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Introduction

he interfacing of measurement instrumentation to small computers for the purpose of online data
Tacquisition has now become standard practice in the modern science laboratory. Scientists use

computers for data acquisition, data processing, and storage, using digital computer-based
numerical methods. Techniques covered in this book can transform signals into more useful forms,
detect and measure peaks, reduce noise, improve the resolution of overlapping peaks, compensate for
instrumental artifacts, test hypotheses, optimize measurement strategies, diagnose measurement
difficulties, and visualize and decompose complex signals into their component parts. These techniques
can often make difficult measurements easier by extracting more information from the available data.
Many of these techniques employ laborious mathematical procedures that were not even practical
before the advent of computerized instrumentation. It is important for you to appreciate the abilities, as
well as the limitations, of these techniques. In recent decades, computer storage and digital processing
has become far less costly and literally millions of times more capable, reducing the cost of raw data
and making complex computer-based signal processing techniques both more practical and necessary.
Approximations and shortcuts that were once necessitated by mathematical convenience are no longer
needed (e.g. pages 138, 195, 271). And it is not just the growth of computers: there are now new
materials, new instruments, new fabrication techniques, new automation capabilities. We have lasers,
fiber optics, superconductors, super-magnets, holograms, quantum technology, nanotechnology, and
now even the beginnings of artificial intelligence (page 443). Sensors are smaller, cheaper, and faster
than ever before; we can measure over a wider range of speeds, temperatures, pressures, and locations.
People are carrying smartphones and fitness trackers everywhere they go, recording their heart rate, etc.,
creating new kinds of data sets that we never had before. As Erik Brynjolfsson and Andrew McAfee
wrote in The Second Machine Age (W. W. Norton, 2014): "... as data gets cheaper, the bottleneck
increasingly is the ability to interpret and use data". Kate Keahey, a Senior Scientist at Argonne
National Laboratory, writes that "Software is a vital part of the research landscape, and most
researchers will benefit from understanding its possibilities, limitations and the requirements for
building it".

This book covers only basic topics related to one-dimensional signals, not two-dimensional data such
as images. It uses a pragmatic approach and is limited to mathematics only up to the most elementary
aspects of calculus, statistics, and matrix math. 1 use logical arguments, analogies, graphics, and
animation to explain ideas, rather than lots of formal mathematics. Data processing without math? Not
really! Math is essential, just as it is for the technology of cell phones, GPS, digital photography, the
Web, computer games, and modern cars. But you can get started using these tools without
understanding all the underlying math and software details. Seeing it work makes it more likely that
you will want to understand how it works. Nevertheless, in the end, it is not enough just to know how
to operate the software, any more than knowing how to use a word processor or a MIDI sequencer
makes you a good author or musician. | get you started with things that work; it is up to you to decide
if a deep dive into advanced topics becomes necessary for your purposes.

Why do 1 title this document "signal processing" rather than "data processing"? By "signal” | mean the
X,y numerical time-series data recorded by scientific instruments, where x may be time or another
quantity like energy or wavelength, as in the various forms of spectroscopy. This is sometimes called
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“squiggly line” data. I don’t deal so much with categorical data. In other words, | am oriented to data
that you would plot in a spreadsheet using the scatter chart type rather than bar or pie charts.

Some of the examples come from my own areas of research in analytical chemistry, but there are many
examples of use in a wide range of application areas. Over 750 journal papers, theses, and patents have
cited my book and software, covering fields from academia, industry, environmental, medical,
engineering, earth science, space, military, financial, agriculture, communications, and even music and
speech science. Hundreds of readers have sent suggestions and experimental data from their own work
that have helped shape my writing and software development. Much effort has gone into making this
document concise and understandable; it has been very positively received by many readers.

At the present time, this work does not cover image processing, pattern recognition, or factor analysis.
For these topics and for a more rigorous treatment of the underlying mathematics of the topics I do
cover, refer to the extensive literature on signal processing and on statistics and chemometrics.

Throughout this work, a wide range of applications and connections are described, some potentially
intriguing, such as stock market investing (page 322), human cognitive biases (page 356), the failure of
a NASA spacecraft (page 72), cosmic rays from outer space (page 49), adding one kind of noise to
reduce another (page 304), studying beach erosion by wind-blown sand (page 300), coding with
artificial intelligence (page 443), expanding the classical limits of measurement in spectroscopy (page
271), the intelligibility of digitized speech (page 99 and 381), low-cost miniature computers (page 339),
and an easy way to create interactive GUI apps (page 36). The citations list (page 502 in the PDF) is
evidence of a truly mind-boggling range of applications.

This site makes considerable use of Matlab, a high-performance commercial and proprietary numerical
computing environment and "fourth generation" programming language that is widely used in research
(14, 17, 19, 20), Octave, a free Matlab alternative that runs almost all of the programs and examples in
this tutorial, and Python, a powerful but free and open-source language. There is a good reason why
Matlab and Python have become so popular in science and engineering; they are powerful, fast, and
relatively easy to learn. A very important aspect of both languages is the concept of functions, which
are self-contained modules of code that accomplish a specific task. Functions usually "take in" data,
process it, and "return™ a result. (A trivial example is a=sqrt(b), which takes the value of b, computes its
square root, and assigns it to the variable a). Once a function is written, it can be used over and over
again. Functions can be "called" from the inside of other functions. Matlab and Python come with built-
in functions for doing data processing tasks like matrix math, filtering, Fourier transforms, convolution
and deconvolution, multi-linear regression, and optimization. You can write your own custom functions
to use in your future programming projects, and you can download form their collection of thousands
of useful user-contributed functions. Matlab has available a large number of add-ons called toolboxes
created by experts in various fields for performing specialized mathematical tasks, including parallel
computing, symbolic math and interfacing to Mathematica and to libraries written in C, C++, Java,
Fortran, and Python; and it's extensible to model-based design for dynamic and embedded systems. A
companion piece called Simulink is a graphical programming environment for modeling, simulating
and analyzing multidomain dynamical systems.

Most of the techniques covered in this work can also be performed in common spreadsheets such as
Microsoft Excel or OpenOffice/LibreOffice Calc (11, 22, 23), which can be downloaded without cost
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from their web sites, https://sourceforge.net/projects/octave/ and https://www.libreoffice.org/.

You can download all of my Matlab/Octave or Python scripts and functions, and the spreadsheet

templates, from http://tinyurl.com/cey8rwh at no cost; they have received extraordinarily positive
feedback from users. (If you try to run one of my scripts or functions and it gives you a "missing

function™ error, look for the missing item from http://tinyurl.com/cey8rwh, download it into your
Matlab/Octave search path. Type “help path” for more information about the search path).

If you do not know Matlab, read page 16 and following for a quick start-up. Matlab is specifically
suited to numerical methods, matrix manipulations, plotting of functions and data, creation of
algorithms and user interfaces, rapid prototyping, and deployment to portable devices such as tablets -
essentially the needs of numerical computing by scientists and engineers. Matlab is loosely and
dynamically typed, is less well-structured in a formal sense than other languages, and it tends to be
more favored by scientists and engineers and less well-liked by computer scientists and professional
programmers. Python is different in a many details, is a little harder to install, and requires the
installation of several add-on “packages”, but it has the great advantage of being free. Note: you can
use an artificial intelligence chatbot to convert Matlab to Python or vice versa (page 443).

There are several versions of Matlab, including stand-alone low-cost student and home versions, fully
functional versions that run in a web browser (see graphic below), and apps that run on iPads and
iPhones. See https://www.mathworks.com/pricing-licensing.html for prices and restrictions in their use.
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Peak# Position Height Width Area
1 1488.4 6.25873 57.6 15.373
2 1502.2 8.029807 53.366 1.6932

Figure 1. Matlab Online running my interactive peak fitter, ipf.m (page 412) in a Windows PC browser

There are alternatives to Matlab, in particular, Octave, which is essentially a Matlab clone, but there is
also Scilab, FreeMat, Julia, and Sage, which are mostly or somewhat compatible with the MATLAB
language. For a discussion of other possibilities, see http://www.dspguru.com/dsp/links/matlab-clones.
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If you are reading this book online, on an Internet-connected computer, you can click on any of the http
Web addresses or on the names of downloadable software or animations to view or download that item.
For a complete list of all my software, see page 461 or http://tinyurl.com/cey8rwh.

Signal arithmetic

The most basic signal processing operations are those that involve simple signal arithmetic: point-by-
point addition, subtraction, multiplication, or division of two signals or of one signal and a constant.
Despite their mathematical simplicity, these operations can be very useful. For example, in the left part
of the figure below (Window 1) the top curve is the optical absorption spectrum of an extract of a
sample of oil shale, a kind of rock that is a source of petroleum.

Window 1 Window 2
131 point2. 20 4.de+2 T.0e+z Too-0.5e-3 3.6e-] 131 pointz. X 4d.de+2 T.0e+2 Woo-2.0e-2 &%
xint x1p
1 2.00 -
2.00 1
6.00
200 a0 ]
] 200 4
1.00 - ]
0.00 -
I:l'l:":l_l""r'"'|""r""|1""| -|""|""|""|""|""'|
4.50 5.00 5.50 6,00 6,50 7.00 4,50 5.00 5.50 600 £.50 7.00
x 10 x 10

A simple point-by-point subtraction of two signals allows the background (bottom curve on the left) to
be subtracted from a complex sample (top curve on the left), resulting in a clearer picture of what is
really in the sample (right). (X-axis = wavelength in nm; Y-axis = absorbance).

This optical spectrum exhibits two absorption bands, at 515 nm and 550 nm. These peaks are due to a
class of molecular fossils of chlorophyll called porphyrins, which are used as “geomarkers” in oil
exploration. These bands are superimposed on a background absorption caused by the extracting
solvents and by non-porphyrin compounds in the shale. The bottom curve is the spectrum of an extract
of a non-porphyrin-bearing shale, showing only the background absorption. To obtain the spectrum of
the shale extract without the background, the background (bottom curve) is simply subtracted from the
sample spectrum (top curve). The difference is shown in the right in Window 2 (note the change in the
Y-axis scale). In this case, the removal of the background is not perfect, because the background
spectrum is measured on a separate shale sample. However, it works well enough that you can see the
two bands more clearly and it is easier to measure precisely their absorbances and wavelengths.
(Thanks to the late Prof. David Freeman of the Univ. of Maryland for the spectra of oil shale extracts).

In this example and the one below, | am assuming that the two signals in Window 1 have the same x-
axis values - in other words, that both spectra have been digitized at the same set of wavelengths.
Subtracting or dividing two spectra would not be valid if two spectra were digitized over different
wavelength ranges or with different intervals between adjacent points. The x-axis values must match up
point for point. In practice, this is very often the case with data sets acquired within one experiment on
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one instrument, but you must be careful if you change the instrument’s settings or if you combine data
from two experiments or two instruments. It is possible to use the mathematical technique of
interpolation to change the sampling rate (x-axis interval) or to equalize unequally spaced x-axis
intervals of signals; the results are usually only approximate but often close enough in practice. Excel
can perform the calculations using the forecast function. Matlab and Octave have built-in functions for
interpolation, including interpl.m, see examplel (graphic) and example2 (graphic).

Sometimes one needs to know whether two signals have the same shape, for example in comparing the

signal of an unknown to a stored reference signal. Most likely the amplitudes of the two signals will be

different. Therefore, a direct overlay or subtraction of the two signals will not be useful. One possibility
is to compute the point-by-point ratio of the two signals; if they have the same shape, the ratio will be a
constant. For example, examine this figure:

Window 1 Window 2
128 pointz. 20; 3.0e+2 5.0e+2 Y. 0.0e+0 2. 7e+ 128 points. Xi: 3.0e+2 5.0e+2 ¥ 8.Te+0 1.2e1
x 10
2.50 1.15
200 L.10
150 1.05
1.00
1.00
0.95
0.50
0.90
o =————"T————7 LI L L B I L L R R L LI B L L B L L R AL |
3.450 4.00 4.50 500 5.490 3.50 4.00 4.50 5.00 5.400
x10° x 10¢
Do the two signals on the left have the same shape? They certainly do not look the same, but that may
simply be because one is much weaker than the other one. The ratio of the two signals, shown in the
right part (Window 2), is relatively constant from 300 to 440 nm, with a value of 10 +/- 0.2. This means
that the shape of these two signals is very nearly identical over this x-axis range.

The left part (Window 1) shows two superimposed signals, one of which is much weaker than the other.
But do they have the same shape? It is hard to tell. It’s much clearer if you look at the ratio of the two
signals, shown in the right part (Window 2), which is relatively constant from x=300 to 440, with a
value of 10 +/- 0.2. This means that the shape of these two signals is the same, within about +/-2 %,
over this x-axis range, and that the top curve is about 10 times more intense than the bottom one.
Above x=440 the ratio is not even approximately constant; this is caused by noise, which is the subject
of the next section (page 23).

When you divide two vectors point by point, even a single zero in the denominator vector will stop the
program with a division by zero error. A vanishingly small but finite number in the denominator will
not stop the program but will generate a huge number in the result. Both problems can usually be
avoided by adding a small non-zero constant to the denominator or by applying a small amount of
smoothing (page 39) of the denominator or by using the Matlab/Octave function rmz.m (remove zeros)
which replaces zeros with the nearest non-zero numbers. The related function rmnan.m removes NaNs
(“Not a Number) and Infs (“Infinite”) from vectors, replacing with neighboring real finite numbers.

On-line calculations and plotting. Wolfram Alpha is a free Web site and a smartphone app that is an
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extremely useful computational tool and information source, including capabilities for symbolic
mathematics, plotting, vector and matrix manipulations, statistics and data analysis, and many other
topics. Statpages.org can perform a huge range of statistical calculations and tests. There are several
Web sites that specialize in plotting data, including Plotly and Grapher. All of these require a reliable
Internet connection, and they can be useful when you are working on a mobile device or computer that
does not have the required software installed. In the PDF version of this book, you can Ctrl-Click on
these links to open them in your browser.

Signal arithmetic in Spreadsheets

Popular spreadsheets, such as Excel or Open Office Calc, are aimed mainly at business and financial
applications, but still have built-in functions for many common math operations, named variables, X,y
plotting, text formatting, matrix math, etc. Cells can contain numerical values, text, mathematical
expressions, or references to other cells. You can represent a spectrum as a row or column of cells. You

= can represent a set of spectra as a rectangular
block of cells. You can assign your own
names to individual cells or to ranges of cells,
and then refer to them in mathematical
expression by name. You can copy mathe-
matical expressions across a range of cells,
with the cell references changing or not as
desired. You can make plots of various types
(including the all-important x-y or scatter
graph) by menu selection. For a nice video
demonstration, see this YouTube video:
http://www.youtube.com/watch?v=nTIkkbQWpVKk. Both Excel and Calc offer a “form design”
capability with a full set of user interface objects such as buttons, menus, sliders, and text boxes; you
can use these to create attractive graphical user interfaces for end-user applications, such as ones | have
created for teaching analytical chemistry courses on http://terpconnect.umd.edu/~toh/models/. The
latest versions of both Excel (Excel 2013) and OpenOffice Calc (3.4.1) can open and save either
spreadsheet file formats (.xlIs and .ods, respectively). Simple spreadsheets in either format are
compatible with the other program. However, there are small differences in the way that certain
operations are interpreted, and for that reason | supply most of my spreadsheets in .xls (for Excel) and
in .ods (for Calc) formats. Google "Differences between the Open-Document Spreadsheet (.ods) format
and the Excel (.xIsx) format". Basically, Calc can do almost everything Excel can do, but Calc is free to
download and is more Windows-standard in terms of look-and-feel. Excel is more "Microsoft-y" and is
often faster than Calc. If you have access to Excel, | recommend using that.

. Peak detection
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If you are working on a tablet or smartphone, you could use the Excel mobile app, Numbers for iPad,
or several other mobile spreadsheets. These apps can do basic tasks but do not have the fancier
capabilities of the regular computer versions. By saving their data in the "cloud” (e.g., iCloud or
SkyDrive), these apps automatically sync changes in both directions between mobile devices and
desktop or laptop computers, making them useful for field data entry. When in doubt, ask an Al (page
443).
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Signal arithmetic and plotting in Matlab

In Matlab (and in its GNU clone Octave) or in Python, arithmetic is much like any other language: e.g.
(at+b)/c. In Matlab and in Python (page 20), a single variable can represent either a single "scalar” value,
a vector of values (such as a spectrum or a chromatogram), a matrix (a rectangular array of values, such
as a set of spectra), or a set of multiple matrices. All the standard math operations and functions adjust
to match. This greatly facilitates mathematical operations on signal waveforms. The subtraction of two
signals a and b, as on page 13, can be performed simply by writing a-b. Likewise, the ratio of two
signals in Matlab, as on page 14, is " (a. /b) ™. So, "./" means divide point-by-point and ".*" means
multiply point-by-point. The * by itself means matrix multiplication, which you can use to perform
repeated multiplications without using loops. For example, if X is a vector.

A=[1:100] '*x;

creates a matrix A in which each column is x multiplied by the numbers 1, 2,...100. It is equivalent to
writing a "for” loop like this, but more compact to write and faster to execute:
for n=1:100;
A(:,n)=n.*x;
end

Plotting data. If you have signal amplitudes in the variable y, you can plot it just by typing "plot (y)".
And if you also have a vector t of the same length containing the times at which each value of y was
obtained, you can plot y vs t by typing "plot (t,y)". Two signals y and z can be plotted on the same
time axis for comparison by typing "plot(t,y, t,z)". (Matlab automatically assigns different colors
to each line.You can control the color and line style yourself by adding additional symbols; for example,
"plot(x,y,'r.',x,z, 'b-")" will ploty vs x with red dots and z vs x with a blue line. You can
divide up one figure window into multiple smaller plots by placing subplot (m,n,p) before the plot

command to plot in the pt" section of an m-by-n grid of plots. (If you are reading this online, you can
click here for an example of a 2x2 subplot. You can also select, copy, and paste, or select, drag and drop,
any of the single-line or multi-line code examples into the Matlab or Octave editor or directly into the
command line and press Enter to
execute it immediately). In Matlab,
type "help plot" for more plotting
options. In Python, “import
matplotlib.pyplot as plt”
enables Matlab-like plotting.

o = > )

For publication-quality graphs,
click on a Figure window, then
click File > Export setup, choose
P = the size, resolution, color, fonts,

: vt e == etc., then click Export and select
T | ' I| s, the file format (e.g., TIF, eps, etc.).
G0 - _ EaIE YR —== 3 You can also use PlotPub , a
downloadable library that is free, easy to use, allows great flexibility in choosing graph details, and
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creates great-looking graphs within Matlab that can be exported in EPS, PDF, PNG and TIFF with
adjustable resolution. Here is an example (script, graphic).

The function max(y) returns the maximum value of y and min(y) returns the minimum. Individual
elements in a vector are referred to by index number; for example, t(10) is the 10th element in vector t,
and t(10:20) is the vector of values of t from the 10th to the 20th entries. You can find the index
number of the entry closest to a given value in a vector by using my val2ind.m function. For example,
t(val2ind(y,max(y))) returns the time of the maximumy, and t (val2ind(t,550) :
val2ind(t,560)) is the vector of values of t between 550 and 560 (assuming t contains values

within that range). The units of the time data in the t vector could be anything - microseconds,
milliseconds, hours, any time units.

A Matlab variable can also be a matrix, a set of vectors of the same length combined into a rectangular
array. For example, intensity readings of 10 different optical spectra, each taken at the same set of 100
wavelengths, could be combined into the 10x100 matrix S. S(3,:) would be the third of those spectra
and S(5,40) would be the intensity at the 40th wavelength of the 5" spectrum. The Matlab scripts
plotting.m (left) and plotting2.m (right) show how to plot multiple signals using matrices and subplots.

See TimeTrial.txt for details. It will help if you pre-allocate memory space for the A matrix by adding
the statement A=zeros(100,100) before the loop. Even then, the matrix notation is faster than the loop.

Plotting a single Gaussian curve Gaussians with 10 different heights subplot(2,2,1) showing y=n*x subplot(2,2,2) showing y=n*sin(x)
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In Matlab/Octave, "/" is not the same as "\". Typing "b\a" will compute the "matrix left divide", in
effect the weighted average ratio of the amplitudes of the two vectors (a type of least-squares best-fit
solution). The point here is that Matlab does not require you to deal with vectors and matrices as
collections of numbers; it knows when you are dealing with matrices, or when the result of a
calculation will be a matrix, and it adjusts calculations accordingly. See
https://www.mathworks.com/help/matlab/matlab _prog/array-vs-matrix-operations.html.

Probably the most common errors you'll make in Matlab/Octave are punctuation errors, such as mixing
up periods, commas, colons, and semicolons, or parentheses, square brackets, and curly brackets; type
"help punct" at the Matlab prompt and read the help file until you fall asleep. Little things can mean a
lot in Matlab. Another common error is getting the rows and columns of vectors and matrices mixed up.
(Full disclosure: | still make all these kinds of mistakes all the time). Click for text file that gives
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examples of common vector and matrix operations and errors in Matlab and Octave. If you are new to
this, | recommend that you read this file and play around with the examples there. Writing Matlab is a
trial-and-error process, with the emphasis on error. Start simply, get it to work, then add to it in steps.

There are many code examples in this text that you can Copy and Paste and modify into the Matlab/
Octave command line, which is a great way to learn. In the PDF version of this book, you can select,
copy, and paste, or select, drag and drop, any of the single-line or multi-line code examples into the
Matlab or Octave editor or directly into the command line and press Enter to execute it immediately).
This is especially convenient if you run Matlab and read my web site or book on the same computer;
position the windows so that Matlab shares the screen with this website (e.g. Matlab on the left and
web browser on the right as shown below). Or, even better, some desktop computers have two monitor
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For wniting or edit npv s and functions, Matlab and the latest version of Octave have an mternal
editor Fo an explanation of a function and a sumple worked example, type “help function’ mn e comman u -

outputs SO you can use two monltors simultaneously to expand the desktop horizontally.

Hint: If you try to run one of my scripts or functions and it gives you a "missing function™ error, look
for the missing item from http://tinyurl.com/cey8rwh, download it into the search path, and try again.

One thing that you will notice about Matlab is that the very first time you execute a script or function,
and only the first time, there is a small delay before execution, while Matlab compiles the code into
machine language. However, that only happens the first time; after that, the execution starts instantly.
(For the fastest execution, the separately available “Matlab Compiler” lets you share programs as
stand-alone applications, separate from the Matlab environment. “Matlab Compiler SDK” lets you
build C/C++ shared libraries, Microsoft .NET assemblies, Java classes, and Python packages from
Matlab programs). You can even do some real-time plotting in Matlab/Octave; see page 342.

Importing data into Matlab/Octave and Python.

You can import your own data into Matlab or Octave by using the “Import data” button in the Home
tab or the xIsread or importdata functions on the command line or in a script. Data can be imported
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from plain text files (.txt), CSV files (comma separated values), from several image and sound formats,
or from spreadsheets. For example, the following lines will read the first two columns of the csv file
“Sample_5.0ppm.csv” in the current folder and assign them to the vectors x5 and y5, i.e. the
independent and dependent variables, respectively:

mydata=xlsread('Sample 5.0ppm.csv');

x5=mydata(:,1) ;

y5=mydata(:,2);

The script "xlsreadDemo.m" provides a simple example of reading a multi-column spreadsheet “xIsx”
file. For more complex spreadsheets, Matlab has a very useful Import Wizard (click File > Import
Data) that gives you a preview into the data file, parses the data file looking for columns and rows of
numeric data and their labels, and gives you a chance to select and re-label variables and to choose to
import them as vectors, matrices, or tables. You can even click on the little arrow next to “Import
selection” and Matlab will write you a script that will perform those operations, which you can modify
for other file types and formats.

A} Import - C:\Users! Tom'\ Dropbox\MATLABEpS\wehrlig5.txt - O X
IMPORT VIEW O]
~ Delirmited Colurnn delimiters: Range: W Output Type: W
Delimiter d = | i Table 7| UNIMPORTABLE CELLS  Import
O Fixed Width @DelimiterOpti... - Variable Names Row: |1 =1 [FEH Table Selection
DELIMITERS SELECTION E‘ ;“'”"‘f‘ ";‘tt“.’s M IMPORT
= = urmeric Matrix
=R =tr) String Array ®
wehrli85.bet [0] cell Array
A B 5
wehrli85
nmW smnmW sm
Mumber  *Mumber  ~Number A
TR Lo Lo
1 n W [/sm/mm W /sm ~
2 1558.5 0.005 5.493E-3
3 200.5 0.007 1.253E-2
4 201.5 0.007 1.971E-2
5 202.5 0.008 2.758E-2
] 203.5 0.008 3.6259E-2
T 204.5 0.008 4.575E-2
a 205.5 0.010 5.531E-2
k] 206.5 0,010 & . 549E-2

JCAMP-DX is a standard file form for exchange of infrared spectra and related chemical and physical
information between spectrometer data systems of different manufacture. Matlab’s jcampread function
can import such data. For an example, see ReadJcampExample.m. It is also possible to import
approximate data from graphical line plots or printed graphs by using the built-in "ginput"” function that
obtains numerical data from the coordinates of mouse clicks, or by using more automated applications
such as “Data Thief” or Figure Digitizer in the Matlab File Exchange. Obviously, the results will not be
as accurate as having access to the original data in a numerical data file. Matlab R2013a or newer can
even read the sensors on your iPhone or Android phone via Wi-Fi. To read the analog output signals of
older analog instruments, you need an analog-to-digital converter, an Arduino microcontroller board, or
a USB voltmeter. Mathworks has separate data acquisition toolbox for Matlab. Note: The addition,
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subtraction, multiplication, or division of two digital signals requires that they have the same number of
data points. If necessary, you can remove some points from the longer signal or add some points to the
shorter one (usually zeros, which is called “zero filling”).

Python can import data in text, CSV, JSON, Matlab, and several other formats, using the Variable
Explorer panel in the Spyder desktop, or through the separately downloadable Pandas Data Analysis
package.

Matlab Versions.

The standard commercial version of Matlab is expensive (over $2000) but there are student and home
versions that cost much less
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Math in Python

In Python, after importing numpy as np, the basic math functions are very similar to those in Matlab:
len(d), np.sum(d), np.mean(d), np.std(d), np.sqrt(d), max(d), min(d).
Exponentiation in notated as ** rather than ” as in Matlab. See page 434 for other examples.
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GNU Octave

Octave is a free alternative to Matlab that is "mostly compatible”. DspGURU says that Octave is “...a
mature high-quality Matlab clone. It has the highest degree of Matlab compatibility of all the clones.”
Everything | said above about Matlab also works in Octave. In fact, the most recent versions of almost
all my Matlab functions, scripts, demos, and examples in this document will work in the latest version
of Octave without change. The keystroke-operated interactive functions iPeak (page 248), iSignal (page
371), ipf.m (page 411) and ifilter.m, require separate versions for Octave, which use different keys for
pan and zoom. If you plan to use Octave, make sure you get the current version. There is an FAQ that
may help in porting Matlab programs to Octave. See “Differences Between Octave & Matlab”. There
are Windows, Mac, and Unix versions of Octave. The Windows version can be downloaded from
Octave Forge. There is lots of help online: Google "GNU Octave" or see the YouTube videos for help.
For signal processing applications specifically, Google "signal processing octave".

VL o S

Octave Version 6.4.0 now available for download. The documentation is online; see
https://www.octave.org. Almost all my scripts and functions run on Octave. However, it is still
computationally about 5 times slower on average than the latest Matlab version, depending on the task
(specific comparisons for several different signal processing tasks are in TimeTrial.txt). Bottom line:
Matlab is better, but if you cannot afford Matlab, Octave provides most of the functionality for 0% of
the cost. Note: the older Octave 3.6 can even run on a Raspberry Pi, a low-cost miniature computer
described on page 339.

Spreadsheet or Matlab/Python?

For signal processing, computer languages like Matlab/Octave or Python are faster and more powerful
than using a spreadsheet, but it is safe to say that spreadsheets are more commonly installed on science
workers' computers than Matlab, Octave or Python. For one thing, spreadsheets are easier to get started
with, and they offer flexible presentation and user interface design. Spreadsheets are better for manual
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data entry; you can easily deploy them on portable devices such as smartphones and tablets (e.g. using
Google Sheets, iCloud Numbers or the Excel app). Spreadsheets are concrete and more low-level,
showing every single value explicitly in a cell. In contrast, Matlab/Octave and Python are more high-
level and abstract, because a single variable can be a number, a vector, or a matrix, and each
punctuation or function can do so much. This is very powerful, but it is harder to master at first. In
Matlab and Octave is functions and script files (“m-files”) are just plain text files with an “.m”
extension (or “.py” in the case of Python), so those files can be opened and inspected using any text
editor, even on devices that do not have those programs installed, which facilitates the translation of its
scripts and functions into other languages. In addition, user-defined functions can call other built-in or
user-defined functions, which in turn can call other functions, and so on, allowing you to build up very
complex high-level functions in layers. Fortunately, Matlab and Python can easily analyze Excel “.xls”
and “.xlIsx” files and import the rows and columns into vector/matrix variables.

Using the analogy of electronic circuits, spreadsheets are like discrete component electronics, where
every resistor, capacitor, inductor, and transistor is a discrete, macroscopic entity that you can see and
manipulate directly. A function-based programming language like Matlab/Octave is more like micro-
electronics, where the functions (the "m-files" that begin with "function...") are the "chips", which
condense complex operations into one package with documented inputs and outputs (the function's
input and output arguments) that you can connect to other functions, but which hide the internal details
(unless you care to look at the code, which you always can do). For example, the "555 timer" is an 8-
pin timer, pulse generator and oscillator chip introduced back in 1972, which is still in use today and
has become the most popular integrated circuit ever manufactured. Almost all electronics is now done
with chips, because it is easier to understand the relatively small number of inputs and outputs of a
chip than to deal with the greater number of internal components. Much of Matlab/Octave is written in
Matlab/Octave itself, using more basic functions to build more complex ones. You can write new
functions of your own that essentially extend the language in whatever direction you need (page 35).

The bottom line is that spreadsheets are easier at first, but for more complex tasks, the Matlab/ Octave/
Python approach is computationally faster, can handle much larger data sets, and can do more with less
effort. This is demonstrated by the comparison of both platforms for multicomponent spectroscopy,
covered on page 184 (RegressionDemo.xIs versus the Matlab/Octave CLS.m). Even more dramatic are
the different approaches to finding and measuring peaks in signals, which is covered in the section
beginning on page 229 (i.e. a 250Kbyte spreadsheet versus a 7Kbyte Matlab script that does the same
thing but is 50 times faster). If you have large quantities of data and you need to run it through a multi-
step customized process automatically, hands-off, and as quickly as possible, then Matlab is a great
way to go. It is much easier to write a script in Matlab that will automate the hands-off processing of
volumes of data stored in separate data files on your computer, as shown by the example on page 340.

Spreadsheets, Matlab/Octave, and Python programs have a huge advantage over commercial end-user
programs and compiled freeware programs; you can inspect and modify them to customize the routines
for specific needs. Simple changes are easy to make with little or no knowledge of programming. For
example, you could easily change the labels, titles, colors, or line style of the graphs in Matlab or
Octave programs for your own purposes: use Find... to search for "title(", "label(" or "plot(". My
Matlab code contains comments that indicate places where you can make specific changes: search for
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the word “change”. | invite you to modify my scripts and functions as you wish. The software license
embedded in the comments of my Matlab/Octave code is very liberal.

Signals and noise

Experimental measurements are never perfect, even with sophisticated modern instruments. Two main
types of measurement errors are recognized: (a) systematic error, in which every measurement is
consistently less than or greater than the correct value by a certain percentage or amount, and (b)
random error, in which there are unpredictable variations in the measured signal from moment to
moment or from measurement to measurement. This latter type of error is often called noise, by
analogy to acoustic noise. There are many sources of noise in physical measurements, such as building
vibrations, air currents, electric power fluctuations, stray radiation from nearby electrical equipment,
static electricity, interference from radio and TV transmissions, turbulence in the flow of gases or
liquids, random thermal motion of molecules, background radiation from natural radioactive elements,
the basic quantum nature of matter and energy itself, digitization noise (the rounding of numbers to a
fixed number of digits), and “cosmic rays” from outer space (seriously). Then, of course, there is the
ever-present "human error", which can be a major factor anytime humans are involved in operating,
adjusting, recording, calibrating, or controlling instruments and in preparing samples for measurement.
If random error is present, then a set of repeat measurements, “d”, will yield results that are not all the
same but rather vary or scatter around some average value, which is the sum of the values divided by
the number of data values in “d”: sum (d) . /1length (d) or simply mean (d) in Matlab/Octave notation.
The most common way to measure the amount of variation or dispersion of a set of data values is to
compute the standard deviation, “std”, which is the square root of the sum of the squares of the
deviations from the average divided by one less than the number of data points: sqrt (sum( (d-

mean (d)) .~2) ./ (length(d)-1)), in Matlab/Octave notation. These are most easily calculated
by the built-in functions mean(d) and std(d), where d is the data vector. A basic fact of random
variables is that when they combine, you must calculate the results statistically. For example, when two
random variables are added, the standard deviation of the sum is the “quadratic sum” (the square root
of the sum of the squares) of the standard deviations of the individual variables. In Matlab, the function
“randn(1,n)” returns n random numbers with a standard deviation of 1. Therefore:

rllim (std(randn (1,n))) =1

Tllirglo (std(randn(l,n) + randn(l,n))) = sqrt(2)

This is demonstrated by the series of Matlab/Octave commands at this link. Try it.

The term ‘signal’ has two meanings. In the more general sense, it can mean the entire data recording,
including the noise and other artifacts, as in the “raw signal” before processing is applied. But it can
also mean only the desirable or important part of the data, the true underlying signal that you seek to
measure, as in the expression “signal-to-noise ratio”. A fundamental problem in signal measurement is
distinguishing the true underlying signal from the noise. For example, suppose you want to measure the
average of the signal over a certain time or the height of a peak or the area under a peak that occurs in
the data. In the absorption spectrum in the right-hand half of the figure on page 13, the “important”
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parts of the data are probably the absorption peaks located at 520 and 550 nm. The height or the
position of either of those peaks might be considered the signal, depending on the application. In this
example, the height of the largest peak is about 0.08 absorbance units. But how to measure the noise?
In the exceptional case that you have a physical system and a measuring instrument which are both
completely stable (except for the random noise), an easy way to isolate and measure the noise is to
record two signals m1 and m2 of the same physical system. If you subtract those two recordings, the
signal part will cancel out. Then the standard deviation of the noise in the original signals is given by
sqrt((std(m1-m2)?)/2), where “sqrt” is the square root and “std” is the standard deviation. (The
derivation of this expression is based on the rules for mathematical error propagation and is worked out
in https://terpconnect.umd.edu/~toh/spectrum/Derivation.txt). The Matlab/Octave script
“SubtractTwoMeasurements.m” demonstrates this process quantitatively and graphically (below).

But suppose that the measurements are not
that reproducible or that you had only one
recording of that spectrum and no other

100 4
data. In that case, you could try to estimate sn—\/\\;
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are the absorption spectra of liquid
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nm to 700 nm. These solutions ordinarily a5 5 35 4 45 5 85 6 65 7
exhibit broad smooth peaks with a width of the order of 10 to 100 nm, so those little wiggles must be
noise. In this case, those fluctuations have a standard deviation of about 0.001. Often the best way to
measure the noise is to locate a region of the signal on the baseline where the signal is flat and to
compute the standard deviation in that region. This is easy to do with a computer if the signal is
digitized. The important thing is that you must know enough about the measurement and the data it
generates to recognize the kind of signals that is likely to generate, so you have some hope of knowing
which is the signal and which is the noise.

It is important to appreciate that the standard deviations calculated from a small set of measurements
can be much higher or much lower than the actual standard deviate on of a larger number of
measurements. For example, the Matlab/Octave function randn(1,n), where n is an integer, returns n
random numbers that have on average a mean of zero and a standard deviation of 1.00 if n is large. (In
Python, the random function is np . random. rand (n) ). But if n is small, the standard deviations will
be different each time you evaluate that function; for example, if n=5, the standard deviation
std(randn(1,5)) might vary randomly from 0.5 to 2 or even more. This is the Law of Large
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Numbers (page 356); it is the unavoidable nature of small sets of random numbers that their standard
deviation is only a very rough approximation to the real underlying “population” standard deviation.

A quick but approximate way to estimate the amplitude of noise visually is the peak-to-peak range,
which is the difference between the highest and the lowest values in a region where the signal is flat.
The peak-to-peak range of n=100 normally-distributed random numbers is about 5 times the standard
deviation, as can be proved by running this line of Matlab/Octave code several times: n=100;
rn=randn (1,n) ; (max (rn) -min (rn) ) /std(rn) . For example, the data on the right half of the
figure page 28 has a peak in the center with a height of about 1.3. The peak-to-peak noise on the
baseline is also about 1.0, so the standard deviation of the noise is about 1/5" of that, or 0.2. However,
that ratio varies with the logarithm of n and is closer to 3 when n = 10 and to 9 when n = 100000. In
contrast, the standard deviation becomes closer and closer to the true value as n increases. It is better to
compute the standard deviation if possible.

In addition to the standard deviation, it is also possible (but not usual) to measure the mean absolute
deviation ("mad"). The standard deviation is larger than the mean absolute deviation because the

prres standard deviation weights the large
— deviation more heavily. For a normally-
distributed random variable, the mean
absolute deviation is on average 80% of
the standard deviation: mad=0.8*std.

C
=
40000 C
c
C

The quality of a signal is often expressed
quantitatively as the signal-to-noise ratio
(S/N ratio or SNR), which is the ratio of
the true underlying signal amplitude
(e.g., the average amplitude or the peak
height) to the standard deviation of the
noise. Thus, the S/N ratio of the
spectrum in the figure on page 13 is

«| apout 0.08/0.001 = 80, and the signal on
residuate page 28 has an S/N ratio of 1.0/0.2 = 5.
So, we would say that the quality of the
o °| first one is better because it has a greater
-— S/N ratio. Measuring the S/N ratio is
much easier if the noise can be measured separately, in the absence of a signal. Depending on the type
of experiment, it may be possible to acquire readings of the noise alone, for example on a segment of
the baseline before or after the occurrence of the signal. However, if the magnitude of the noise
depends on the level of the signal, then the experimenter must try to produce a constant signal level to
allow measurement of the noise on the signal. In some cases, you can use “iterative curve fitting” (page
195) to model the signal accurately by means of a smooth mathematical function (such as a polynomial
or the weighted sum of a number of simple peak shape functions). The noise can then be isolated by
subtracting the model from the un-smoothed experimental signal. For example, the graph above shows
a real-data experimental signal (dark blue dots) that never goes all the way to the baseline (which
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would have allowed a easy noise measurement). But the signal can be approximated by fitting a model
(red line) consisting in this case of 5 overlapping Gaussian peak functions (page 197). The difference
between the raw data and the model, shown at the bottom (light blue), is a good measure of the random
noise in the data. (In some cases, it may be possible to determine the standard deviation of repeated
measurements of the thing that you want to measure, such as peak heights or areas, for example, rather
than trying to estimate the noise from a single recording of the data).

Detection limit

The "detection limit" is defined as the smallest signal that you can reliably detect in the presence of
noise. In quantitative chemical analysis, it is usually defined as the concentration that produces the
smallest detectable signal (Reference 92). A signal that is below the detection limit cannot be reliably
detected; that is, if the measurement is repeated, the signal will often be "lost in the noise™ and reported
as zero. A signal above the detection limit will be reliably detected and will seldom or never be
reported as zero. The most common
Signal-to-nolse ratio (SNR) of a peak signal value of signal-to-noise ratio for
reliable detection is 3. This is
illustrated in the figure on the left
(created by the Matlab/ Octave script
SNRdemo.m). This figure shows a
noisy signal in the form of a
rectangular pulse. We define the
"signal” as the average signal
magnitude during the pulse,
indicated by the red line, which is
about 3. We define the "noise" as the
standard deviation of the random
noise on the baseline before and
after the pulse, which is about 1.0,
45 10 20 30 40 50 60 70 80 %0 100 roughly 1/5 of the peak-to-peak
Target SNR=3 SNRofpeak=3.1 RSD of est height=4.7% Points averaged =0 paseline noise (black Iines).
Therefore, the signal-to-noise ratio
(SNR) in this case is about 3, which is a common definition of SNR at the detection limit. This means
that signals lower than this should be reported as "undetectable”.

Observed signal

But there is a problem. The signal here is clearly detectable by eye; in fact, it should be possible to
visually detect lower signals than this. How can this be? The answer is "averaging". When you look at
this signal, you are unconsciously estimating the average of the data points on the signal pulse and on
the baseline, and your detection ability is enhanced by this visual averaging. Without that averaging,
looking only at individual data points in the signal, only about half those individual points would meet
the SNR=3 criterion. You can see in the graphic above that several points on the signal peak are lower
than some of the higher data points on the baseline. But this is not a problem in practice, because any
properly written software will include averaging that duplicates the visual averaging that we all do.
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In the script SNRdemo.m, the number of points averaged is controlled by the variable "AveragePoints"
in line 7. If you set that to 5, the result (shown below on the left) shows that all the signal points (each
of which is now the average of 5 raw
data points) are above the highest
baseline points. This graphic more
closely represents how we judge a signal
i | like that in the previous graphic, which
has a clear separation of signal and
2r 1 baseline. The SNR of the peak has
improved from 3.1 to 7.7 and the
T 1 detection limit will be correspondingly
reduced. As a rule of thumb, for the most
L common type of random noise, the noise
decreases by roughly the square root of
b 1 the number of points averaged (in this
case, sqrt(5)=2.2). Higher values will
5 e S S further improve the SNR and reduce the
'I'argeE; SNRLDEI’S SZI?ITQ of p::eD;k = ?‘fgo RE‘?I;DOf esiogeighlm=04,5%ampoinliozver;;eog =5 relative standard deviation of the average
signal, but the response time — which is
the time it takes for the signal to reach the average value - will become slower and slower as the
number of points averaged increases. This is shown by another graphic, with 100 points averaged. With
a much lower signal equal to 1.0, the raw signal is not reliably detectable visually, but with a 100 point
average, the signal precision is good; digital averaging beats visual averaging in this case. Similar
behavior would be observed if the signal were a rounded peak rather than a rectangle.

Signal-to-noise ratio (SNR) of a peak signal
T T T T T T T

Observed signal

In SNRdemo.m, the noise is constant and independent of the signal amplitude, which is commonly the
case. In the variant SNRdemoHetero.m, the noise in the signal is directly proportional to the signal
level or to its square root, and as a result the detection limit depends on the constant baseline noise
(graphic). See page 30. In the variant SNRdemoArea.m, it is the peak area that is measured rather than
the peak height, which results in the SNR being improved by the square root of the width of the peak

(graphic).

An example of a practical application of a signal like that illustrated in the figures above would be to
turn on a warning light or buzzer if the signal ever exceeds a threshold value of 1.5. This would not
work if you used the raw unaveraged signal on the previous page; there is no threshold value that
would never be exceeded by the baseline but always exceeded by the signal. Only the averaged signal
would reliably turn on the alarm above the threshold of 1.5 and never activate it below 1.5.

You will also hear the term “Limit of determination”, which is the lowest signal or concentration that
achieves a minimum acceptable precision, defined as the relative standard deviation of the signal
amplitude. The limit of determination is defined at a much higher signal-to-noise ratio, say 10 or 20,
depending on the requirements of your applications. Averaging such as done here is the simplest form
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of “smoothing”, which is covered in the next chapter (page 41).

Ensemble averaging

One key thing that really distinguishes signal from noise is that random noise is not the same from one
measurement of the signal to the next, whereas the genuine signal is (ideally) reproducible. So, if the
signal can be measured more than once, use can be made of this fact by measuring the signal repeatedly,
as fast as is practical, and adding up all the measurements point-by-point, then dividing by the number
of signals averaged. This is called ensemble averaging, and it is one of the most powerful methods for
improving signals, when it can be applied. For this to work properly, the noise must be random, and the
signal must occur at the same time in each repeat. Look at the example this figure.
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Window 1 (left) is a single measurement of a very noisy signal. There is a broad peak near the center of
this signal, but it is difficult to measure its position, width, and height accurately because the S/N ratio
is very poor. Window 2 (right) is the average of 9 repeated measurements of this signal, clearly
showing the peak emerging from the noise. The expected improvement in S/N ratio is 3 (the square root
of 9). Often it is possible to average hundreds of measurements, resulting in much more substantial
improvement. The S/N ratio in the resulting average signal in this example is about 5.

The Matlab/Octave script EnsembleAverageDemo.m demonstrates the technique graphically for an
ensemble of 500 signals. (If you are reading this online, click for graphic). Other examples are shown
in the video animation at these links, EnsembleAveragel.wmv or EnsembleAverageDemo.qgif, which
shows the ensemble averaging of 1000 repeats of a signal, improving the S/N ratio by about 30 times.
You can also reduce digitization noise by ensemble averaging, but only if small amounts of random
noise are present in, or added to, the signal; see page 304.

Visual animation of ensemble averaging. This crude 17-second video (EnsembleAveragel.wmv)
demonstrates the ensemble averaging of 1000 repeats of a signal with a very poor S/N ratio. The signal
itself consists of three peaks located at x = 50, 100, and 150, with peak heights 1, 2, and 3 units. These
signal peaks are buried in random noise whose standard deviation is 10. Thus, the S/N ratio of the
smallest peaks is 0.1, which is far too low to even see a signal, much less measure it. The video shows
the accumulating average signal as 1000 measurements of the signal are performed. At the end of the
run, the noise is reduced (on average) by the square root of 1000 (about 32), so that the S/N ratio of the
smallest peaks ends up being about 3, just enough to detect the presence of a peak reliably. If you are
reading this online, click here to download a brief video (2 MBytes) in WMV format.
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Frequency distribution of random noise

Sometimes the signal and the noise can be partly distinguished based on frequency components: for
example, the signal may contain mostly low-frequency components and the noise may be located at
higher frequencies or spread out over a much wider frequency range. This is the basis of filtering and
smoothing (page 39). In the figures above, the peak itself contains mostly low-frequency components,
whereas the noise is (apparently) random and distributed over a much wider frequency range. The
frequency of noise is characterized by its frequency spectrum, often described in terms of noise color.

White noise is random and_has equa! povyer \ihia noizs Pink (1/) noise
over the range of frequencies. It derives its 1.5 1.5
name from white light, which has equal 1 1
brightness at all wavelengths in the visible e e
region. The noise in the previous example |~ T
signals and in the left half of the figure on o 0
the right is white. In the acoustical domain, 05 05 .
. . . . 0 500 1000 0 500 1000
white noise sounds like a hiss. In

measurement science, white noise is very common. For example, quantization noise, Johnson-Nyquist
(thermal) noise, photon noise, and the noise made by single-point spikes all have white frequency
distributions, and all have in common their origin in discrete quantized instantaneous events, such as
the flow of individual electrons or photons.

A noise that has a more low-frequency character, that is, that has more power at low frequencies than at
high frequencies, is often called "pink noise". In the acoustical domain, pink noise sounds more like a
roar. (A commonly-encountered sub-species of pink noise is "1/f noise", where the noise power is
inversely proportional to frequency, illustrated in the upper right quadrant of the figure on the right).

Pink noise is more troublesome that white 5, Crepattionai noses 2 SauseTok noias
noise because a given standard deviation of '
pink noise has a greater effect on the 1.5 L
accuracy of most measurements than the - .~
same standard deviation of white noise (as
demonstrated by the Matlab/Octave 0e .
function noisetest.m, which generated the 0 05
. B 0 500 1000 u} 500 1000
figure on the right). Moreover, the X X

application of smoothing and low-pass filtering (page 39) to reduce noise is more effective for white
noise than for pink noise. When pink noise is present, it is sometimes beneficial to apply modulation
techniques, for example, optical chopping or wavelength modulation in optical measurements, to
convert direct-current (DC) signals into alternating current (AC) signals, thereby increasing the
frequency of the signal to a frequency region where the noise is lower. In such cases, it is common to
use a lock-in amplifier, or the digital equivalent thereof, to measure the amplitude of the signal.
Another type of low-frequency weighted noise is Brownian noise, named after the botanist Robert
Brown. It is also called "red noise™ (by analogy to pink noise) or “random walk", which has a noise
power that is inversely proportional to the square of frequency. This type of noise can occur in
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experimental signals and can seriously interfere with accurate signal measurements. See page 314:
Random walks and baseline correction.

Conversely, noise that has more power at high frequencies is called “blue” noise. This type of noise is
less commonly encountered in experimental work, but it can occur in processed signals that have been
subject to some sort of differentiation process (page 61) or that have been deconvoluted from some
blurring or broadening process (page 110). Blue noise is easier to reduce by smoothing (page 29), and
it has less effect on least-squares fits than the equivalent amount of white noise.

Dependence on signal amplitude

Noise can also be characterized by the way it varies with the signal amplitude. Constant “background”
noise is independent of the signal amplitude. Or the noise may increase with signal amplitude, which is
a behavior that is often observed in emission spectroscopy, mass spectroscopy and in the frequency
spectra of signals. The technical names for these two types of behaviors are homoscedastic and

/pF11.2 Linear baseline subiracton heteroscedastic, respectively.
One way to observe this is to
select a segment of signal
over which the signal
amplitude varies widely, fit
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00 o0 W &0 oo signal shown on the left, in

the top panel, shows little visible noise. The difference between that signal (the blue dots) and the best-
fit model (the red line) from a least-squares curve-fitting operation (page 195) is shown in the bottom
panel, leaving the noise easily visible (red dots). Clearly, the noise increases with signal amplitude in
this case. In other cases, the noise might increase with the square root of the signal, or it might be
independent of the signal amplitude as in the example on page 25.

Often, there is a mix of noises with different behaviors. In optical spectroscopy, three fundamental
types of noise are recognized, based on their origin and on how they vary with light intensity: photon
noise, detector noise, and flicker (fluctuation) noise. Photon noise (often the limiting noise in
instruments that use photo-multiplier detectors) is white and is proportional to the square root of light
intensity. Detector noise (often the limiting noise in instruments that use solid-state photodiode
detectors) is independent of the light intensity and therefore the detector SNR is directly proportional to
the light intensity. Flicker noise, caused by light source instability, vibration, sample cell positioning
errors, sample turbulence, light scattering by suspended particles, dust, bubbles, etc., is directly
proportional to the light intensity (and is usually pink rather than white), so the flicker S/N ratio is not
decreased by increasing the light intensity. In practice, the total noise observed is likely to be some
contribution of all three types of amplitude dependence, as well as a mixture of white and pink noises.

Only in a very few special cases is it possible to eliminate noise completely, so usually, you must be
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satisfied by increasing the S/N ratio as much as possible. The key in any experimental system is to
understand the possible sources of noise, break down the system into its parts and measure the noise
generated by each part separately, then seek to reduce or compensate for as much of each noise source
as possible. For example, in optical spectroscopy, source flicker noise can often be reduced or
eliminated by using in feedback stabilization, choosing a better light source, using an internal standard,
or specialized instrument designs such as double-beam, dual-wavelength, derivative, and wavelength
modulation (page 316). The effect of photon noise and detector noise can be reduced by increasing the
light intensity at the detector, and electronic noise can sometimes be reduced by cooling or upgrading
the detector and/or electronics. Fixed pattern noise in array detectors can be corrected in software.
Photon noise can be predicted from first principles, as is done in these spreadsheets that simulate the
photon noise limited signal-to-noise behavior of ultraviolet-visible spectrophotometry, fluorescence
spectroscopy, and atomic emission spectroscopy.

The probability distribution of random noise

Another property that distinguishes random noise is its probability distribution, the function that
describes the probability of a random variable falling within a certain range of values. In physical
measurements, the most common distribution is called a normal curve (also called as a “bell” or
“haystack” curve) and is described by a Gaussian function, y=e(-(x-mu)*2 / (2*sigma”2)) /
(sgrt(2*mu)*sigma), where mu is the mean (average) value and sigma (o) is the standard deviation. In
this distribution, the most common noise errors are small (that is, close to the mean) and the errors
become less common the greater their deviation from the mean. So why is this distribution so common?
The noise observed in physical measurements is often the balanced sum of many unobserved random
events, each of which has some unknown probability distribution related to, for example, the kinetic
properties of gases or liquids or to the quantum mechanical behavior of fundamental particles such as
photons or electrons. But when many such events combine to form the overall variability of an
observed quantity, the resulting probability distribution is almost always normal, that is, described by a
Gaussian function. This common observation is summed up in the Central Limit Theorem.

A simulation can demonstrate how this
behavior arises naturally. In the example on
the left, we start with a set of 100,000
uniformly distributed random numbers that
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have an equal chance of having any value
between certain limits - between 0 and +1 in
this case (like the "rand" function in most
spreadsheets and in Matlab/ Octave). The
graph in the upper left of the figure shows the
probability distribution, called a “histogram”,
of that random variable. Next, we combine
two sets of such independent, uniformly
distributed random variables (subtracting

them so that the average is centered at zero). The result (shown in the graph in the upper right in the
figure) has a triangular distribution between -1 and +1, with the highest point at zero, because there are
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many ways for the difference between two random numbers to be small, but only one way for the
difference to be 1 or to -1 (that happens only if one number is exactly zero and the other is exactly 1).
Next, we combine four independent random variables (lower left); the resulting distribution has a total
range of -2 to +2, but it is even less likely that the result be near 2 or -2 and many more ways for the
result to be small, so the distribution is narrower and more rounded, and is already starting to be
visually close to a normal Gaussian distribution (generated by using the “randn” function and shown
for reference in the lower right). If we combine ever more independent uniform random variables, the
combined probability distribution becomes closer and closer to the Gaussian shown for comparison in
the bottom right. The important point is that the emerging Gaussian distribution that we observe here is
not forced by prior assumption; rather, it arises naturally. (You can download a Matlab script for this
simulation from http://terpconnect.umd.edu/~toh/spectrum/CentralLimitDemo.m).

Remarkably, the distributions of individual events hardly matter at all. You could modify the individual
distributions in this simulation by substituting the rand function by modified versions such as
sgrt(rand), sin(rand), rand”~2, log(rand), etc., to obtain other radically non-normal individual
distributions. But it seems that no matter what the distribution of the single random variable might be,
by the time you combine even as few as four of them, the resulting distribution is already visually close
to normal. Real-world macroscopic observations are often the result of millions or billions of individual
microscopic events, so whatever the probability distributions of the individual events, the combined
macroscopic observations approach a normal distribution essentially perfectly. It is on this common
adherence to normal distributions that the common statistical procedures are based; the use of the mean,
standard deviation o, least-squares fits, confidence intervals, etc., are all based on the assumption of a
normal distribution. But it’s usually a very good assumption.

Even so, experimental errors and noise are not always normal; sometimes there are very large errors
that fall well beyond the “normal” range. They are called “outliers”, and they can have a very large
effect on the standard deviation. In such cases, it is possible to use the “interquartile range” (IQR),
defined as the difference between the upper and lower quartiles (i.e. prctile (n, 75) -prctile (n, 25)),
instead of the standard deviation, because the interquartile range is not affected by a few outliers. For a
normal distribution, the interquartile range is equal to 1.34896 times the standard deviation. A quick
way to check the distribution of a large set of random numbers is to compute both the standard
deviation and the interquartile range; if they are roughly equal, the distribution is probably normal; if
the standard deviation is much larger, the data set probably contains outliers and the standard deviation
without the outliers can be better estimated by dividing the interquartile range by 1.34896.

The importance of the normal distribution is that if you know the standard deviation (usually given
the symbol “c””) of some measured value, then you can predict the likelihood that your measurement
might be in error by a certain amount. About 68% of values drawn from a normal distribution are
within one ¢ away from the mean; 95% of the values lie within 2c, and 99.7% are within 3c. This is
known as the 3-sigma rule. But the real practical problem is this: standard deviations are hard to
measure accurately unless you have large numbers of samples. See “The Law of Large Numbers” (page

356).

The three characteristics of noise discussed in the paragraphs above - the frequency distribution, the
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amplitude distribution, and the signal dependence - are mutually independent; a noise may in principle
have any combination of those properties.

Representing random noise in Spreadsheets

Popular spreadsheets, such as Excel or Open Office Calc, have built-in functions that can be used for
calculating, measuring and plotting signals and noise. For example, the cell formula for one point on a
Gaussian peak is amplitude*EXP (-1* ( (x-position)/(0.60056120439323*width))*2),
where "amplitude’ is the maximum peak height, 'position’ is the location of the maximum on the x-axis,
‘width' is the full width at half-maximum (FWHM) of the peak (which is equal to sigma times 2.355),
and 'x' is the value of the independent variable at that point. The cell formula for a Lorentzian peak is
amplitude/ (1+ ( (x-position)/ (0.5*width) ) ~2). Other useful functions include AVERAGE,
MAX, MIN, STDEV, VAR, RAND, and QUARTILE. Most spreadsheets have only a uniformly-
distributed random number function (RAND) and not a normally-distributed random number function,
but it is much more realistic to simulate errors that are normally-distributed. But do not worry, you can
use the Central Limit Theorem to create approximately normally-distributed random numbers by
combining several RAND functions, for example, the odd-looking expression SQRT(3)*(RAND()-
RAND()+RAND()-RAND()) creates nearly normal random numbers with a mean of zero, a standard
deviation very close to 1, and a maximum range of +4. | use this trick in spreadsheet models that
simulate the operation of analytical instruments. (The expression SQRT(2)*( RAND()-
RAND()+RAND()-RAND()+RAND()-RAND()) works similarly but has a larger maximum range). To
create random numbers with a standard deviation other than 1, simply multiply by that number. To
create random numbers with an average other than zero, simply add that number.

The interquartile range (IQR) can be calculated in a spreadsheet by subtracting the third quartile from
the first (e.g., QUARTILE(B7: B504,3) - QUARTILE(B7: B504,1)).

The spreadsheets RandomNumbers.xls, for Excel, and RandomNumbers.ods, for OpenOffice, (screen
image on next page), and the Matlab/Octave script RANDtoRANDN.m, all demonstrate these facts.
The same technique is used in the spreadsheet SimulatedSignal6Gaussian.xIsx, which computes and
plots a simulated signal consisting of up to 6 overlapping Gaussian bands plus random white noise.
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Press F9 to get another sample of random numbers.

Normally-distributed random numbers approximated by
1.73*(RAND()-RAND()+RAND()-RAND())
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Histogram

Random functions in Matlab and Python
Matlab and Octave have built-in functions that can be used for calculating, measuring and plotting
signals and noise, including mean, max, min, std, kurtosis, skewness, plot, hist, rand, and randn. Just
type "help” and the function name at the command prompt, e.g., "help mean". Most of these functions
apply to vectors and matrices as well as scalar variables. For example, if you have a series of results in
a vector variable 'y', mean(y) returns the average and std(y) returns the standard deviation of all the
values in y. For vectors, std computes sgrt(mean(y.”2)). You can subtract a scalar number from a vector
(for example, v = v-min(v) sets the lowest value of vector v to zero). If you have a set of signals in the
rows of a matrix S, where each column represents the value of each signal at the same value of the
independent variable (e.g., time), you can compute the ensemble average of those signals just by typing

"mean(S)", which computes the mean of
each column of S. Note that function and
variable names are case-sensitive. (You can
open the code for any function by selecting
its name and selecting “open..”).

The "randn™ function in Matlab/Octave
generates normally-distributed random
numbers with a mean of zero and a standard
deviation of 1: e.g., randn(1,100) returns a
vector of 100 such numbers. (In Python,
after importing “numpy” as “np”, the syntax
is similar: np.random.randn (100)).

In the following example, “rand” is used to
generate 100 random numbers, then
Matlab’s "hist™" function computes the

peakfit.m Version 9.2 No baseline correction
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histogram (probability distribution) of those random numbers, then my peakfit.m function (page 391,
download link) fits a Gaussian function (plotted with a red line) to that distribution.

[N,X]=hist(randn(size (1:100))) ;
peakfit ([X;N]) ;

If you change the 100 here to 1000 or to an even higher number, the distribution of those numbers
becomes closer and closer to a perfect Gaussian and its peak falls closer to 0.00. Here is an MP4
animation that demonstrates the gradual emergence of a Gaussian normal distribution as the number of
“randn” samples increases from 2 to 1000. Note how many samples it takes before the normal
distribution is well-formed. The "randn” function is useful in signal processing for predicting the
uncertainty of measurements in the presence of random noise, for example by using the Monte Carlo or
the bootstrap methods that will be described in a later section (pages 165, 166). (Note: In the PDF
version of this book, you can select, copy, and paste, or select, drag, and drop, any of the single-line or
multi-line code examples into the Matlab or Octave editor or directly into the command line and press
Enter to execute it immediately.

The difference between scripts and functions

If you find that you are writing the same series of commands repeatedly, consider writing a script or a
function that will save your code to the computer so you can use it again easily without the danger of
typographical errors or clumsy copying and pasting. It is extremely handy to create your own user-
defined scripts and functions in Matlab or Python to automate commonly used algorithms.

In Matlab, scripts and functions are just simple text files saved with the ".m" file extension to the file
name. The difference between a script and a function is that a function definition begins with the word
‘function’; a script is just any list of Matlab commands and statements. For a script, all the variables
defined and used are listed in the workspace window and shared with other scripts. For a function, on
the other hand, the variables are internal and private to that function; values can be passed to the
function through the input variables (called “arguments ), and values can be passed from the function
through the output variables, which are both defined in the first line of the function definition.

[output variables] = FunctionName (input variables)

That means that functions are a great way to package chunks of code that perform useful operations in
a form that can be used as components in other scripts and functions without worrying that the internal
variable names within the function will conflict and cause errors. When you write a function, you can
save it to the computer, and it can be used just like the built-in functions that came with Matlab. Or you
can upload it to your Matlab account, where it can be used on a tablet or smartphone. Here is a very
simple example: a function that calculates the relative standard deviation of a vector x, rsd.m:

In Python, the same function would be coded

def rsd(x):
# Relative standard deviation of vector x
return np.std(x)/np.mean (x)
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Scripts and functions can call other functions. In older versions of Matlab, scripts must have those
functions stored in the Matlab search path; functions, on the other hand, can have their required sub-
functions defined within the main function itself and thus can be self-contained. If you write a script or
function that calls one or more of your custom functions, and you send it to someone else, be sure to
include all the custom functions that it calls. (It is best to make all your functions self-contained with
all required sub-functions included). If one of my scripts gives an error message that says, “Undefined
function...”, you need to download the specified function from http://tinyurl.com/cey8rwh and place it
in the Matlab/Octave search path. Note: in Matlab R2016b or later, you CAN include functions within
scripts; just place them at the end of the script and add an additional “end” statement to each function
added. See https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html.

To get an explanation of a function, type “help FunctionName” at the command prompt, where
FunctionName is the name of the function, or, in Python, “help(FunctionName)”. For writing or editing
scripts and functions, Matlab, the latest version of Octave, and Python/Spyder all have internal editors.
When you are writing your own functions or scripts, you should always add lots of "comment lines",
beginning with the character % (or # in Python) that explains what is going on. You will be glad you did
later. The first group of comment lines, up to the first blank line that does not begin with a %, are used
as the "help file" for that script or function. Typing “help FunctionName” displays those comment lines
for that function or script in the command window, just as it does for the built-in functions and scripts.
It’s also a great idea to add one or more examples of operations that users can copy and paste into the
command line. This will make your scripts and functions much easier to understand and use, both by
other people and by yourself in the future. Resist the temptation to skip this. As you develop custom
functions for your own work, you will be developing a “toolkit” that will become very useful to your
co-workers, or even to yourself in the future, if you use comments liberally. | say this from personal
experience. | did not always follow my own advice.

Matlab has a very handy helper for functions: when you type a function name into the Matlab editor, if
you pause for a moment after typing the open parenthesis immediately after the function name, Matlab
will display a pop-up listing all the possible input variables as a reminder. This works even for
downloaded functions and for any new functions that you yourself create! It is especially handy when
the function has so many possible input variables that it is hard to remember all of them. The popup
stays on the screen as you type, highlighting each variable in turn, to remind you where you are:

fx »> peakfit »11
< peakfitisignal,center ,window, NumPeaks,peakshape  extra,umTrials, start,autozero, fixedparameters,plots,bipolar, minwidth, DELTA, clipheight]
More Help..

This feature is easily overlooked, but it is very handy. Clicking on the little “More Help...” link on the
right displays the help for that function in a separate window. Note: Octave does not have this feature.

Live scripts

Both Matlab and Python have interactive alternatives to conventional scripts. Live Scripts in Matlab
are interactive documents that combine code, output, formatted text, and interactive controllers in a
single environment called the Live Editor. (Live Scripts were available starting in MATLAB R2016b).
See page 363. Python has Jupyter Notebooks which are used to create an interactive narrative around
your code. Both make it easy to create sharable interactive documents with graphical user interface
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devices such as pull-down menus, check boxes, and sliders to adjust numerical values interactively. In
Matlab, you can simply open a conventional (.m) script in the Live Editor and insert the interface
devices directly into the script where the numbers in assignment statements would have gone. When
you save it, it becomes an .mlx file.

Live scripts make it easy to create custom tools for interactive exploration. An example of a portion of
a Live Script is shown below. This example shows four types of interactive controllers. Line 1 shows a
button that opens a file browser that allows you to navigate to a specific file, in this case a data file that
you want to process. Lines 5 and 6 show checkboxes, which are used to enable or disable optional
sections of code. Several lines show numeric sliders, which are used to control continuous variables.
Line 17 shows a drop-down menu that allows multiple choices, shown pulled down in the screenshot
below.

i ; Original data
Fourier self-deconvolution 0025 0 .
1 I !
Tom O'Haver 4/5/2023 Original data
Self-Decornvoluted
s s s c c 5 . N 0.02f
1 Open dala file |file= uigetfile('*.csv;*.x1lsx"');% Click this button to load data |
2 mydata=xlsread(file); % from disk in x1sx or csv format. \
0.015 {\ it
4 FrequencySpectra=[/] ; % Check this box to display frequency spectra 001 \’\
5 PlotAllSteps=["]; % Check this box to plot intermediate steps ("
NumPoints=length(mydata); 0.005 \/{\
% Set the x-axis scale expansion beginning and end points (@ - 108%) ! \
] startpc= 21.4 ; % Percentage of data points to start data selection () | oo ! \".—ﬁ-—-—»-m-,w-—
2] endpc= 72.5 ;% Percentage of data points to end data selection
1 startpoint=round(startpc*NumPoints./18@);
i i ; -0.005 L
% sndpmnt:mund(e@pc”NumP@nts.f‘lBB), 2400 2600 2800 3000 3200 3400 3600
3 x=mydata(startpoint:endpoint,1); Area recovery: 97.0858 %
4 y=mydata(startpoint:endpoint,2);
% Deconvelution function shape Frequency spectra
7 Peakshape=(GL blend - |;
2 PCGaussiang Gaussian H [
Lorentzian 102 s
% dw = Decy 11f-width of deconvolution function df) f
GL blend §
1 dw= 25.9 Logict ; P
ogistic ;
% Percent Loooel | E
DA= 3 E 107}
% Percentage of entire spectrum included for Fourier filter f
5 FrequencyCutoff= 14 3 E
% for Fourier filter m_.;;’
7 CutOffRate= 3 i
. . . E Denominator addition only
] if PeakShape=="Gaussian" E Filtering only
a df=gaussian(x,min(x),dw)+gaussian{x,max(x),dw); 108 F Original signal
1 ydc=ifft(fft(y)./ffr(df)).*sum(df); ¥ Deconvolution by fft/ifft P Both filtering and denom. addition
2 end - - -
v 10° 10° 102

Live Scripts produce graphic output in small windows on the right side of the Live editor window,
where you can copy, pan and zoom and export to png files as usual using the mouse. You can also
convert any Live Script graphic into a standard figure window (by clicking its upper right corner),
which can then be exported to other graphic formats, expanded to full screen, printed, etc.

Other examples of Live Scripts include the versatile data smoothing tool shown on page 58, a tool for
differentiation (page 76), the self-deconvolution script shown above (page 123) and a peak detection
tool (page 248). These Live scripts are surprisingly easy to create within the Matlab environment by
modifying a conventional script and a peak fitting tool on page 435. See page 363 for more details
about developing Matlab Live Scripts and Apps. See page 365 for a table listing of Live Script tools
and their corresponding keypress-driven functions.
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User-defined functions related to signals and noise.

Here are some examples of user-defined functions that I have created for my signal processing toolkit.
These are not built-in functions; you must download them and put them in the Matlab path to use them.

Data plotting:_plotit.m, an easy-to-use function for plotting and fitting x,y data in matrices or in
separate vectors. For handling very large signals more easily, plotxrange.m ([xx,yy, irange]
= plotxrange (x,y,x1,x2)) extracts and plots values of vectors x,y only for x values
between specified values of x; segplot.m ([s,xx,yy] = segplot(x,y,NumSegs, seq))
divides signals into "NumSegs" equal-length segments and plots segments marked by vertical
lines, each labeled with a small segment number at the bottom, and returns a vector 's' of
segment indexes and the subset xx,yy, of values in the segment number 'seg'.

Peak shapes. Here are links to several Matlab functions for peak shapes commonly
encountered in analytical chemistry such as Gaussian, Lorentzian, lognormal, Pearson 5,
exponentially-broadened Gaussian, exponentially-broadened Lorentzian, exponential pulse,
sech2, sigmoid, Gaussian/Lorentzian blend, bifurcated Gaussian, bifurcated Lorentzian), Voigt
profile, triangular and others. See page 461 and following for a more complete list. The self-
contained script Sech2ShapeComparison.m compares Gaussian, Lorentzian, and sech2 pulse
shapes, showing the sech2 pulse in intermediate between Gaussian and Lorentzian (graphic).

peakfunction.m, a function that generates any of those peak types specified by number.

ShapeDemo demonstrates the 16 basic peak shapes graphically, showing the variable-shape
peaks as multiple lines. (Graphic on page 419)

Noise generators. There are several functions for simulating different types of random noise
(white noise, pink noise, blue noise, proportional noise, and square root noise).

Miscellaneous Matlab functions:

stdev.m, a standard deviation function that works in both Matlab and in Octave (the built-in
std.m function behaves differently in Matlab and Octave); rsd.m, the relative standard deviation.

PercentDifference.m, simply calculates the percent difference between two variables.

IQrange.m computes the interquartile range (explained above).
halfwidth.m for measuring the full width at half maximum of smooth peaks of any shape.

ExpBroaden.m applies exponential broadening to any time-series vector.

rmnan.m removes "not-a-number" entries from vectors, which is useful for cleaning up real data
files; rmz.m removes zeros from vectors, replacing with nearest non-zero numbers.

val2ind.m returns the index and the value of the element of vector x that is closest to a particular
value. This is a simple function that is more useful than you might imagine. Search this
document for “val2ind” to find several examples of the practical use of this function.

These functions are useful in modeling and simulating analytical signals and testing measurement
techniques (page 40). In the PDF version of this book, you can click or ctrl-click on these links to
inspect the code or you can right-click and select "Save link as..." to download them to your computer.
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Once you have downloaded those functions and placed them in the search path, you can use them just
like any other built-in function. For example, you can plot a Gaussian peak with white noise by typing
x=[1:256]; y=gaussian(x,128,64) + whitenoise(x); plot(x,y) . The script plotting.m,
shown in the figure on page 17, uses the gaussian.m function to demonstrate the distinction between the
height, position, and width of a Gaussian curve. The script SignalGenerator.m calls several of these
downloadable functions to create and plot a realistic computer-generated signal with multiple peaks on
a variable baseline plus variable random noise; you might try to modify the variables in the indicated
places to make it look like your type of d ata. All these functions will work in the latest version of
Octave without change. For a complete list of my downloadable functions and scripts developed for
this project, see page 461 or on the Web at http://tinyurl.com/cey8rwh.

The Matlab/Octave function noisetest.m demonstrates the appearance and effect of different noise types.
It plots Gaussian peaks with four different types of added noise: constant white noise, constant pink
(1/f) noise, proportional white noise, and square root white noise, then fits a Gaussian to each noisy
data set and computes the average and the standard deviation of the peak height, position, width, and
area for each noise type. Type "help noisetest™ at the command prompt. My Matlab/Octave script
SubtractTwoMeasurements.m (page 24) demonstrates the technique of subtracting two separate
measurements of a waveform to extract the random noise (but it works only if the signal is stable,
except for the noise).

iSignal (page 371) is one of a group of multi-purpose downloadable Matlab modules I have developed
that combine many of the techniques covered here; iSignal can plot signals with pan and zoom controls,
measure signal and noise amplitudes in selected regions of the signal and compute the S/N ratio of
peaks. It is operated by simple key presses. Other capabilities of iSignal include smoothing (page 39),
differentiation, peak sharpening and de-tailing, deconvolution, least-squares peak measurement, etc.

Others in this group of interactive functions include iPeak, page 250, which focuses on peak detection,
and ipf.m, page 414, which focuses on iterative curve fitting. These functions are ideal for initial
explorations of complex signals because they make it easy to select operations and adjust the controls
by simple key presses. These work even if you run Matlab Online in a web browser, but they do not
work on Matlab Mobile. Note that the Octave versions, ipfoctave.m, ipeakoctave.m, isignaloctave.m,
and ifilteroctave.m, use the < and > keys (with and without shift) for pan and zoom.

For signals that contain repetitive waveform patterns occurring in one continuous signal, with
nominally the same shape except for noise, the interactive peak detector function iPeak (page 248), has
an ensemble averaging function (Shift-E) can compute the average of all the repeating waveforms. It
works by detecting a single reference peak in each repeat waveform to synchronize the repeats (and
therefore does not require that the repeats be equally spaced or synchronized to an external reference
signal). To use this function, first adjust the peak detection controls to detect only one peak in each
repeat pattern, zoom in to isolate any one of those repeat patterns, and then press Shift-E. The average
waveform is displayed in Figure 2 and saved as “EnsembleAverage.mat” in the current directory. See
iPeakEnsembleAverageDemo.m for a demonstration. See page 326: Measuring the Signal-to-Noise
Ratio of Complex Signals for more examples of the signal-to-ratio in Matlab/Octave computations.
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Numerical experiments: the role of simulation and modeling.

A simulation is an imitation of the operation of a real-world process or system over time. Simulations
require the use of models, which represent the important characteristics or behaviors of the selected
system or process, whereas the simulation represents the evolution of the model over time. The Wik-
ipedia article on simulation lists 27 widely different areas where simulation and modeling are applied.
In the context of scientific measurement, simulations of measurement instruments (page 350) or of sig-
nal processing techniques have been widely applied. A simulated signal can be synthesized using math-
ematical models for signal shapes (page 461) combined with appropriate types of simulated random
noise (page 23), both based on the common characteristics of real signals.

It is important to realize that a simulated signal is not a “fake” signal, because it is not intended to de-
ceive. Rather, you can use simulated signals to test the accuracy and precision of a proposed processing
technique, using simulated data whose true underlying parameters are known (which is not the case for
real signals). Moreover, you can test the robustness and reproducibility of a proposed technique by cre-
ating multiple signals with the same underlying signal parameters but with imperfections added, such
random noise, non-zero and shifting baselines, interfering peaks, shape distortion, etc. For example, the
script CreateSimulatedSignal.m shows how to create a realistic model of a multi-peak signal that is
based on the measured characteristics of an experimental signal. We will see many applications of this
idea, e.g., on pages 306, and 332.

Simulation is also applicable in more sophisticated cases. On page 358, | describe a published commer-
cial technical report that contained a detailed example of a practical application of liquid chromatog-
raphy with a diode array detector to separate three similar chemical isomers. With that information |
was able to create realistic a “data-based” simulation of the data obtained in that experiment, which al-
lowed me to “repeat” the experiment numerically, under different experimental conditions, to explore
the limits of applicability of that method to other potentially more challenging applications.
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Smoothing

In many experiments in science, the true signal amplitudes (y-axis values) change rather smoothly as a
function of the x-axis values, whereas many kinds of noise are seen as rapid, random changes in
amplitude from point to point within the signal. In the latter situation it may be useful in some cases to
attempt to reduce the noise by a process called smoothing. In smoothing, the data points of a signal are
modified so that individual points that are higher than the immediately adjacent points (presumably
because of noise) are reduced, and points that are lower than the adjacent points are increased. This
naturally leads to a smoother signal (and a slower step response to signal changes). If the true
underlying signal is smooth, then the true signal will not be much distorted by smoothing, but the high
frequency noise will be reduced. In terms of the frequency components of a signal, a smoothing
operation acts as a low-pass filter, reducing the high-frequency components and passing the low-
frequency components with little change. If the signal and the noise is measured for all frequencies,
then the signal-to-noise ratio will be improved by smoothing, by an amount that depends on the
frequency distribution of the noise. (Smoothing can be contrasted to wavelet denoising, pages 129 and
59, which also reduces noise but does not necessarily make the signal completely smooth).

Smoothing algorithms

The simplest smoothing algorithms are based on the "shift and multiply"” technique, in which a group of
adjacent points in the original data is multiplied point-by-point by a set of numbers (coefficients) that
defines the smooth shape, the products are added up and divided by the sum of the coefficients, which
becomes one point of smoothed data, then the set of coefficients is shifted one point along the original
data and the process is repeated. The simplest smoothing algorithm is the rectangular boxcar or
unweighted sliding-average smooth; it simply replaces each point in the signal with the average of m
adjacent points, where m is a positive integer called the smooth width. For example, for a 3-point
smooth (m = 3):

_ Yo+

j+1

5 3

This is evaluated for j = 2 to n-1, where SJ- is the jt point in the smoothed signal, Yj is the j™ point in

the original signal, and n is the total number of points in the signal. Most spreadsheets and
programming languages have a “mean” or “average” function which can do this work quickly, so
Si=mean(yj.w2:Yj+wr2). Similar smooth operations can be constructed for any desired smooth width, m.
Usually m is an odd number. If the noise in the data is "white noise" (that is, evenly distributed over all
frequencies) and its standard deviation is D, then the standard deviation of the noise remaining in the
signal after the first pass of an unweighted sliding-average smooth will be approximately D over the
square root of m (D/sqrt(m)), where m is the smooth width. Despite its simplicity, this smooth is
actually optimum for the common problem of reducing white noise while keeping the sharpest step
response (click here for a logical proof). The response to a step change is, in fact, linear, so this filter
has the advantage of responding completely with no residual effect within its response time (which is
equal to the smooth width divided by the sampling rate). Smoothing can be performed either during
data acquisition, by programming the digitizer to measure and to average multiple readings and save
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only the average, or after data acquisition (“post-run™), by storing all the acquired data in memory and
smoothing the stored data. The latter requires more memory but is more flexible.

The triangular smooth is like the rectangular smooth, above, except that it implements a weighted
smoothing function. For a 5-point smooth (m = 5):
Vi +2Y +3Y 2+ Y,

9
for j = 3 to n-2, and similarly for other smooth widths (see the spreadsheet UnitGainSmooths.xIs). In
both of these cases, the integer in the denominator is the sum of the coefficients in the numerator, which

results in a “unit-gain” smooth that has no effect on the signal where it is a straight line and which
preserves the area under peaks.

5=

It is often useful to apply a smoothing operation more than once, that is, to smooth an already smoothed
signal, to build longer and more complicated smooths. For example, the 5-point triangular smooth
above is equivalent to two passes of a 3-point rectangular smooth. Three passes of a 3-point rectangular
smooth result in a 7-point haystack smooth, also called a “p-spline”, for which the coefficients are in
the ratio 1:3:6:7:6:3:1. The general rule is that n passes of a w-width smooth results in a combined
smooth width of n*w-n+1. For example, 3 passes of a 17-point smooth results in a 49-point smooth.
These multi-pass smooths are more effective at reducing high-frequency noise in the signal than a
rectangular smooth, but they exhibit a slower step response.

In all these smooths, the width of the smooth m is chosen to be an odd integer, so that the smooth
coefficients are symmetrically balanced around the central point, which is important because it
preserves the x-axis position of peaks and other features in the smoothed signal. (This is especially
critical for analytical and spectroscopic applications because the peak positions are often important
measurement objectives.

We are assuming here that the x-axis interval of the signal is uniform, that is, that the difference
between the x-axis values of adjacent points is the same throughout the signal. This is also assumed in
many of the other signal-processing techniques described in this book, and it is a very common (but not
necessary) characteristic of signals that are acquired by automated and computerized equipment.

More advanced algorithms. The Savitzky-Golay smooth (ref 97) is based on the least-squares fitting
of polynomials to segments of the data. The algorithm is discussed on Wikipedia. Compared to the
sliding-average smooths of the same width, the Savitzky-Golay smooth is less effective at reducing
noise, but more effective at retaining the shape of the original signal. It is capable of differentiation as
well as smoothing. The algorithm is more complex, and the computational times may be greater than
the smooth types discussed above, but with modern computers, the difference is seldom significant.
Code in various languages is widely available online. See page 58. My interactive iSignal function
(page 371) has a Savitzky-Golay option. The wavelet-based denoise function (see page 133) is a more
sophisticated algorithm that attempts to distinguish signal from noise by analyzing the frequency
structure of the signal.

The shape of any smoothing algorithm can be determined by applying that smooth to a delta function, a
signal consisting of all zeros except for one point, as demonstrated by the simple Matlab/Octave script
DeltaTest.m. The result is called the impulse response function.

Page | 42


https://terpconnect.umd.edu/~toh/spectrum/UnitGainSmooths.xls
https://terpconnect.umd.edu/~toh/spectrum/Integration.html
http://en.wikipedia.org/wiki/Savitzky%96Golay_smoothing_filter
https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
https://terpconnect.umd.edu/~toh/spectrum/Differentiation.html
https://www.google.com/search?sourceid=chrome&ie=UTF-8&q=Savitzky-Golay+smooth+code
https://terpconnect.umd.edu/~toh/spectrum/SmoothingComparison.html
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
https://terpconnect.umd.edu/~toh/spectrum/DeltaTest.m

Noise reduction

Smoothing usually reduces the noise in a signal. If the noise is "white" (that is, evenly distributed over
all frequencies) and its standard deviation is D, then the standard deviation of the noise remaining in

the signal after one pass of a rectangular smooth will be approximately D/sqrt(m), where m is the
smooth width. If a triangular smooth is used instead, the noise will be slightly less, about D*0.8/sqrt(m).
Smoothing operations can be applied more than once: that is, a previously smoothed signal can be
smoothed again. In some cases, this can be useful if there is a great deal of high-frequency noise in the
signal. However, the noise reduction for white noise is less in each successive smooth. For example,
three passes of a rectangular smooth reduce white noise by a factor of approximately D*0.7/sqrt(m),
only a slight improvement over two passes. For a spreadsheet demonstration, see
VariableSmoothNoiseReduction.xIsx.

Effect of the frequency distribution of noise

The frequency distribution of noise, designated by noise “color” (page 23), substantially affects the
ability of smoothing to reduce noise. The Matlab/ Octave function “NoiseColorTest.m” compares the
effect of a 20-point boxcar (unweighted sliding average) smooth on the standard deviation of white,
pink, red, and blue noise, all of which have an original unsmoothed standard deviation of 1.0. Because
smoothing is a low-pass filter process, it affects low-

frequency (pink and red) noise less, and effects high- Original unsmoothed noise 1
frequency (blue and violet) noise more, than it does : :

white noise. Smoothed white noise 0.1
Note that the computation of standard deviation is Smoothed pink noise 0.55

independent of the order of the data and thus of its

frequency distribution; sorting a set of data does not
change its standard deviation. The standard deviation | Smoothed red (random walk) noise| 0.98
of a sine wave is independent of its frequency.
Smoothing, however, changes both the frequency distribution and standard deviation of a data set.

Smoothed blue noise 0.01

YWhite noise (Red=smoothing funciton)  Smoothed White Noise Srmoothed Pink {1/ Noise
2 2 2
0 ” 0 ]
-2 -2 -2
0 200 1000 u] 500 1000 0 500 1000
Width=20 Type=1 Standard deviation =0.21187 Standard deviation = 0.59265
Smoothed Blue Moise Smoothed Red Noise Smoothed Yiolet Noise
2 2 2
0 0 0
-2 -2 -2
0 200 1000 u] 500 1000 0 500 1000
Standard deviation = 0.0495968 Standard dewiation = 0.98334  Standard deviation = 0.030941
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End effects and the lost points problem

In the equations above, the 3-point rectangular smooth is defined only for j = 2 to n-1. There is not
enough data in the signal to define a complete 3-point smooth for the first point in the signal (j = 1) or
for the last point (j = n), because there are no data points before the first point or after the last point.
(Similarly, a 5-point smooth is defined only for j = 3 to n-2, and therefore a smooth cannot be
calculated for the first two points or for the last two points). In general, for an m-width smooth, there
will be (m-1)/2 points at the beginning of the signal and (m-1)/2 points at the end of the signal for
which a complete m-width smooth cannot be calculated the usual way. What to do? There are two
approaches. One is to accept the loss of points and trim off those points or replace them with zeros in
the smooth signal. (That's the approach taken in most of the figures in this book). The other approach is
to use progressively smaller smooths at the ends of the signal, for example to use smooth widths of 2, 3,
5, 7... points for signal points 1, 2, 3, and 4..., and for points n, n-1, n-2, n-3..., respectively. The latter
approach may be preferable if the edges of the signal contain critical information, but it increases
execution time. My Matlab/Octave fastsmooth function (page 467) can utilize either of these two
methods. An alternative approach is to pad the edges with a mirror image of the data itself, which is
commonly done in smoothing two-dimensional (image) data.

Examples of smoothing

Window 1
512 points. 3: 1.0e+0 Sle+2 F-1.5e-1 2.2e+

The figure below shows a simple example of
smoothing. The left half of this signal is a noisy
peak. The right half is the same peak after
undergoing a triangular smoothing algorithm. The
noise is greatly reduced while the peak itself is
hardly changed. The reduced noise allows the
signal characteristics (peak position, height,
width, area, etc.) to be measured more accurately
by visual inspection.
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The left half of this signal is a noisy peak. The
o0 zoo son 400 s right half is the same peak after undergoing a
x 102 smoothing algorithm. The noise is greatly
reduced while the peak itself is hardly changed,
oo poms X 1040 26842 T -15el 22840 making it easier to measure the peak position,

height, and width directly by graphical or visual
estimation (but it does not improve measurements
made by least-squares methods; see below).

2.00 o

1.30 4
The larger the smooth width, the greater the noise

reduction, but also the greater the possibility that
the signal will be distorted by the smoothing
operation. The optimum choice of smooth width
depends upon the width and shape of the signal and
the digitization interval. For peak-type signals, the
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xi0” critical factor is the smooth ratio, the ratio between
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the smooth width m and the number of points in the half-width of the peak. In general, increasing the
smoothing ratio improves the signal-to-noise ratio but causes a reduction in amplitude and an increase
in the width of the peak. Be aware that the smooth width can be expressed in two different ways: (a) as
the number of data points or (b) as the x-axis interval (for spectroscopic data usually in nm or in
frequency units). The two are simply related: the number of data points is simply the x-axis interval
times the increment between adjacent x-axis values. The smooth ratio is the same in either case.

The figures here show examples of the effect of three different smooth widths on noisy Gaussian-
shaped peaks. In the figure on the left, the peak has a true height of 2.0 and there are 80 points in the
half-width of the peak. The red line is the original unsmoothed peak. The three superimposed green
lines are the results of smoothing this peak with a triangular smooth of width (from top to bottom) 7, 25,
and 51 points. Because the peak width is 80 256 poims. X:  2.0evz  dfex2 ¥ -Z.ze-z  1.0e+D
points, the smooth ratios of these three 100
smooths are 7/80 = 0.09, 25/80 = 0.31, and
51/80 = 0.64, respectively. As the smooth
width increases, the noise is progressively a60
reduced but the peak height also is reduced
slightly. For the largest smooth, the peak 040
width is noticeably increased. In the figure on
the right, the original peak (in red) has a true
height of 1.0 and a half-width of 33 points. s
(It is also less noisy than the example above.) 20
The three superimposed green lines are the
results of the same three triangular smooths of width 7, 25, and 51 points. But because the peak width,

in this case, is only 33 points, the smooth ratios of these three smooths are larger - 0.21, 0.76, and 1.55,
respectively. You can see that the peak distortion effect (reduction of peak height and increase in peak
width) is greater for the narrower peak because the smooth ratios are higher. Smooth ratios of greater
than 1.0 are seldom used because of excessive peak distortion. Note that even in the worst case, the

peak positions are not affected (assuming that the original peaks were symmetrical and not overlapped
by other peaks). If retaining the shape of the peak is more important than optimizing the signal-to-noise
ratio, the Savitzky-Golay has the advantage over sliding-average smooths. In all cases, the total signal
remains unchanged. If the peak widths vary substantially, an adaptive or segmented smooth, which
allows the smooth width to vary across the signal, may be used (page 329). In this context, “segmented”
means that the signal is divided into segments with a different smooth applied to each segment.

U

020

The problem with smoothing

Smoothing is often less beneficial than you might think. It is important to understand that smoothing
results such as illustrated in the figures above could be viewed as deceptively impressive because they
employ a single sample of a noisy signal that is smoothed to different degrees. This causes the viewer
to underestimate the contribution of low-frequency noise, which is hard to estimate visually because
there are so few low-frequency cycles in the signal record. This problem can be visualized by recording
a few independent samples of a noisy signal consisting of a single peak, as illustrated in the two figures
below.
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x=1:1000; X=1:1000;
for n=1:10, for n=1:10,
y(n,:)=2.*gaussian(x,500,150).. y(n,:)=2.*gaussian(x,500,150) +whitenoise (
+whitenoise (x) ; x) ;
end y(n,:)=fastsmooth(y(n,:),50,3);
plot(x,y) end

plot(x,y)

These figures show ten superimposed plots with the same peak but with independent white noise, each
plotted with a different line color, unsmoothed on the left and smoothed on the right. Clearly, the noise
reduction is substantial, but close inspection of the different colored smoothed signals on the right
shows that there is still variation in peak position, height, and width between the 10 samples, which is
caused by the low-frequency noise remaining in the smoothed signals. Without the noise, each peak
would have a peak height of 2, peak center at 500, and a width of 150. Just because a signal looks
smooth does not mean there is no noise. Low-frequency noise remaining in the signals after smoothing
can still interfere with the precise measurement of peak position, height, and width.

(The generating scripts below each figure require that the functions gaussian.m, whitenoise.m, and
fastsmooth.m be downloaded from http://tinyurl.com/cey8rwh.)

It should be clear that smoothing can seldom eliminate noise completely, because most noise is spread
out over a range of frequencies and smoothing simply reduces the noise in part of its frequency range.
Only for some very specific types of noise (e.g., discrete frequency sine-wave noise or single-point
spikes) is there hope of anything close to complete noise elimination. Smoothing does make the signal
smoother, and it does reduce the standard deviation of the noise, but whether that makes for a better
measurement or not depends on the situation. And do not assume that just because a little smoothing is
good that more will necessarily be better. Smoothing is like alcohol; sometimes you really need it - but
you should never overdo it.
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The figure on the right below is another example 4
of a signal that illustrates some of these principles. 12} 1
The signal consists of two Gaussian peaks, one
located at x=50 and the second at x=150. Both
peaks have a peak height of 1.0 and a peak half-
width of 10, and the same normally-distributed
random white noise with a standard deviation of
0.1 has been added to the entire signal. The x-axis
sampling interval, however, is different for the
two peaks: it is 0.1 for the first peak from x=0 to
100) and 1.0 for the second peak (from x=100 to
200). This means that the first peak is
characterized by ten times more data points than
the second peak. It may look like the first peak is noisier than the second, but that is just an illusion; the
signal-to-noise ratio for both peaks is 10. The second peak looks less noisy only because there are
fewer noise samples there and we tend to underestimate the dispersion of small samples. The result of
this is that when the signal is smoothed, the second peak is much more likely to be distorted by the
smooth (it becomes shorter and wider) than the first peak. The first peak can tolerate a much wider
smooth width, resulting in a greater degree of noise reduction. Similarly, if both peaks are measured
with the least-squares curve fitting method to be covered later, the fit of the first peak is more stable
with the noise and the measured parameters of that peak will be about 3 times more accurate than the
second peak, because there are 10 times more data points in that peak, and the measurement precision
improves roughly with the square root of the number of data points if the noise is white. You can
download this data file, "udx", in TXT format or in Matlab MAT format.

20 40 G0 a0 00 1200 140 160 180 200

Optimization of smoothing

Original signal ‘l” smoothing As smooth width increases, the smoothing ratio
increases, noise is reduced quickly at first, then
more slowly, and the peak height is also reduced,
slowly at first, then more quickly. The noise
reduction depends on the smooth width, the
smooth type (e.g., rectangular, triangular, etc.),
and the noise color, but the peak height reduction
also depends on the peak width. The result is that
the signal-to-noise (defined as the ratio of the
peak height of the standard deviation of the noise)
increases quickly at first, then reaches a
maximum. This is illustrated by the animation on
the left, which shows the result of smoothing a
B T R w5 Gaussian peak plus white noise (produced by this

i * Matlab/Octave script). The maximum
Screencast=O-Maticicom . . . . .
improvement in the signal-to-noise ratio depends
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on the number of points in the peak: the more points in the peak, the greater smooth widths can be
employed and the greater the noise reduction. This figure also illustrates that most of the noise
reduction is due to high-frequency components of the noise, whereas much of the low-frequency noise
remains in the signal even as it is smoothed.

Which is the best smooth ratio? It depends on the purpose of the peak measurement. If the ultimate
objective of the measurement is to measure the peak height or width, then smooth ratios below 0.2
should be used and the Savitzky-Golay (or wavelet denoise: see page 133) smooth is preferred. But if
the objective of the measurement is to measure the peak position (x-axis value of the peak), larger
smooth ratios can be employed if desired, because smoothing has little effect on the peak position
(unless peak is asymmetrical or the increase in peak width is so much that it causes adjacent peaks to
overlap). If the peak is actually formed of two underlying peaks that overlap so much that they appear
to be one peak, then curve fitting is the only way to measure the parameters of the underlying peaks.
Unfortunately, the optimum signal-to-noise ratio corresponds to a smooth ratio that significantly
distorts the peak, which is why curve fitting the unsmoothed data is often the preferred method for
measuring peaks position, height, and width. The peak area is not changed by a properly constructed
smoothing operation unless it changes your estimate of the beginning and the ending of the peak.

In quantitative chemical analysis applications based on calibration by standard samples, the peak
height reduction caused by smoothing is not so important. If the same signal processing operations are
applied to the samples and to the standards, the peak height reduction of the standard signals will be the
same as that of the sample signals and the effect will cancel out exactly. In such cases, smooth widths
from 0.5 to 1.0 can be used if necessary, to further improve the signal-to-noise ratio, as shown in the
figure on the previous page (for a simple sliding-average rectangular smooth). In practical analytical
chemistry, absolute peak height measurements are seldom required; calibration against standard
solutions is the rule. (Remember: the objective of quantitative analysis is not to measure a signal but
rather to measure the concentration of the unknown.) It is very important, however, to apply the same
signal processing steps to the standard signals as to the sample signals, otherwise a large systematic
error will result.

For a more detailed comparison of all four smoothing types considered above, see page 58.

When should you smooth a signal?
There are four reasons to smooth a signal:

(a) for cosmetic reasons, to prepare a nicer-looking or more dramatic graphic of a signal for
visual inspection or publication, especially in order to emphasize long-term behavior over short-
term, or

(b) If the signal contains mostly high-frequency ("blue™) noise, which can look bad but has less
effect on the low-frequency signal components (e.g. the positions, heights, widths, and areas of
peaks) than white noise, or

(c) if the signal will be subsequently analyzed by a method that would be degraded by the
presence of too much noise in the signal, for example, if the heights of peaks are to be
determined visually or graphically or by using the MAX function, of the widths of peaks is
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measured by the halfwidth function, or if the location of maxima, minima, or inflection points

in the signal is to be determined automatically by detecting zero-crossings in derivatives of the
signal. Optimization of the amount and type of smoothing is important in these cases (see page
43). Generally, if a computer is available to make quantitative measurements, it is better to use
least-squares methods on the unsmoothed data, rather than graphical estimates on smoothed data.
If a commercial instrument has the option to smooth the data for you, it is best to disable the
smoothing and record and save the unsmoothed data; you can always smooth it yourself later for
visual presentation and it will be better to use the unsmoothed data for a least-squares fitting or
other processing that you may want to do later. Smoothing can be used to locate peaks, but it
should not be used to measure peaks.

(d) The formal limit of detection and limit of quantification of an analytical method (references
91, 92) may be improved by smoothing or averaging, depending on the method of signal
measurement, as was described on page 26 and demonstrated by the Matlab/Octave script
SNRdemo.m.

You must use care in the design of algorithms that employ smoothing. For example, in a popular
technique for peak finding and measurement discussed later (page 229), peaks are located by detecting
downward zero-crossings in the smoothed first derivative, but the position, height, and width of each
peak is determined by least-squares curve-fitting (page 170) of a segment of original unsmoothed data
in the vicinity of the zero-crossing (page 232), rather than simply taking the maximum of the smoothed
data. That way, even if heavy smoothing is necessary to provide reliable discrimination against noise
peaks, the peak parameters extracted by curve fitting are not distorted by the smoothing.

When should you NOT smooth a signal?
One common situation where you should not smooth signals is prior to statistical procedures such as
least-squares curve-fitting. There are several reasons (reference 43).

(a) Smoothing will not significantly improve the accuracy of parameter measurement by least-
squares measurements between separate independent signal samples.

(b) All smoothing algorithms are at least slightly "lossy", entailing at least some change in
signal shape and amplitude.

(c) It is harder to evaluate the fit by inspecting the residuals if the data are smoothed, because
smoothed noise may be mistaken for an actual signal.

(d) Smoothing the signal will seriously underestimate the parameter errors predicted by the
algebraic propagation-of-error calculations and by the bootstrap method (page 166). Even a
visual estimate of the quality of the signal is compromised by smoothing, which makes the

signal look better than it really is.

Dealing with spikes and outliers.

Sometimes signals are contaminated with very tall, narrow “spikes” or "outliers" occurring at random
intervals and with random amplitudes, but with widths of only one or a few points. For example,
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optical spectroscopy using photomultiplier tube detectors is subject to spikes caused by “cosmic rays”
from outer space passing through the front window of the detector, creating a pulse of Cherenkov
radiation. It not only looks ugly, but it also upsets the assumptions of least-squares computations
because it is not normally distributed random noise. This type of interference is difficult to eliminate
using the above smoothing methods without distorting the signal. However, a “median” filter, which
replaces each point in the signal with the median (rather than the average) of m adjacent points, can
eliminate narrow spikes, with little change in the signal, if the width of the spikes is only one or a few
points and equal to or less than m. See http://en.wikipedia.org/wiki/Median_filter. The script
“TestSpikefilters.m” demonstrates the median filter in action, removing the effect of narrow spikes:

Effect of median filter on measured area a of peak with spikes
‘18 T T T T T T T
Criginal signal, y
Median fittered, mfy
16T Signal with spikes, spy| |
14 1
1271 7
1k i
=
0.8 [ ]
'F
0.6 |y -
4
0.4 7
0.2 7
<
D 1 1 1 1 1 1 1
=2 -1.a -1 -0.5 0 0.5 1 1.5 2
Delta x increment: 0.02  Number of Spikes: 4  Spike width: 1 MNoise: 0%

PercentAreaErrorBefore =4.5%
PercentAreaErrorMedian =0.16%

PercentAreaErrorInterp =0.004%
For another example, see page 291.

A different approach to spike elimination is used by my Killspikes.m function; it locates and eliminates
the spikes by "patching over them™ using linear interpolation from the signal points immediately before
and after the spike. See page 56 for details.

Unlike conventional smooths, these functions can be profitably applied prior to least-squares fitting
functions. (On the other hand, if the spikes themselves are the signal of interest, and the other
components of the signal are interfering with their measurement, see page 300).
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Ensemble Averaging

Another way to reduce noise in repeatable signals, such as the set of ten unsmoothed signals on page 46,
is simply to compute their average, called ensemble averaging, which can be performed in this case
very simply by the Matlab/Octave code plot(x, mean(y)); the result shows a reduction in white noise
by about sqrt(10)=3.2. This improves the signal-to-noise ratio enough to see that there is a single peak
with Gaussian shape, which can then be measured by curve fitting (covered in a later section, page 195)
using the Matlab/Octave code peakfit([x; mean(y)],0,0,1), with the result showing excellent agreement
with the position (500), height (2), and width (150) of the Gaussian peak created in the third line of the
generating script (on page 46). A huge advantage of ensemble averaging is that the noise at all
frequencies is reduced, not just the high-frequency noise as in smoothing. This is a big advantage if
either the signal or the baseline drift.

Condensing oversampled signals

Sometimes signals are recorded more densely (that is, with higher sampling frequency or with smaller
x-axis intervals) than necessary to capture all the important features of the signal. This results in larger-
than-necessary data sizes, which slows down signal processing procedures and may tax storage
capacity. To correct this, oversampled signals can be reduced in size either by eliminating data points
(say, dropping every second point or every third point) or by replacing groups of adjacent points by
their averages, which is often called bunching. Bunching has the advantage of using rather than
discarding data points, and it acts like smoothing to provide some measure of noise reduction. If the
noise in the original signal is white, and the signal is condensed by averaging every “n” points, the
noise is reduced in the condensed signal by the square root of n, but with no change in the frequency
distribution of the remaining noise. The Matlab/Octave script testcondense.m demonstrates the effect of
boxcar averaging using the condense.m function to reduce noise without changing the noise color.
Shows that the boxcar reduces the measured noise, removing the high-frequency components but has
little effect on the peak parameters. Least-squares curve-fitting on the condensed data is faster and
results in a lower fitting error, but no more accurate measurement of peak parameters. If you find
yourself resorting to very large smooth widths, consider using the condense function first.

Video Demonstration. This 18-second, three MByte video (Smooth3.wmv) demonstrates the effect of
triangular smoothing on a single Gaussian peak with a peak height of 1.0 and a peak width of 200. The
initial white noise amplitude is 0.3, giving an initial signal-to-noise ratio of about 3.3. An attempt to
measure the peak amplitude and peak width of the noisy signal, shown at the bottom of the video, are
initially seriously inaccurate because of the noise. As the smooth width increases, however, the signal-
to-noise ratio and the accuracy of the measurements of peak amplitudes and peak widths are both
improved. However, above a smooth width of about 40 (smooth ratio 0.2), the smoothing causes the
peak to be shorter than 1.0 and wider than 200, even though the signal-to-noise ratio continues to
improve as the smooth width is increased.
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Smoothing in spreadsheets

Smoothing can be done in spreadsheets using the "shift and multiply"” technique described above. In the
demonstration spreadsheets smoothing.ods and smoothing.xls (screen image) the set of multiplying
coefficients is contained in the formulas that calculate the values of each cell of the smoothed data in
columns C and E. Column C performs a 7-point rectangular smooth (111111 1). Column E
performs a 7-point triangular smooth (1 2 3 4
3 21), applied to the data in column A. You
can type in (or Copy and Paste) any data you

e like into column A, and you can extend the
: 1 spreadsheet to longer columns of data by
ottt dragging the last row of columns A, C, and E
: IR down as needed. But to change the smooth

. : width, you would have to change the equations
in columns C or E and copy the changes down
D TR B 18 22 2528 31 4 57 40,41 46 45,52 55 5 &1 54 67 70 the entire column. It is common practice to
1 pass divide the results by the sum of the coefficients
; so that the net gain is unity and the area under
’ the curve of the smoothed signal is preserved.
: vt s g Aty The spreadsheets UnitGainSmooths.xls and
+ UnitGainSmooths.ods (screen image) contain a
: > collection of unit-gain convolution coefficients
o ot for a rectangular, triangular, and p-spline
smooth of width 3 to 29 in both vertical
2 passes (column) and horizontal (row) forma Copy and
; Paste these into your own spreadsheets.

: The spreadsheets MultipleSmoothing.xls and
. gros— MultipleSmoothing.ods (screen image on the
left) demonstrate another method in which the
L coefficients are contained in a group of 17
47 101316182235 30 31 34 37 40 43 40 40 52 55 58 adjacent cells (in row 5, columns | through Y),
making it easier to change the smooth shape
and width (up to a maximum of 17) just by
; changing those 17 cells. (To make a smaller
: smooth, just insert zeros for the unused
coefficients; in this example, a 7-point
triangular smooth is defined in columns N - T
and the rest of the coefficients are zeros). In
this spreadsheet, the smooth is applied three
times in succession in columns C, E, and G, resulting in an effective maximum smooth width of n*w-
n+1 = 49 points applied to column G. A disadvantage of the above technique for smoothing in
spreadsheets is that is cumbersome to expand them to very large smooth widths.

3 pEEEES
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A more flexible and powerful technique, especially for very large and variable smooth widths, is to
use the built-in spreadsheet function AVERAGE, which by itself is equivalent to a rectangular smooth,
but if applied two or three times in succession, generates triangle and P-spline-shaped smooths. It is
best used in conjunction with the INDIRECT function (page 348) to control a dynamic range of values.
This is demonstrated in the spreadsheet VariableSmooth.xlsx in which the data in column A are
smoothed by three successive applications of AVERAGE, in columns B, C, and D, each with a smooth
width specified in a single cell F3. If w is the smooth width, which can be any odd positive number, the
resulting smooth in column D has a total width of n*w-n+1 = 3*w-2 points. The cell formula of the
smooth operations (=FAVERAGE(INDIRECT("A"&ROW(A17)-($F$3-1)/2&":A"&ROW(A17) +
($F$3-1)/2))) uses the INDIRECT function to apply the AVERAGE function to the data in the rows
from w/2 rows above to w/2 rows below the current row, where the smooth width w is in cell F3. If you
Copy and Paste this formula to . }

your own spreadsheets, you must Demonstration of mult-pass smoothing with the AVERAGE function

manually change all references to
column "A" to the column that
contains the data to be smoothed
in your spreadsheet and change :
all references to "$F$3" to the
location of the smooth width in
your spreadsheet. Then when you 0
drag-copy down to cover all your
data points, the row cell
references will take care of
themselves.

Smooth Width {must
be odd integer)

raw data Rectangle Triangle “Gaussian”

AR H 3 RS

The example in the graphic above
shows smoothing applied to a DC (direct current) signal with a step change occurring at x=111.
Without smoothing (blue line) the step is almost invisible. As an application example, the smoothed
signal might be used to trigger an alarm whenever it exceeds a value of .2, warning that something has
occurred, whereas the raw unsmoothed signal would be completely unsuitable for that purpose.

Another set of spreadsheets that uses this same AVERAGE(INDIRECT()) technique is
SegmentedSmoothTemplate.xlIsx, a segmented multiple-width data smoothing spreadsheet template that
can apply individually specified different smooth widths to different regions of the signal. This is
especially useful if the widths or the noise level of the peaks vary substantially across the signal. In this
version, there are 20 segments. Similar templates could be constructed with any number of segments.

SegmentedSmoothExample.xlIsx is an example with data (graphic); note that the plot is conveniently
lined up with the columns containing the smooth widths for each segment. A related sheet,
GradientSmoothTemplate.xIsx or GradientSmoothExample2.xIsx (graphic), performs a gradient
smooth, linearly increasing (or decreasing) in smooth width across the entire signal, given only the
starting and ending values, and automatically generating as many segments and different smooth
widths as are necessary. (It also enforces the restriction, in column C, that each smooth width must be
an odd number, to prevent an x-axis shift in the smoothed data).
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Smoothing in Matlab and Octave
The “mean” function, in both Matlab and Python, implements a single sliding average smooth (page
437). My custom Matlab function fastsmooth implements shift-and-multiply type smooths using a
faster recursive algorithm. It is a Matlab function of the form s=fastsmooth(a,w, type, edge). The
argument "a" is the input signal vector; "w" is

5 Smooth Widhe 160 SmoothTypes: Blus=! Rede2 Greanc3 the smooth width (a positive integer); "type"
determines the smooth type: type=1 gives a
B rectangular (sliding-average or boxcar)
smooth; type=2 gives a triangular smooth,
equivalent to two passes of a sliding average;
, ‘ type=3 gives a “p-spline” smooth, equivalent
~sf to three passes of a sliding average; these

" ' shapes are compared in the figure on the left.
(See page 58 for a comparison of these
it smoothing modes). The argument "edge"
controls how the "edges" of the signal (the
first w/2 points and the last w/2 points) are
Yoo 20w a0 @o G0 70 @0 %0 fon handled. If edge=0, the edges are zero. (In this

X mode the elapsed time is independent of the

smooth width. This gives the fastest execution time). If edge=1, the edges are smoothed with
progressively smaller smooths the closer to the end. (In this mode the execution time increases with
increasing smooth widths). The smoothed signal is returned as the vector "s". (You can leave off the
last two input arguments: fastsmooth(Y,w,type) smooths with edge=0 and fastsmooth(Y,w) smooths
with type=1 and edge=0). Compared to convolution-based smooth algorithms, fastsmooth uses a
simple recursive algorithm that typically gives faster execution times for large smooth widths; it can
smooth a 1,000,000-point signal with a 1,000-point sliding average in less than 0.1 seconds on a
standard Windows PC. Here's a simple example of fastsmooth demonstrating the effect on white noise
(graphic).
x=1:100;
y=randn (size(x)) ;
plot(x,y,x, fastsmooth(y,5,3,1),'r")
xlabel ('Blue: white noise. Red: smoothed white noise.')

pali)

Segmented smoothing

SegmentedSmooth.m is a segmented version of fastsmooth. The syntax is the same as fastsmooth.m,
except that the second input argument "smoothwidths" can be a vector: SmoothY = SegmentedSmooth
(Y, smoothwidths, type, ends). The function divides Y into several equal-length regions defined by the
length of the vector 'smoothwidths', then smooths each region with a smooth of type 'type’ and width
defined by the elements of vector 'smoothwidths'. In the graphic example on the next page,
smoothwidths=[31 52 91], which divides up the signal into three equal regions and smooths the first
region with smoothwidth 31, the second with smoothwidth 51, and the last with smoothwidth 91. You
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may use any number of smooth widths and
any sequences of smooth widths, just by how
you define the vector “smoothwidths”; no
other change is needed. Type "help
SegmentedSmooth™ for other examples.

DemoSegmentedSmooth.m is a
demonstration script that shows the operation
with different signals consisting of noisy
variable-width peaks that become
progressively wider (figure on the right). If
the peak widths increase or decrease
regularly across the signal, you can calculate
the smoothwidths vector by giving only the
number of segments ("NumSegments"), the
first value, "startw", and the last value,
"endw", like so:

wstep= (endw-startw) /NumSegments;
smoothwidths=startw:wstep:endw;

Other smoothing functions.

SegmentedSmooth demo Number of segments =3 Smooth widths = 31 41 51
14

‘

.

0

|
2PV b | | |
ot
-2
2000 4000 6000 8000 0 2000 4000 6000 8000
Original unsmoothed data Smoothed by SegmentedSmooth.m

Diederick has published a Savitzky-Golay smooth function in Matlab, which you can download from
the Matlab File Exchange. It is included in the iSignal function (page 371). Greg Pittam has published a
modification of my fastsmooth function that tolerates NaNs ("Not a Number") in the data file
(nanfastsmooth(Y,w,type,tol)) and another version for smoothing “angle” data that repeats every 360°
or 2 « radians (nanfastsmoothAngle(Y,w,type,tol)).

SmoothWidthTest.m is a demonstration script that uses the fastsmooth function to demonstrate the effect

Pseudo-Gaussian smooth
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Smooth Ratio = SmoothiWidth/PeakWidth
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of smoothing on peak height, noise, and signal-
to-noise ratio of a peak. You can change the
peak shape in line 7, the smooth type in line 8,
and the noise in line 9. A typical result for a
Gaussian peak with white noise smoothed with
a p-spline (pseudo-Gaussian) smooth is shown
on the left. Here, as it is for most peak shapes,
the optimal signal-to-noise ratio occurs at a
smooth ratio of about 0.8. However, that
optimum corresponds to a significant reduction
in peak height, which could be a problem. A
smooth width about half the width of the
original unsmoothed peak produces less
distortion of the peak but still achieves good
noise reduction. SmoothVsCurvefit.m is a
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similar script but is also compares curve fitting as an alternative method to measure the peak height
without smoothing.

This effect is explored more completely by the code below, which shows an experiment in Matlab or
Octave that creates a Gaussian peak, smooths it, compares the smoothed and unsmoothed version, then
uses the max(), halfwidth(), and trapz() functions to print out the peak height, halfwidth, and area.
(“max” and “trapz” are both built-in functions in Matlab and Octave, but you must download
halfwidth.m. To learn more about these functions, type "help" followed by the function name).
x=[0:.1:10]1";

y=exp (- (x-5) .*2) ;

plot(x,y)

ysmoothed=fastsmooth(y,11,3,1);

plot(x,y,x, ysmoothed, 'r')

disp([max(y) halfwidth(x,y,5) trapz(x,y)])

disp ([max (ysmoothed) halfwidth (x,ysmoothed,5) trapz(x, ysmoothed)])

max halfwidth Area
1 1.6662 1.7725
0.78442 2.1327 1.7725

These results show that smoothing reduces the peak height (from 1 to 0.784) and increases the peak
width (from 1.66 to 2.13) but has no observable effect on the peak area if you measure the total area
under the broadened peak. Smoothing is useful if the peak height, position, or width are measured by
simple methods, but there is no need to smooth the data if the noise is white and these peak parameters
are measured by least-squares methods, because the least-squares results obtained on the unsmoothed
data will be more accurate than the slightly distorted smoothed signal (see page 228).

Other noise-reduction functions.

The Matlab/Octave user-defined function condense.m, condense(y,n), returns a condensed version of y
in which each group of n points is replaced by its average, reducing the length of y by the factor n. (For
X,y data sets, use this function on both independent variable x and dependent variable y so that the
features of y will appear at the same x values). Random white noise in the signal is reduced by sqrt(n)
but the noise color is unchanged.

The Matlab/Octave user-defined function medianfilter.m, medianfilter (y,w), performs a median-
based filter operation that replaces each value of y with the median of w adjacent points (which must be
a positive integer). killspikes.m is a threshold-based filter for eliminating narrow spike artifacts. The
syntax is fy= killspikes(x, y, threshold, width). Each time it finds a positive or negative jump in the data
between y(n) and y(n+1) that exceeds "threshold", it replaces the next "width" points of data with a
linearly interpolated segment spanning x(n) to x(n+width+1). The script TestSpikefilters compares both
spike filters on a Gaussian with spikes and shows how accurately they recover the original peak area.

ProcessSignal is a Matlab/Octave command-line function that performs smoothing and differentiation
on the time-series data set x,y (column or row vectors). It can employ all the types of smoothing
described above. Type "help ProcessSignal™ at the command line. This function returns the processed
signal as a vector that has the same shape as x, regardless of the shape of y. The syntax is Processed =
ProcessSignal(x, y, DerivativeMode, w, type, ends, Sharpen, factorl, factor2, Symize, Symfactor,
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SlewRate, MedianWidth).

Real-time smoothing in Matlab is discussed on page 342. Smoothing in Python is described on page
437. A Live Script (page 36) for smoothing is covered on page 58.

iSignal (page 371) is an interactive keystroke-operated function for Matlab that includes smoothing for
time-series signals using all the
algorithms discussed above,
including the Savitzky-Golay
smooth, the segmented smooth, a
median filter, and a condense
function. Simple keystrokes allow
you to adjust any of the o 2 4 & 8 10 1z 14 1 1
Smoothing parameters Press Shift-A to cycle through spectrum log/linear plot modes
continuously while observing the
effect on your signal instantly,
making it easy to observe how

"S" key cycles through smooth types: None, rectangular, triangular, Gaussian, Savitzky-Golay,
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iSignal include differentiation,
peak sharpening, interpolation, least-squares peak measurement, and a frequency spectrum mode that
shows how smoothing and other functions can change the frequency spectrum of your signals. The
simple script “iSignalDeltaTest” demonstrates the frequency response of iSignal's smoothing functions
by applying them to a single-point spike, allowing you to change the smooth type and width to see how
the frequency response changes. (View the code here or download the ZIP file with sample data for
testing). The Octave version is isignaloctave.m, which has different keys for pan and zoom.

You try it: Here's an experiment you can try using iSignal. This uses a previously recorded example of
a very noisy signal with lots of high-frequency (blue) noise totally obscuring a perfectly good peak in
the center at x=150, height=1e-4; SNR=90. First, download iSignal.m and NoisySignal.mat into the
Matlab search path, then execute these statements:

>> load NoisySignal
>> isignal(x,y);

Use the A and Z keys to increase and decrease the smooth width, and the S key to cycle through the
available smooth types. Hint: use the “p-spline” smooth and keep increasing the smooth width until the
peak becomes visible. (Unfortunately, iSignal does not currently work in Octave, but it does work in a
Web browser using Matlab Online. See https://www.mathworks.com/products/matlab-online.html).

Note: If you are reading this online, you can right-click on any of the m-file links on this site and select
Save Link As... to download them to your computer for use within Matlab.
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Live script for smoothing

Here is an interactive Matlab Live Script for performing several types of smoothing applied to experi-
mental data stored on disk (page 363; download link: DataSmoothing.mlix). It can perform spike re-
moval, sliding average smooths with up to 5 passes, Savitsky-Golay and Fourier low-pass filtering
(page 125), and wavelet denoising (page 130, which requires the Matlab Wavelet Toolkit). Clicking the
Open data file button in line 1 opens a file browser, allowing you to navigate to your data file (in .csv
or .xlsx format; the script assumes that your x,y data are in the first two columns). All the variables and
settings appear in the Matlab workspace as usual; the finished smoothed data are in the vector "sy".

Data Smoothing

with median filter, recursive sliding average, Savitsky-Golay, Fourier low-pass, or wavelet denoise
(which requires the Matlab Wavelet Toolbox). 8

Savitsky-Golay

!
Original data
Smaothed data | |

Tom O'Haver 4/18/2023

1 Open data file |file= uigetfile('*.csv;*.xlsx');% Click this button to load data

2 mydata=xlsread(file); % from disk in xlsx or csv format.

3 PlotBeforeAndAfter= [ ; % Check this box to display smoothed signal as well as ori
4 FrequencySpectra=[] ; % Check this box to display frequency spectra

% Set the x-axis scale expansion beginning and end points (@ - 188%)

7 startpc= 1 ; % Percentage of data points to start data sele

8 endpc= 97.6 ; % Percentage of data points to end data selectic

16 RemoveSpikes= ; % Check this box to use median filter to remove spikes 10 L L L L L

11 SpikeWidth= & 3 % Estimated spike width, in data points o 50 100 150 200 250 3004
Area recovery: 100.0415 %

13 SmoothType =|Savitsky-Golay » |; % Select smoothing algrorithm

Frequency spectra

% For sliding average:

16 SmoothWidth= 41 ; % Smooth width for sliding average
17 NumPasses= 4 ; % Number of sliding average passes (1-5)
18 smoothEnds= ] ; % Click this box to smooth the ends of the data record.

% For Fourier low-pass filter:
21 FrequencyCutoff= 3.5 ; % Fourier filter cutoff frequency

22 CutOffRate= 4 ; % Fourier filter cutoff rate

% For Savitsky-Golay smooth only
25 sGsmoothWidth= 31 ; % Frame length for Savitsky-Golay

26 PolynomialOrder= &5 5 % Polynomial order must be less than the

% For wavelet denoising only (requires Matlab Wavelet Toolox be installed)

i _ Original data
29 WaveletType=| biors.5 I E Smoothed dala
30 Level= 4 ; % The higher the level, the lower is the frequency \
B <o o 10° 10'
32 NumPoints=length(mydata); - Frequency

The script has several interactive controls. The startpc and endpc sliders in lines 7 and 8 allow you to
select which portion of the data range to process, from 0% to 100% of the total range of the data file.
The RemoveSpikes checkbox applies a median filter (page 49) to remove sharp narrow spikes.
SmoothType drop-down menu in line 13 selects the smoothing algorithm; each has one or more con-
trols specific to that smooth type in lines 16 to 30. The first choice is the recursive sliding average
(fastsmooth.m) algorithm (page 41). The smooth width and number of passes are controlled by the
sliders in lines 16 and 17. The other controls are explained in the accompanying comment lines (in
green). Fourier filtering, Savitsky-Golay and wavelet denoising are topics that will be explained in later
sections. The PlotBeforeAndAfter checkbox in line 3 gives you the option of plotting the original sig-
nal (in black) along with the processed signal (in red). The FrequencySpectra checkbox in line 4 al-
lows you to show the frequency spectrum of the original and/or processed signals (page 91). Note: to
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view the graphic plots to the right of the code, as shown above, right-click on the empty space on the
right and select "Disable synchronous scrolling”. Note: you can double-click any of the sliders to
change their ranges if the initial range is insufficient. See page 365 for other interactive tools.

Smoothing performance comparison

The Matlab/Octave function "MultiPeakOptimization.m" is a self-contained function that compares the
performance of four types of linear smooth operations: (1) sliding-average rectangular, (2) triangular,
(3) p-spline (equivalent to three passes of a sliding-average), and (4) Savitzky-Golay. These are the
four smooth types discussed above, corresponding to the four values of the “SmoothMode” input ar-

Peak position error Peak height
25 1.2
Moving average Moving average
. 9 Triangular 1 Triangular
E Gaussian Gaussian
[ Savitsky-Golay 0.8 . S avitsky-Golay
€15
3
E 0.6 ~o
1 ~
0.4 T—
05 \__ e — 02
] 10 20 30 40 50 60 0 10 20 30 40 50 G0
Total smooth halfwidth. Peak width: 20 Total smooth halfwidth. Peak width: 20
Standard deviation of the noise Relative standard deviation of peak height
0.06 0.05
Moving average Moving average
0.05 Triangular 0.045 s i NG laT
Gaussian Gaussian
0.04 Savitsky-Golay 0.04 — avitsky-Golay

0.035

0.03

0.025
0 0 20 30 40 50 60 0 10 20 30 40 50 60

Total smooth halfwidth. Peak width: 20 Total smooth halfwidth.  Peak width: 20

gument of the ProcessSignal and the interactive iSignal functions. These four smooth operations are
applied to a 18000-point signal consisting of 181 Gaussian peaks all with a height of 1.0 and a FWHM
(full-width at half-maximum) of 20 points (“wid”, line 10), which are all separated by an x-value of
160.01 (line 16), plus added noise consisting of normally-distributed random white noise with a mean
of zero and a standard deviation of “Noise” (line 20). The x-axis peak position and y-axis height of
each smoothed peak is determined by the height and position of the maximum single signal point for
each peak. The relative standard deviation of the measured peak heights is recorded as a function of
“total smooth width”, tsw, which is defined as the halfwidth of the impulse response of each smooth
type. The results are shown in the figure below for a peak halfwidth of 20 and a noise standard devia-
tion of 0.2 (i.e., 20% of the peak height).

The four quadrants of the graph are: (upper left) peak position error expressed as a percentage of the
peak separation; (upper right), the mean peak height of the smoothed peaks; (lower left), the standard
deviation of the smoothed noise; and (lower right) the relative standard deviation of the measured peak
heights. The different smooth types are indicated by color: blue - sliding-average; red - triangular; yel-
low - p-spline, and purple - Savitzky-Golay.

These results show that the results of these different smooth types are quite similar but that, the Savitz-
ky-Golay smooth gives the smallest reduction in peak height but the smallest reduction in noise ampli-
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tude, compared to the other methods. All these smoothing methods result in similar improvements in
the standard deviation of the peak height (bottom right panel) and in the peak position error (upper left
panel). Moreover, in all cases, the optimum performance is achieved when the total smooth width is
approximately equal to the halfwidth of the peak. The conclusions are the same for a Lorentzian peak,
as demonstrated by a similar function "MultiPeakOptimizationLorentzian.m", graphic, the difference
being that the peak height reduction is greater for the Lorentzian. For applications where the shape of
the signal must be preserved as much as possible, the Savitzky-Golay is the method of choice. In peak
detection applications (page 66), on the other hand, where the purpose of smoothing is to reduce the
noise in the derivative signal, the retention of the shape of that derivative is less important because peak
parameters are determined by least-squares fitting. Therefore, the triangular or p-spline smooth is well
suited to this purpose and can be faster for very large smooth widths.

The differences between these methods are even less when the abscissas in the above graphs are
changed from total smooth bandwidth to white noise reduction factor, defined as the square root of the
reciprocal of the sum of the square of the impulse response function, as shown below.

Peak position error Peak height
2.5 12
Maoving average - Moving average
7 Triangular 1 \ Triangular
p-spline ‘-""'--., p-spline
— S avitsky-Golay T — Savitsky-Golay
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0.08 Triangular Triangular
p-spline 0.05 p-spline
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0.04
0.04
0.03
0.02 \
] 0.02
1 2 3 4 5 5] 7 1 2 3 4 5 5] 7
Noise reduction Noise reduction

An important detail is that these results apply only of the noise in the signal is white (page 29). If you
smooth a signal that has been differentiated, for example, the second derivative of a Gaussian peak with
white noise (graphic), high-frequency content of both the signal and the noise are greatly enhanced, and
these results will be different, showing much poorer relative performance for the simple moving aver-
age (graphic). The Savitzky-Golay smooth remains superior in this case also. A more sophisticated
method of noise reduction, called wavelet denoising, will be introduced on page 129.
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Differentiation

The symbolic differentiation of functions is a topic that is introduced in all elementary Calculus courses.
The numerical differentiation of digitized signals is an application of this concept that has many uses in

» LI S EETLE IR EE R analytical signal processing. The first derivative of a
signal is the rate of change of y with x, that is, dy/dx,
which we interpret as the slope of the tangent to the
signal at each point, as illustrated by the animation
shown on the left by this script. (If the animation
does not show, click this link). The simplest
algorithm for computing the first derivative is called
a “finite difference” method:

1|

09

08

07

06

05

04

03

oz "T'II-/= \rii+1_\rlr_i — \rii+1_\rlr_i }{.,: Xj+1+}<_i
0.1} Slope = -2.9391e-007 / >{j+1_ '}{j ﬁ}{ 1 2

(for 1< j <n-1).

T S
* .
where X'; and Y'; are the X and Y values of the jin

point of the derivative, n = number of points in the signal, and AX is the difference between the X

values of adjacent data points. A commonly used variation of this algorithm computes the average

slope between three adjacent points:
Y=Y

'\r"'z: j+l

! 2A¥ A=A

! (for 2 < j <n-1).

This is called a central-difference method,; its advantage is that it does not produce a shift in the x-axis
position of the derivative. It is also possible to compute gap-segment derivatives in which the x-axis
interval between the points in the above expressions is greater than one; for example, Yj_2 and Yj+2, or

Yj_3 and Yj+3, etc. This is equivalent to applying a sliding-average (rectangular) smooth (page 39) in
addition to the derivative.

The second derivative is the derivative of the derivative: it is a measure of the curvature of the signal,
that is, the rate of change of the slope of the signal. It can be calculated by applying the first derivative
calculation twice in succession. The simplest algorithm for direct computation of th