Error Propagation in Arithmetic Calculations

courtesy of http://www.nuclear.utah.edu/

Type of Calculation	Example*	Standard Deviation of x
Addition or Subtraction	x = p + q - r	$S_{x} = \sqrt{S_{p}^{2} + S_{q}^{2} + S_{r}^{2}}$
Multiplication or Division	$x = \frac{p \cdot q}{r}$	$S_x = x\sqrt{\left(\frac{S_p}{p}\right)^2 + \left(\frac{S_q}{q}\right)^2 + \left(\frac{S_r}{r}\right)^2}$
Exponentiation	$x = p^y$	$s_x = y \cdot x \frac{s_p}{p}$
Logarithm	$x = \log_{10} p$	$s_x = 0.434 \frac{s_p}{p}$
Natural Logarithm	$x = \ln p$	$S_x = \frac{S_p}{p}$
Antilogarithm	$x = anti \log_{10} p$	$s_x = 2.303 \cdot x \cdot s_p$
Natural Antilogarithm	$x = e^p$	$S_x = x \cdot S_p$

 $^{^*}$ p, q, and r are experimental variables whose standard deviations are s_p , s_q , and s_r , respectively: y is a constant.

Least Squares Error Analysis

With a set of data points, the error for a linear fit can be found following these equations: (x and y are the data points and N is the number of data points)

$$y = m \cdot x + b \qquad \text{! line equation}$$

$$\Delta = N \cdot \sum x^2 - (\sum x)^2 \quad \text{!}$$

$$b = \frac{\sum x^2 \cdot \sum y - \sum x \cdot \sum xy}{\Delta} \quad \text{! y-intercept}$$

$$m = \frac{N \cdot \sum xy - \sum x \cdot \sum y}{\Delta} \quad \text{! slope}$$

$$\sigma_y = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - b - mx_i)^2} \quad \text{! standard deviation of the y's}}$$

$$\sigma_b = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}} \quad \text{! standard deviation of the y-intercept}}$$

$$\sigma_m = \sigma_y \sqrt{\frac{N}{\Delta}} \quad \text{! standard deviation of the slope}$$

$$y = (m \pm \sigma_m) \cdot x + (b \pm \sigma_b) \quad \text{! line equation with error}$$

This system of equations is what Microsoft Excel uses in its LINEST function.