo método 

de excitação por impulso e deconvolução de sinais (Evaluation of the natural frequency responses of a guitar by 

the method of impulse excitation and signal deconvolution)." Research, Society and Development 10.1 (2021) 
 
580. Burg, David, and Jesse H. Ausubel. "Moore’s Law revisited through Intel chip density." PloS one 16.8 

(2021): e0256245. 

 

581. Poorna, S. S., et al. "A transfer learning approach for drowsiness detection from EEG signals." Innovations 

in Computational Intelligence and Computer Vision. Springer, Singapore, 2021. 369-375. 

 

582. Yang, Guofeng, et al. "Injection profile surveillance using impulse oxygen activation logging based on 

optimization theory." Journal of Petroleum Science and Engineering 196 (2021): 107701. 

 

583. Navarro-Huerta, Jose Antonio, et al. "Ultra-short ion-exchange columns for fast charge variants analysis of 

therapeutic proteins." Journal of Chromatography A 1657 (2021): 462568. 

 

584. Wahab, M. Farooq, Daipayan Roy, and Daniel W. Armstrong. "The theory and practice of ultrafast liquid 

chromatography: A tutorial." Analytica Chimica Acta 1151 (2021): 238170. 

 

585. Samokhvalov, Alexander. "Understanding the structure, bonding and reactions of nanocrystalline 

semiconductors: a novel high-resolution instrumental method of solid-state synchronous luminescence 

spectroscopy." Physical Chemistry Chemical Physics 23.12 (2021): 7022-7036. 

 

586. Ghadimloozadeh, Shaghayegh, Mahmoud Reza Sohrabi, and Hassan Kabiri Fard. "Development of rapid 

and simple spectrophotometric method for the simultaneous determination of anti-parkinson drugs in combined 

dosage form using continuous wavelet transform and radial basis function neural network." Optik 242 (2021): 

167088. 

 

587. de Falco, Giacomo, et al. "Proposing an unbiased oxygen reduction reaction onset potential determination 

by using a Savitzky-Golay differentiation procedure." Journal of Colloid and Interface Science 586 (2021): 597-

600. 

 

588. Readel, Elizabeth R., Michael Wey, and Daniel W. Armstrong. "Rapid and selective separation of amyloid 

beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer’s disease." Analytica 

Chimica Acta 1163 (2021): 338506. 

 



Page | 536  

589. Tatarinov, Danila A., Sofia R. Sokolnikova, and Natalia A. Myslitskaya. "Applying of Chitosan-TiO2 

Nanocomposites for Photocatalytic Degradation of Anthracene and Pyrene." Journal of Biomedical Photonics & 

Engineering 7.1 (2021): 010301. 

 

590. Kim, Min-Yeong, et al. "Highly stable potentiometric sensor with reduced graphene oxide aerogel as a solid 

contact for detection of nitrate and calcium ions." Journal of Electroanalytical Chemistry 897 (2021): 115553. 

 

591. Karongo, Ryan, et al. "Rapid enantioselective amino acid analysis by ultra-high performance liquid 

chromatography-mass spectrometry combining 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

derivatization with core-shell quinine carbamate anion exchanger separation." Journal of Chromatography 

Open 1 (2021): 100004. 

 

592. Gritti, Fabrice, and Farooq Wahab. "Extraction of intrinsic column peak profiles of narrow-bore and 

microbore columns by peak deconvolution methods." Analytica Chimica Acta 1180 (2021): 338851. 

 

593. Russell, B., et al. "Investigating the potential of tandem inductively coupled plasma mass spectrometry 

(ICP-MS/MS) for 41 Ca determination in concrete." Journal of Analytical Atomic Spectrometry 36.4 (2021): 

845-855. 

 

594. Tanács, Dániel, et al. "Enantioseparation of ß2-amino acids by liquid chromatography using core-shell 

chiral stationary phases based on teicoplanin and teicoplanin aglycone." Journal of Chromatography A 1653 

(2021): 462383. 

 

595. Ewusi-Annan, Ebo, and Noureddine Melikechi. "Unsupervised fitting of emission lines generated from 

laser-induced breakdown spectroscopy." Spectrochimica Acta Part B: Atomic Spectroscopy 177 (2021): 106109. 

 

596. Niezen, Leon E., Peter J. Schoenmakers, and Bob WJ Pirok. "Critical comparison of background correction 

algorithms used in chromatography." Analytica Chimica Acta 1201 (2022): 339605. 

 

597. Kendir, Gülsen, Ayşegül Köroğlu, and Erdal Dinç. "SIMULTANEOUS SPECTROPHOTOMETRIC 

QUANTITATION OF RUTIN AND CHLOROGENIC ACID IN LEAVES OF Ribes uva-crispa L. BY ONE-

DIMENSIONAL CONTINUOUS WAVELET TRANSFORMS." Journal of the Chilean Chemical Society 66.1 

(2021): 5041-5046. 

 

598. Nosal, Daniel G., Douglas L. Feinstein, and Richard B. van Breemen. "Chiral liquid chromatography-

tandem mass spectrometry analysis of superwarfarin rodenticide stereoisomers–Bromadiolone, difenacoum and 

brodifacoum–In human plasma." Journal of Chromatography B 1165 (2021): 122529. 

 

599. Wang, Zhengshuo, et al. "Recent progress in organic color-tunable phosphorescent materials." Journal of 

Materials Science & Technology 101 (2022): 264-284. 

 

600. Kensert, Alexander, et al. "Deep convolutional autoencoder for the simultaneous removal of baseline noise 

and baseline drift in chromatograms." Journal of Chromatography A 1646 (2021): 462093. 

 

601. Zaynidinov, H. N., et al. "Algorithms and Service for Digital Processing of Two-Dimensional Geophysical 

Fields Using Octave Method." International Conference on Intelligent Human Computer Interaction. Springer, 

Cham, 2021. 

 

602. Singh, Ritu, Navin Rajpal, and Rajesh Mehta. "Non-invasive Single Channel integration model for fetal 

ECG extraction and sustainable fetal healthcare using wavelet framework." Multimedia Tools and Applications 

(2022): 1-27. 

 

603. Luo, Canhuang, et al. "Nudging the N170 forward with prior stimulation—Bridging the gap between N170 



Page | 537  

and recognition potential." Human brain mapping 43.4 (2022): 1214-1230.  

 

604.  Kurapati, Hemasai. "How does the period of oscillation of a cantilever relate with its mass?." (2022). PDF 

file 

 

605. Edelman, Joel. "Overtone Invariants are the Framework for Musical Consonance; An Illustrated Overview." 

Humanities Commons, PDF file. (2022). 

 

606. Hsu, W. Y., Y. W. Cheng, and C. B. Tsai. "An Effective Algorithm to Analyze the Optokinetic Nystagmus 

Waveforms from a Low-Cost Eye Tracker. Healthcare 2022, 10, 1281." (2022). 

 

607. Ghosh, Koushik. "Smart filter and smoothing: A new approach of data denoising." Noise Filtering for Big 

Data Analytics 12 (2022): 139. 

 

608. Maggiorea, F., et al. "Process optimization by real time analysis of liquids’ composition in Metal & 

Mining." TOS forum. No. 1. IM Publications Open, 2022. 

 

609. Mehic, Amela. "Development of a computational method for determining gamma energy escape from 

calorimeters at CLAB." (2022). 

 

610. Xue, Qingsheng, et al. "Detection of microplastics based on spatial heterodyne Raman spectroscopy." 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 283 (2022): 121712. 

 

611. Zhao, Nie, et al. "SGTools: a suite of tools for processing and analyzing large data sets from in situ X-ray 

scattering experiments." Journal of Applied Crystallography 55.1 (2022). 

 

612. Jeong, Mok Kun, Min Joo Choi, and Sung Jae Kwon. "High-spatial-resolution, instantaneous passive 

cavitation imaging with temporal resolution in histotripsy: a simulation study." Ultrasonography 41.3 (2022): 

566. 

 

613. Li, X., et al. "Process-Oriented Estimation of Chlorophyll-a Vertical Profile in the Mediterranean Sea Using 

MODIS and Oceanographic Float Products. Front." Mar. Sci 9 (2022): 933680. 

 

614. Riddick, Stuart N., et al. "Estimating Regional Methane Emission Factors from Energy and Agricultural 

Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin." Sensors 

22.19 (2022): 7410. 

 

615. Yang, Fanlin, et al. "An airborne LiDAR bathymetric waveform decomposition method in very shallow 

water: A case study around Yuanzhi Island in the South China Sea." International Journal of Applied Earth 

Observation and Geoinformation 109 (2022): 102788. 

 

616. Utt, Kainen L., et al. "Spatially-Resolved Mid-Infrared Spectral Evidence of Space Weathering." Authorea 

Preprints (2022). 

 

617. Termsuk, C., S. J. Sweeney, and C. Shenton-Taylor. "Thermoluminescence glow curve study of beta 

irradiated germanium doped core fibre with different dopant concentrations." Radiation Physics and Chemistry 

193 (2022): 109974. 

 

618. Alomar, Abdulazeez S. "Impact of Faddeeva–Voigt broadening on line-shape analysis at critical points of 

dielectric functions." AIP Advances 12.6 (2022): 065127. 

 

619. Likhachev, D. V. "A method of optimal dielectric function modeling by B-splines for spectroscopic 

ellipsometry analysis.", researchgate.net, 07/31/2022 

https://www.techrxiv.org/articles/preprint/How_does_the_period_of_oscillation_of_a_cantilever_relate_with_its_mass_/21405312/1/files/38003958.pdf
https://www.techrxiv.org/articles/preprint/How_does_the_period_of_oscillation_of_a_cantilever_relate_with_its_mass_/21405312/1/files/38003958.pdf
file:///C:/Users/tomoh/AppData/Roaming/Microsoft/Word/hc-framework-illustrated-19p.pdf


Page | 538  

 

620. Li, Dongmei, Zhiwei Zhu, and Da-Wen Sun. "Visualization and quantification of content and hydrogen 

bonding state of water in apple and potato cells by confocal Raman microscopy: A comparison study." Food 

Chemistry 385 (2022): 132679. 

 

621. Zhong, Yu, et al. "Summary Report of CALPHAD GLOBAL, 2021." Available at SSRN 4229474. 

 

622. Xuan, Doan Thanh, and Vu Dang Hoang. "Application of Fourier transform-based algorithms to resolve 

spectral overlapping for UV spectrophotometric co-assay of spiramycin and metronidazole in tablets." 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 277 (2022): 121253. 

 

624. Lâm, Vũ Tùng, et al. "Simultaneous quantification and solubility test of tenofovir disoproxil fumarate and 

emtricitabine in tablets by ultraviolet spectrum derivation using fast Fourier transform algorithm." Link: 

hup.edu.vn 

 

625. Pasquali, Mattia, et al. "Understanding Selectivity Loss Mechanisms in Selective Material Deposition by 

Area Deactivation on 10 nm Cu/SiO2 Patterns." ACS Applied Electronic Materials 4.4 (2022): 1703-1714. 

 

625. Zlabinger, Johannes. Development of a peak deconvolution software for X-ray fluorescence spectra. Diss. 

Wien, 2022. 

 

626. García-Figueroa, Jesús M. Depiction of the Ambipolar-State of the Gas-Substrate Interphase of the Electron 

Cyclotron Resonance–Microwave–Chemical Vapor Deposition (Ecr-Mw-Cvd) Method and Its Influence over the 

Properties of Vapor-Deposited Hydrocarbon Films. Diss. University of Rochester, 2022. 

 

627. Schulze, H. Georg, et al. "Critical Evaluation of Spectral Resolution Enhancement Methods for Raman 

Hyperspectra." Applied spectroscopy 76.1 (2022): 61-80. 

 

628. Danilenko, S. D. "Research of methods of digital-analog conversion for the implementation of mechanical 

co-living for the support of the software and hardware complex." (2022).  

 

629. Vasquez, Krystal TonyBeth. Isomer separation of multifunctional atmospheric compounds using gas 

chromatography and chemical ionization mass spectrometry. Diss. California Institute of Technology, 2022. 

 

630. Hesgrove, Cherie S., et al. "Tardigrade CAHS Proteins Act as Molecular Swiss Army Knives to Mediate 

Desiccation Tolerance through Multiple Mechanisms." bioRxiv (2021): 2021-08. 

 

631. Shareef, Abdulwahhab F., and Riyadh Z. Mahmoud. "Study on Turning Arabic Text into Spoken Words." 

AL-Rafidain Journal of Computer Sciences and Mathematics 15.1 (2021): 197-209. 

 

632. Teixeira, Paulo Sérgio, Alexandre Furtado Ferreira, and José Flávio Silveira Feiteira. "Simulação 

matemática dos sinais sonoros do violão através da convolução." Cadernos UniFOA 16.46 (2021). 

 

633. Moss, Frank R., et al. "Brominated Lipid Probes Expose Structural Asymmetries in Constricted 

Membranes." bioRxiv (2021). 

 

634.  Barmann, Peer, et al. "Solvent co-intercalation into few-layered Ti3C2T x MXenes in lithium ion batteries 

induced by acidic or basic post-treatment." ACS nano 15.2 (2021): 3295-3308. 

 

635. Guo, Shanzeng, Salman Akhtar, and Anthony Mella. "A method for radar model identification using time-

domain transient signals." IEEE Transactions on Aerospace and Electronic Systems 57.5 (2021): 3132-3149. 

 

636. Dasappa, Shruthi. Fundamental Studies of Gas-to-Particle Conversion for Nanoparticle Synthesis in Fames. 

file:///C:/Users/tomoh/AppData/Roaming/Microsoft/Word/hup.edu.vn


Page | 539  

Diss. University of California, San Diego, 2021. 

 

637. Raab, Meaghan T., Alexandra K. Prýmek, and Andrea N. Giordano. "ESTIMATION OF THE GROUND 

AND EXCITED STATE DIPOLE MOMENTS FOR IBUPROFEN AND NAPROXEN SODIUM USING THE 

SOLVATOCHROMIC SHIFT METHOD." Journal of Undergraduate Chemistry Research 20.4 (2021): 68. 

 

638. Hu, Jennifer F., et al. "Quantitative mapping of the cellular small RNA landscape with AQRNA-seq." 

Nature biotechnology 39.8 (2021): 978-988. 

 

639. Lee, Sung Hoon, et al. "A molecular clock controls periodically driven cell migration in confined spaces." 

Cell Systems (2022). 

 

640. Balewski, Zuzanna Z., Eric B. Knudsen, and Joni D. Wallis. "Fast and slow contributions to decision-

making in corticostriatal circuits." Neuron (2022). 

 

641. Firrone, Christian Maria, Antonio Giuseppe D’Ettole, and Matteo Nicita. "Extraction of relevant data from 

experimental test and matching with FEA." PDF file link. 2022 

 

642. Baroudi, Ahmad Jamal. "A Tool for Biometric Interpretation of Forensic STR DNA Profiles." (2022). PDF 

file link. 

 

643. Senecaut, Nicolas. Nouvelles approches de quantification des variations du protéome au niveau des 

protéines intactes: analyses expérimentales et computationnelles. Diss. Universite Paris Cité, 2022. PDF file link. 

 

644. Zhang, Linshan, et al. "Colorimetric detection for uranyl ions in water using vinylphosphonic acid 

functionalized gold nanoparticles based on smartphone." Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy 269 (2022): 120748. 

 

645. Ji, Songbai, Shaoju Wu, and Wei Zhao. "Dynamic characteristics of impact-induced brain strain in the 

corpus callosum." Brain Multiphysics 3 (2022): 100046. 

 

646. Sabr, Muhammad W., and Diyar S. Ali. "H-point standard addition method for simultaneous determination 

of phenylephrine hydrochloride, chlorpheniramine maleate, and paracetamol as a ternary mixture in 

pharmaceutical formulations." Journal of the Indian Chemical Society (2022): 100526. 

 

647. Takihata, Yasuhiro, et al. "In vivo diffuse reflectance spectroscopic analysis of fatty liver with inflammation 

in mice." Surgery Open Science 6 (2021): 21-28. 

 

648. Liang, Chen, et al. "Meter scale and sub-second resolution coherent Doppler wind lidar and hyperfine." 

Optics Letters Vol. 47, 10 (2022) 

 

649. Shang, Qiufeng, et al. "Pink noise removal and spectral distortion correction based fiber Bragg grating 

demodulation algorithm." Optics Express 30.2 (2022): 1066-1080. 

 

650. Liu, Luzheng, et al. "Selective Detection of Mixtures via a Single Nonselective Sensor—Making the 

Unworkable Sensor Workable by Machine Learning." Advanced Intelligent Systems (2022): 2200136. 

 

651. Li, Ping, et al. "Discrimination of raw and sulfur-fumigated ginseng based on Fourier transform infrared 

spectroscopy coupled with chemometrics." Microchemical Journal 181 (2022): 107767. 

 

652. Lum, Jordan S., et al. "In Situ Optical Detection for Ultrasonic Characterization of Materials in a Mach 10 

Hypersonic Wind Tunnel." Physical Review Applied 18.4 (2022): 044062. 

 

https://webthesis.biblio.polito.it/secure/23629/1/tesi.pdf
https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=11403&context=etd
https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=11403&context=etd
https://theses.hal.science/tel-03814886/document


Page | 540  

653. de CASTRO, PEDRO AA, et al. "Assessment of bone dose response using ATR-FTIR spectroscopy." 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2022). 

 

654. Zanotto, S., et al. "Optomechanical Modulation Spectroscopy of Bound States in the Continuum in a 

Dielectric Metasurface." Physical Review Applied 17.4 (2022): 044033. 

 

655. Wang, Kristen. Quantification of Resveratrol in Red Wine using Liquid Chromatography—Surface-

Enhanced Raman Spectroscopy (LC-SERS). Diss. The Ohio State University, 2022. 

 

656. Belal, Fathalla, et al. "Multi‐spectroscopic, thermodynamic and molecular docking studies to investigate 

the interaction of eplerenone with human serum albumin." Luminescence 37.7 (2022): 1162-1173. 

 

657. Kim, Myung-Hoon. "Advances in Derivative Voltammetry-A Search for Diagnostic Criteria of Several 

Electrochemical Reaction Mechanisms." Analytical Chemistry-Advancement, Perspectives and Applications. 

IntechOpen, 2021. 

 

658. Zhou, Yongjie, et al. "An improved algorithm for peak detection based on weighted continuous wavelet 

transform." IEEE Access (2022). 

 

659. Al-Samarrai, Mumin F. Hamad, Emad T. Hanon, and Ali I. Khaleel Khaleel. "Development of derivative of 

subtracting spectra method for the simultaneous determination of some decongestant drugs." Samarra Journal of 

Pure and Applied Science 3.3 (2021): 18-30. 

 

660. Bishop, Logan DC, Anastasiia Misiura, and Christy F. Landes. "A new metric for relating macroscopic 

chromatograms to microscopic surface dynamics: the distribution function ratio (DFR)." Analyst 146.13 (2021): 

4268-4279. 

 

661. de Castro, Pedro Arthur Augusto, et al. "Assessment of bone dose response using ATR-FTIR spectroscopy: 

A potential method for biodosimetry." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 

273 (2022): 120900. 

 

662. Luo, Hao, et al. "In Situ Nanofluid Dispersion Monitoring by Liquid–Solid Triboelectric Nanogenerator 

Based on Tuning the Structure of the Electric Double Layer." Advanced Functional Materials (2022): 2200862. 

 

663. Leal, Ana L., et al. "Data driven models exploring the combination of NIR and 1H NMR spectroscopies in 

the determination of gasoline properties." Microchemical Journal 175 (2022): 107217. 

 

664. Liang, Haibo, and Gang Liu. "Research on quantitative analysis method of PLS hydrocarbon gas infrared 

spectroscopy based on net signal analysis and density peak clustering." Measurement 188 (2022): 110392. 

 

665. Hassanzadeh, Amirhossein. On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to 

Model Yield and Assess Growth Stages of a Broadacre Crop. Diss. Rochester Institute of Technology, 2022. 

 

666. Rojas, Myriam, et al. "Kinetic Studies on Cocoa Roasting Including Volatile Characterization." ACS Food 

Science & Technology (2022). 

 

667. Chen, Yi‐Hsuan, et al. "Green Polymer Electrolytes Based on Polycaprolactones for Solid‐State High‐
Voltage Lithium Metal Batteries." Macromolecular Rapid Communications 43.20 (2022): 2200335. 

 

668. Manasi, Iva, et al. "Surfactant effects on the synthesis of porous cerium oxide from a type IV deep eutectic 

solvent." Journal of Materials Chemistry A 10.35 (2022): 18422-18430. 

 

669. Jander, Julius H., et al. "Determination of hydrogen loading in the carrier system 



Page | 541  

diphenylmethane/dicyclohexylmethane by depolarized Raman spectroscopy." International Journal of Hydrogen 

Energy 47.15 (2022): 9331-9345. 

 

670. Dunham-Cheatham, Sarrah M., Seth Lyman, and Mae Sexauer Gustin. "Comparison and calibration of 

methods for ambient reactive mercury quantification." Science of The Total Environment 856 (2023): 159219. 

 

671. Martin, Jeremy E., et al. "The stability of dinosaur communities before the K− Pg boundary: A perspective 

from southern Alberta using calcium isotopes as a dietary proxy." GSA Bulletin (2022). 

 

672. Scarpitti, Brian T., et al. "In Vitro Imaging of Lycopene Delivery to Prostate Cancer Cells." Analytical 

Chemistry 94.12 (2022): 5106-5112. 

 

673. Schuster, Miriam. "Investigation of the semicrystalline structure of EVA and ionoplastic interlayers." 

Characterization of Laminated Safety Glass Interlayers. Springer Vieweg, Wiesbaden, 2023. 117-162. 

 

674. Cuss, Chad W., and Celine Gueguen. "The contribution of endmembers to mixtures of leaf leachates and 

riverine DOM can be determined by measuring their size and fluorescence properties." Frontiers in 

Environmental Chemistry (2022): 14. 

 

675. Liu, Donghong, and Chuanjiang He. "Peak-aware guided filtering for spectrum signal denoising." 

Chemometrics and Intelligent Laboratory Systems 222 (2022): 104508. 

 

676. Gupta, S., Singh, A., Sharma, A., & Tripathy, R. K. (2022). Higher Order Derivative-Based Integrated 

Model for Cuff-Less Blood Pressure Estimation and Stratification Using PPG Signals. IEEE Sensors Journal, 

22(22), 22030-22039. 

 

677. Hua, Zhen-Ming, et al. "Large hardening response mediated by room-temperature dynamic solute clustering 

behavior in a dilute Mg-Zn-Ca-Sn-Mn alloy." Acta Materialia 240 (2022): 118308. 

 

678. Bhalode, Pooja, et al. "Statistical Data Pre-Treatment for Residence Time Distribution Studies in 

Pharmaceutical Manufacturing." Available at SSRN 4249747 (2022). 

 

679. Kukk, Anatoly Fedorov, Elias Blumenröther, and Bernhard Roth. "Self-made transparent optoacoustic 

detector for measurement of skin lesion thickness in vivo." Biomedical Physics & Engineering Express 8.3 

(2022): 035029. 

 

680. Wang, Yaheng, et al. "High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal 

Depth." Photonics. Vol. 9. No. 12. MDPI, 2022. 

 

681. Likhachev, D. V. "Optimization of the dielectric-function modeling by B-splines in spectroscopic 

ellipsometry analysis: A hybrid approach." Thin Solid Films 762 (2022): 139545. 

 

682. Ai, Xupeng, et al. "Phase Segmentation and Percentage Prediction of Trunk Movement Cycle." 2022 9th 

IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2022. 

 

683. Fan, Han, Erik Schaffernicht, and Achim J. Lilienthal. "Ensemble Learning-Based Approach for Gas 

Detection Using an Electronic Nose in Robotic Applications." Frontiers in chemistry 10 (2022). 

 

684. Chuang, Chun-Hsiang, et al. "IC-U-Net: a U-Net-based denoising autoencoder using mixtures of 

independent components for automatic EEG artifact removal." NeuroImage 263 (2022): 119586. 

 

685. Du, Mao, et al. "Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass 

spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog 



Page | 542  

chamber studies." Atmospheric Measurement Techniques (2022): 4385-4406. 

 

686. Schito, Andrea, et al. "Calibrating Carbonization Temperatures of Wood Fragments Embedded within 

Pyroclastic Density Currents through Raman Spectroscopy." Minerals 12.2 (2022): 203. 

 

687. Sosa, Jonathan. Advanced Optical Diagnostics in Hypersonic Flows. NAVAL RESEARCH LAB 

WASHINGTON DC, 2022. 

 

688. Li, Chunyan. "Global shockwaves of the Hunga Tonga-Hunga Ha’apai volcano eruption measured at 

ground stations." Iscience 25.11 (2022): 105356. 

 

689. Mekonnen, Alemu, et al. "Do improved biomass cookstoves reduce fuelwood consumption and carbon 

emissions? Evidence from a field experiment in rural Ethiopia." Ecological Economics 198 (2022): 107467. 

 

690. da Silva, Igor JG, Ivo M. Raimundo, and Boris Mizaikoff. "Analysis of sugars and sweeteners via terahertz 

time-domain spectroscopy." Analytical Methods 14.27 (2022): 2657-2664. 

 

691. Lee, Sea On. RNA-TECHNOLOGIES TO FACILITATE THE SYNTHESIS AND PROCESSING OF 

BIOMATERIALS WITH REPETITIVE AMINO ACID SEQUENCES. Diss. Johns Hopkins University, 2022. 

 

692. Pištek, Peter, Simon Harvan, and Michal Valicek. "Automated People Counting in Public Transport." 

Industry 4.0 Challenges in Smart Cities (2022): 75. 

 

693. Ke, Jie, et al. "Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform 

Infrared Spectroscopy and Gas Chromatography." Applied Spectroscopy 76.1 

 (2022): 38-50. 

 

694. Schultz, Jeremy F., et al. "Chemically imaging nanostructures formed by the covalent assembly of 

molecular building blocks on a surface with ultrahigh vacuum tip-enhanced Raman spectroscopy." Journal of 

Physics: Condensed Matter 34.20 (2022): 204008. 

 

695. Valero, Maria, et al. "Vibration sensing-based human and infrastructure safety/health monitoring: A survey." 

Digital Signal Processing 125 (2022): 103572. 

 

696. Oussalah, Abderrahim, David-Alexandre Trégouët, and Jean-Louis Guéant. "The Smoothing Method for 

DNA Methylome Analysis Identifies Highly Accurate Epigenomic Signatures in Epigenome-Wide Association 

Studies." (2022). 

 

697. Chunyan Li, “Analysis of globally propagating spherical shockwaves from great volcano eruptions using 

barometric pressure data”. STAR Protocols, Volume 4, Issue 2, 2023, ISSN 2666 1667, 

https://doi.org/10.1016/j.xpro.2023.102207. 

(https://www.sciencedirect.com/science/article/pii/S266616672300165X) 

 

698. Zhao, Ziwen, et al. "Automated Processing of Nano-Impact Electrochemistry Signals Using Data-Driven 

Template Matching." Electrochemical Society Meeting Abstracts 244. No. 57. The Electrochemical Society, Inc., 

2023. 

 

699. Singh, Ritu, Navin Rajpal, and Rajesh Mehta. "Non-invasive Single Channel integration model for fetal 

ECG extraction and sustainable fetal healthcare using wavelet framework." Multimedia Tools and 

Applications 82.25 (2023): 39669-39695. 

 

700. Kurapati, Hemasai. "How does the period of oscillation of a cantilever relate with its mass?." Authorea 

Preprints (2023). 

https://www.sciencedirect.com/science/article/pii/S266616672300165X


Page | 543  

 

701. Ma, Jielin, et al. "Effect of High Relative Humidity on the Thermal Aging of Composite Epoxy Insulation 

Materials." 2023 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2023. 

 

702. Moss III, Frank R., et al. "Brominated lipid probes expose structural asymmetries in constricted 

membranes." Nature Structural & Molecular Biology 30.2 (2023): 167-175. 

 

703. Mouton, J. W. A., et al. "Development and validation of a bioanalytical assay for the measurement of total 

and unbound teicoplanin in human serum." Journal of Antimicrobial Chemotherapy 78.11 (2023): 2723-2730. 

 

704. Durán, Antonio Andrés Figueroa, and Efren Fernandez Grande. "Navigable Reconstruction of Reverberant 

Sound Fields Using Distributed Microphone Arrays." 2nd International Conference on Immersive and 3D Audio. 

IEEE, 2023. 

 

705. Pace, DM Díaz. "τ-algorithm for gathering spectroscopic information by modeling emission line shapes: 

application to laser-induced plasmas." JOSA B 40.4 (2023): C1-C7. 

 

706. Dummitt, Richard. Chemical Effects in Protein Analysis: A Systematic Investigation of Amino Acid 

Spontaneous Raman and SERS Responses. Diss. The Ohio State University, 2023. 

 

707. Zhong, Yu, et al. "Summary report of CALPHAD GLOBAL, 2021." Calphad 81 (2023): 102527. 

 

708. Lueder, Mona, Renée Tamblyn, and Jörg Hermann. "A framework for quantitative in situ evaluation of 

coupled substitutions between H+ and trace elements in natural rutile." European Journal of Mineralogy 35.2 

(2023): 243-265. 

 

709. Yang, Jerry A., et al. "Biaxial Tensile Strain Enhances Electron Mobility of Monolayer Transition Metal 

Dichalcogenides." arXiv e-prints (2023): arXiv-2309. 

 

710. Mahajan, Vishal, et al. "Treating Noise and Anomalies in Vehicle Trajectories From an Experiment With a 

Swarm of Drones." IEEE Transactions on Intelligent Transportation Systems (2023). 

 

711. Figueroa-Duran, Antonio, and Efren Fernandez-Grande. "Navigable Reconstruction of Reverberant Sound 

Fields Using Distributed Microphone Arrays." 2023 Immersive and 3D Audio: from Architecture to Automotive 

(I3DA). IEEE, 2023. 

 

712. Duarte, Gabriela, et al. "Raman microspectroscopy as a tool for identifying biosignatures in speleothem 

microbialites." Annals XVI Latin American Congress on Organic Geochemistry. 2023. 

713. "表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測" (Surface-

enhanced Raman scattering probes and microfluidics systems are used for multiplex detection of biomarkers on 

the surface of cancer cells and exosomes), PhD diss., National Central University, 2023. 

 

714. Handlovic, Troy T., et al. "Automated Regularized Deconvolution for Eliminating Extra-Column Effects in 

Fast High-Efficiency Separations." Analytical Chemistry 95.29 (2023): 11028-11036. 

 

715. Akinci, Tahir Cetin, et al. "High Order Spectral Analysis of Ferroresonance Phenomena in Electric Power 

Systems." IEEE Access (2023). 

 

716. de Araújo Gomes, Adriano, et al. "Pattern recognition techniques in food quality and authenticity: A guide 

on how to process multivariate data in food analysis." TrAC Trends in Analytical Chemistry (2023): 117105. 

 

717. Fekete, Szabolcs, and Davy Guillarme. "Ultra-short columns for the chromatographic analysis of large 



Page | 544  

molecules." Journal of Chromatography A 1706 (2023): 464285. 

 

418. Hollands, Patrick Mark. Estimating the Effect of Pore Water and Ice on Martian Rock Analogues Using 

Ultrasonic and Resonant Ultrasound Spectroscopy Methods. Diss. ResearchSpace@ Auckland, 2023. 

 

Sanchez-Martinez, Silvia, et al. "Labile assembly of a tardigrade protein induces biostasis." bioRxiv (2023): 

2023-06. 

 

719. Liu, Chongshan, et al. "Microbiome-induced Increases and Decreases in Bone Tissue Strength can be 

Initiated After Skeletal Maturity." bioRxiv (2024): 2024-01. 

 

720. Cuyt, Annie, and Wen-shin Lee. "Multiscale matrix pencils for separable reconstruction 

problems." Numerical Algorithms 95.1 (2024): 31-72. 

 

721. Allan, Matthew C., et al. "Baked sweetpotato textures and sweetness: An investigation into relationships 

between physicochemical and cooked attributes." Food Chemistry: X 21 (2024): 101072. 

 

722. Yang, Guofeng, et al. "An improved radioactive tracer response analysis and injection profile quantification 

method based on intelligent algorithms." Journal of Radioanalytical and Nuclear Chemistry (2024): 1-15. 

 

723. Dong, Wen, et al. "Study of UV–Vis molar absorptivity variation and quantitation of anthocyanins using 

molar relative response factor." Food Chemistry (2024): 138653. 

 

724. Chen, Huo, et al. "Adaptive variational simulation for open quantum systems." Quantum 8 (2024): 1252. 

 

725. Yu, Lihuan, et. al., Derivative Spectroscopy and its Application at Detecting the Weak Emission/ Absorption 

Lines, Research in Astronomy and Astrophysics (2024). 

 

726. R Senthilkuma, S.Shek Dhavud, RealTime AC Speech Denoising Analog Digital Filters, National 

Conference on Emerging Trends and Technology,  ISBN: 978-81959812-3-6, June 2023 

 

727. Matteo BruschiFederico GallinaFederico GallinaBarbara FreschBarbara Fresch, A Quantum Algorithm 

from Response Theory: Digital Quantum Simulation of Two-Dimensional Electronic Spectroscopy, The Journal 

of Physical Chemistry Letters 15(5):1484-1492. DOI: 10.1021/acs.jpclett.3c03499, January 2024 

 

728. Fatma R.M. Abda Rehmann lati1, Salah I.S. Tnatin. Effect the window type in design of FIR Filter to 

reduce the noise in the signal, ICRSE 2021: The 1st International Conference on Renewable and Sustainable 

Energy, VOLUME 5 No(1) October 10-13, 2021  

 

729. Krzysztof Sozanski, Overview of Signal Processing Problems in Power Electronic Control Circuits, 

Energies 16(12):4774, DOI: 10.3390/en16124774, June 2023 

 

730. Dhanarasi Gowtham B.T.Krishna, Design and Applications of Digital Differentiators Using Model Order 

Reduction Techniques, Journal of Propulsion Technology, October 2023 

 

731. Feng, Vincent. "Spectroscopy of Chamber Plasma and Plume of a 2.4-GHz Microwave Electrothermal 

Thruster." (2023). 

 

732. Zhang, Le, et al. "Absolute thermometry of human brown adipose tissue by magnetic resonance with laser 

polarized 129Xe." Communications Medicine 3.1 (2023): 147. 

 

733. Andreani, Muriel, et al. "The rocky road to organics needs drying." Nature Communications 14.1 (2023): 

347. 



Page | 545  

 

734.Schorr, Hannah C., and Zachary D. Schultz. "Chemical conjugation to differentiate monosaccharides by 

Raman and surface enhanced Raman spectroscopy." Analyst 148.9 (2023): 2035-2044. 

 

735. Chowdhury, Nildari Roy, et al. "Influence of state of charge window on the degradation of Tesla lithium-ion 

battery cells." Journal of Energy Storage 76 (2024): 110001. 

 

736. Sanchez-Martinez, Silvia, et al. "Labile assembly of a tardigrade protein induces biostasis." bioRxiv (2023): 

2023-06. 

 

737. Lokini, Parneeth, et al. "Plasma Parameters of Laser Irradiated Hydrocarbon Droplets in Air." AIAA 

SCITECH 2024 Forum. 2024. 

 

738. Zheng, Shuailin, et al. "Rapid detection of phosphorus in water using silicon attenuated total reflectance 

infrared spectroscopy coupled with the algorithms of deconvolution and partial least squares 

regression." Sensors and Actuators B: Chemical 380 (2023): 133372. 

 

739. Lee, Se Hun, et al. "Synthesis of conducting polymer intercalated sodium vanadate nanofiber composites as 

active materials for aqueous zinc-ion batteries and NH3 gas sensors at room temperature." Composites Part B: 

Engineering (2024): 111305. 

 

740. Morder, Courtney, and Zachary D. Schultz. "A 3D printed sheath flow interface for surface enhanced 

Raman spectroscopy (SERS) detection in flow." Analyst (2024). 

 

741. Deal, Alexandra M., et al. "Infrared Reflection–Absorption Spectroscopy of α-Keto Acids at the Air–Water 

Interface: Effects of Chain Length and Headgroup on Environmentally Relevant Surfactant Films." The Journal 

of Physical Chemistry A 127.18 (2023): 4137-4151. 

 

742. Rehmann, Kelsi MS, John Klier, and Jessica D. Schiffman. "Anionic polymerization and transport of 

diethyl methylidene malonate on polyolefin copolymer surfaces." Polymer Chemistry 14.32 (2023): 3695-3706. 

 

743. Sargent, Alexander T., et al. "Reclamation and reuse of graphite from electric vehicle lithium-ion battery 

anodes via water delamination." Journal of Materials Chemistry A 11.17 (2023): 9579-9596. 

 

744. Guilherme da Fonseca, Bruno. Application of Raman Spectroscopy for the characterization of carbon 

materials. Diss. 2023. 

 

745. Lima, Sofía, et al. "An allosteric switch ensures efficient unidirectional information transmission by the 

histidine kinase DesK from Bacillus subtilis." Science Signaling 16.769 (2023): eabo7588. 

 

746. GODINHO, Madame Maria Helena, et al. "Bioinspired photonic cellulose films", 2021. (PDF file link) 

 

747. Chen, Huo, et al. "Adaptive variational simulation for open quantum systems." Quantum 8 (2024): 1252. 

 

748. Piskors, Nico, et al. "High Protein—Low Viscosity? How to Tailor Rheological Properties of Fermented 

Concentrated Milk Products." Dairy 4.4 (2023): 594-605. 

 

749. Boukra, Amine, et al. "Sampling terrigenous diffuse sources in watercourse: Influence of land use and 

hydrological conditions on dissolved organic matter characteristics." Science of The Total Environment 872 

(2023): 162104. 

 

750. Farmer, Jessica, and Adam J. Jackson. "A fast approximate method for variable-width broadening of 

spectra." arXiv preprint arXiv:2309.12135 (2023). 

https://theses.hal.science/tel-03484314/preview/FOUQUES_2020_archivage.pdf


Page | 546  

 

751. Nieto Benito, Guillermo. "Predicción de series temporales mediante técnicas de aprendizaje automático. 

Automatización del proceso." (2023). PDF link. 

 

752. Le, Duc, et al. "sCL-ST: “Supervised Contrastive Learning with Semantic Transformations for Multiple 

Lead ECG Arrhythmia Classification." IEEE journal of biomedical and health informatics (2023). 

 

753. Mikheenkova, Anastasiia, et al. “Ageing of High Energy Density Automotive Li-ion Batteries: The Effect 

of Temperature and State-of-Charge.” (2023). 

 

754. Chaiamarit, Tai, et al. "Mutant Prion Protein Endoggresomes are Hubs for Local Axonal Organelle-

Cytoskeletal Remodeling." bioRxiv (2023): 2023-03. 

 

755. José María Martínez-Blanes Galo Romero-García Daniel Sánchez-Gómez, “Crafting illusions: Human-

made composite coating used to simulate amber beads in prehistoric Iberia”, Journal of Archaeological Science, 

June 2024, DOI: 10.1016/j.jas.2024.106011 

 

756. Ekram A GhozzyNahed M El-EnanyManar M TolbaSamah Abo El Abass, Eco-friendly simultaneous 

estimation of atenolol and losartan potassium in spiked human plasma via synchronous fluorescence with 

sustainability assessment, Luminescence 39(7):e4839, July 2024  DOI: 10.1002/bio.4839 

 

757. Tao, Linmi, et al. "Applications of Tao General Difference in Discrete Domain." arXiv preprint 

arXiv:2401.15287 (2024).  2401.15287.pdf (arxiv.org) 
 

https://idus.us.es/bitstream/handle/11441/149376/TFG4769_Nieto%20Benito.pdf?sequence=1&isAllowed=y
https://arxiv.org/pdf/2401.15287.pdf

